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Abstract: In this paper, we present a multi-task model that predicts disparities and confidence levels
in deep stereo matching simultaneously. We do this by combining its successful model for each
separate task and obtaining a multi-task model that can be trained with a proposed loss function.
We show the advantages of this model compared to training and predicting disparity and confidence
sequentially. This method enables an improvement of 15% to 30% in the area under the curve
(AUC) metric when trained in parallel rather than sequentially. In addition, the effect of weighting
the components in the loss function on the stereo and confidence performance is investigated.
By improving the confidence estimate, the practicality of stereo estimators for creating distance
images is increased.

Keywords: stereo vision; confidence; multi-task learning; uncertainty

1. Introduction

Stereo vision is a technology to determine the distance with two RGB cameras. A very
high accuracy can be achieved by a precise correspondence search between the two images.
Reconstructing the geometric configuration of a 3D environment is one of the fundamental
and essential problems in computer vision fields [1]. The images of the two cameras are
calibrated and rectified so that the corresponding points have the same y-value. Subse-
quently, for each pixel (x, y) in the right image, the corresponding pixel (x + d, y) in the left
image is searched for. Once the pixel is found, the physical distance can be determined by
geometry using the associated disparity value d. Any disparity value (d) can be converted
into a distance value (z) using the following formula, given the focal length ( f ) and the
base length (b) between the two cameras:

z =
b × f

d
(1)

For a deeper theoretical insight, we recommend the book “Multiple View Geometry in
Computer Vision” by Hartley and Zisserman [2]. The challenge is to find the right counter-
part in the other image. Over the years, researchers have developed a variety of approaches
to master the task of stereo matching. These methods have encompassed both handcrafted
techniques [3–6] and machine learning-based approaches [7,8]. However, the complexity
of the problem arises from several challenging factors, including reflective surfaces, tex-
tureless regions, regions with repeated patterns, occlusions [9–11], as well as photometric
deformations resulting from variations in illumination and camera specifications [12,13].
However, an incorrect correspondence estimation can result in a large error in distance
determination, making it difficult to use stereo vision in practice.

In response to these challenges, there are two different points of view for recognizing
errors in stereo vision. The first is to consider a confidence interval, which indicates the
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probability that the result is correct. In the second, uncertainty can be considered as the ex-
pected error magnitude. Both views are equally valid; we use the confidence view, however,
which is widely used in stereo vision [14]. Methods for estimating confidence have been
developed in parallel with stereo algorithms. There are classical approaches [15–17] as well
as those that employ neural networks for estimating the confidence values. However, due
to the focus on confidence estimation, stereo vision algorithms based on neural networks
are not used to evaluate the confidence methods. Today, deep end-to-end networks outper-
form classical stereo methods for deriving dense disparity maps, so confidence estimation
should also be tested on stereo vision methods using neural networks rather than classical
methods. Our motivation is to increase the reliability of stereo algorithms. We think that
a joint consideration of stereo and confidence estimation could be a good step to achieve
this. Therefore, in this paper, we present a neural network that combines the state of the art
in stereo vision and the confidence estimation of stereo vision. This network is capable of
identifying stereo disparity and the corresponding confidence maps.

The combined training results in a significant improvement in the confidence estima-
tion compared to training the two parts separately. This is common practice in the use of
confidence networks such as LAF-Net [18]. This method offers an advantage, as the compo-
nent of the network employed to estimate the disparity values is trained in a way to allow
for a subsequent, more accurate estimation of confidence. The network consists of already
successfully tested network components from AANet [19] as the stereo part and from LAF-
Net for the confidence estimation. The proposed network has high potential to advance the
field of stereo vision and pave the way for more robust and reliable applications.

Our method is unable to overcome the known limitation of stereo caused by poor
lighting or textless regions. However, knowing that the predicted values could be wrong is
a significant advantage.

2. Related Works

This section provides an overview of the most important related work in the field of
stereo vision and stereo confidence estimation.

2.1. Stereo Vision

In computer vision, stereo vision has made significant progress with the adoption
of neural networks. Initially, traditional algorithms were partly replaced with learning
methods to enhance the effectiveness of the widely used SGM (Semi-Global Matching) [6]
algorithm. One approach to improve matching costs involves using neural networks to
evaluate the matching score between a pair of image matches. Notable examples of such
networks are SGM-Net [20] and SGM-Forest [21]. DNet [22] was one of the first approaches
that used the 2D architecture of U-Net [23] for stereo vision inspired by the well-known
segmentation networks. There are also later approaches [24,25] that use a 2D architecture.
Other stereo networks take their inspiration from the classic stereo pipeline. Numerous
works [26–29] used a 3D convolutional layer architecture. GC-Net [26] was one of the
first approaches to use continuous stereo adaptation with 3D convolutional layers. These
frameworks first map the images through a 2D convolution network to obtain dense rep-
resentations of the features. A 3D cost volume is then constructed over the 2D feature
maps, either by concatenation [26] or correlation [30]. After that, the cost volume is fil-
tered through a series of 3D convolutional layers before being mapped to a point-wise
depth estimate by a differentiable argument of the minimum (arg-min) operator. There
are many variations of this approach, such as using a 3D stacked hourglass to process the
cost volume [30] or developing new aggregation layers [31] to improve accuracy. Unlike
classical filtering algorithms such as SGM, 3D convolution is a differentiable approximation.
The neural networks outperformed traditional methods on datasets such as KITTI [32] and
Scene Flow Datasets [22]. The primary drawback of 3D convolutions is their intensive mem-
ory and computing requirements. However, to address this issue, certain methods [19,31]
have opted to entirely replace the commonly used 3D convolutions with new components,
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achieving faster inference speeds while maintaining comparable accuracy. One of the
works [19] proposed using an intra-scale cost aggregation method based on sparse points
with AANet. In addition, the traditional cross-scale cost aggregation algorithm is approxi-
mated with neural network layers to handle large texture-free regions. The recent methods
try to reduce the impact of erroneous rectification in stereo vision. RAFT-Stereo [33] takes
advantage of the iterative refinement of the RAFT optical flow network [34] to develop a
network suitable for stereo matching. SR-Stereo [35] shows that the stepwise regression
architecture has a better generalization performance than iteration-based methods.

Li et al. [36] propose a CREStereo network with an adaptive group correlation layer
(AGCL) because it can happen that the matching points are not perfect in a line. This can be
caused by the fact that the images in the real world are not perfectly rectified. In addition to
constantly improving accuracy, new work is also endeavoring to further increase efficiency
by replacing the costs of 3D CNN with new types of architecture. The primary drawback
of 3D convolutions is their intensive memory and computing requirements. However,
to address this issue, certain methods [19,31] have opted to entirely replace the commonly
used 3D convolutions with new components, achieving faster inference speeds while
maintaining comparable accuracy. One of the works [19] proposed using an intra-scale cost
aggregation method based on sparse points with AANet. MobileStereoNet [37] uses 2D
MobileNet-V2 [38] blocks, a combination of point-wise, depth-wise, and point-wise layers,
and expands them to 3D for stereo vision applications to create an efficient stereo network.
LightStereo [39] improves performance by focusing on the channel dimension of the 3D
cost volume, using channel-boosted 2D CNNs with inverted residual blocks for efficient
cost aggregation on resource-constrained devices.

2.2. Confidence Estimation

In parallel with the further development of stereo algorithms, methods for estimating
the confidence in the estimated disparity maps are also advancing. Confidence methods at-
tempt to improve classical stereo methods by identifying erroneous pixels. There are purely
classical approaches [15–17,40], which were later combined by a random forest [41,42] to
estimate the reliability of each pixel.

In later works, the Convolutional Neural Network (CNN) was also used to estimate
confidence, but it must be distinguished which data the network receives as input. Some
work only on the basis of the disparity map and the RGB image [43,44]; others [18,45],
additionally, use the cost volume to estimate a confidence level. Because of these additional
data, not all stereo methods can be used for evaluation, so classical stereo algorithms such
as SGM or AD-Census are often used. Alternatively, neural networks are used, which
are similar to classical methods. These neural networks [46] construct a cost volume
by deriving a probability value for each disparity hypothesis. Therefore, the method is
very similar to classical stereo methods and can easily be used for confidence estimation.
The focus of the confidence methods is on a good confidence estimate, which is why the
stereo performance is not so important. An optimal scenario includes the integration
of an excellent stereo assessment together with a simultaneous confidence assessment.
The work [14] by Poggi et al. is one of the first to apply confidence methods to end-to-
end stereo networks. They determine the confidence with different methods from the
results of the Guided Aggregation Net (GANet) [31]. GANet is a stereo network and uses
a 3D architecture that generates a feature volume that resembles the usual cost volume.
The similarity of this feature volume to the cost volume allows for the application of
ready-to-exist confidence methods. They showed the effectiveness of confidence estimation
through feature volume analysis using an end-to-end stereo network. However, for this, it
is necessary that the stereo network has a feature volume that is as large as the resolution
of the input. However, this is not the case for all modern stereo networks. For example,
AANet uses only 1/3 of the input resolution mapped as feature volume. In this case,
the stereo confidence method must be adjusted. Mehltretter [47] used a Bayesian Neural
Network to predict both uncertainty and stereo vision based on the GCNet [26] stereo
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network. Chen et al. [48] used the Group-wise Correlation Stereo Network (GwcNet) [30]
as a base stereo network and created an uncertainty estimation subnetwork that extracts
information from the intermediate multi-resolution. The networks are trained with a new
loss function based on KL divergence applied to obtained histograms.

3. Method

The objective of this work is to demonstrate how confidence estimation can be im-
proved using a new multi-task network. The network is provided with a rectified image
pair, and simultaneously estimates the disparity and the confidence value for each pixel.
The network consists of two main components, each with a specific task. The first com-
ponent handles the correspondence search and predicts the disparity, while the second
component is responsible for the confidence estimation of the stereo results. These com-
ponents are interconnected and allow simultaneous training. The information exchange
between the components is unidirectional. This means that the output of certain layers of
the stereo image component provides the input for the confidence estimate, but not the
other way around.

3.1. Stereo Vision Component

The stereo component was based on the structure of AANet [19]. AANet aims to
achieve high performance and high speed at the same time. Due to this good compromise,
it is still comparable to new approaches and it is well suited for one of our applications;
moreover, its clear architecture allows a very good connection to the confidential network.

In order to achieve high speed, the use of complex 3D CNNs was avoided. Instead,
the authors employed a scale-internal cost aggregation based on sparse points, which
resolves the well-known issue of edge-fattening at disparity discontinuities. Moreover,
the traditional cross-scale cost aggregation algorithm was approximated by using a neural
network architecture to handle large textural regions. These modules are lightweight and
can be integrated into existing architectures, significantly increasing their speed while
maintaining accuracy. In this network, different cost function volumes are generated and
subsequently merged. The fast response time, while maintaining high accuracy, makes the
networks interesting for practical applications.

3.2. Confidence Estimation Component

The confidence component was inspired by LAF-Net [18]. LAF-Net takes the disparity
map from the stereo component, the cost volume, and the left color image as input, and
produces a confidence map as output. However, instead of using all the total cost rates,
only the k lowest values of the cost rates are used. These k-cost rates represent the most
likely correct hypotheses with the highest probability. The value of k was set to 7, as it
was found to perform effectively by the authors of the network. LAF-Net is specifically
designed for classic stereo methods, where cost volume is the most important factor. Many
stereo networks, including AANet, also provide some form of cost volume. In AANet,
however, the cost volume is available in three different resolutions: 1/3, 1/6, and 1/12. For
confidence estimation, the full resolution cost volume is required and adjustments need to
be made. In addition, we did not use the cost volumes directly after correlation, but after
the Cross-Scale Aggregation (CSA) layer. This approach gave the network more flexibility
to optimize the cost variables for confidence estimation. The selection of a 1/3 resolution
was motivated by its proximity to the desired resolution. However, to suit the specified
resolution, the LAF-Net architecture required adjustments. To achieve this, an interpolation
layer was introduced following the second convolution block while extracting features
from the cost volume. The network with the two components and their connections to each
other is shown in Figure 1.
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Figure 1. Proposed network structure, which consists of a combination of the AANet stereo network
and the LAF-Net confidence network. A stereo pair is provided in the AANet to predict the disparity
map. The output disparity in full resolution, the output tensor from the CSA with 1/3 resolution and
the left input images serve as inputs for the LAF-Net component to predict the confidence. Due to
the different resolutions, an interpolation layer must be included in the LAF-Net.

3.3. Training

Our network was trained on the Scene Flow dataset, a large synthetic dataset that pro-
vides dense ground truth disparity maps. This dataset comprises more than 39,000 image
pairs. Due to the high number of available data, real data were not used for training.
Evaluation was also based on real data, without the need to fine-tune the network on real
data. For the training, we created a loss function, which is a combination of the loss function
of the stereo component (ℓStereo) and the LAF-Net component (ℓCon f ), defined as follows:

L = ℓStereo(D, DGT) + λ × ℓCon f (CGT , C) (2)

where D and C are the predicted disparity and confidence maps. DGT and CGT are the
respective ground truth values, which serve as labels. The new loss function is a weighted
combination of the individual loss functions of the two network components. The weight is
determined by the factor λ. The higher its value, the more emphasis is placed on optimizing
the confidence estimate. The loss function of stereo is taken from AANet. It is calculated
on the different disparity maps with different resolutions. A smooth L1 loss is generated
for each disparity. A weighted sum is formed over the individual losses. The original
implementation of the LAF-Net network used a classification loss. This means that the
network should predict a value of 1 for a pixel if the error is below a threshold, otherwise it
should predict 0. To achieve better coordination between the two loss functions, we used a
regression loss function instead of a classification. This minimized the MSE between the
CGT and C. It should be noted that the label CGT for this loss function can only be created
after the prediction of the disparity map. The label CGT is determined as follows:

CGT = e−|DGT−D| (3)

This ensures that the value is always between 0 and 1, where 1 corresponds to high
confidence and a value close to 0 corresponds to low confidence.
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4. Experiments

To demonstrate the benefits of training stereo and confidence in parallel, we initially
conducted separate training for each network component, focusing on the Scene Flow
datasets. This approach aligns with the traditional methodology employed by most con-
fidence methods. By treating stereo and confidence networks as separate networks, we
aimed to establish a comparative baseline.

To assess the benefits of simultaneous training under real conditions without the need
for retraining, we evaluated our network using a combination of synthetic and real datasets.
Specifically, we utilized Scene Flow [22], a synthetic dataset comprising over 39,000 stereo
frames with a resolution of 960 × 540 pixels, for both training and testing our network.
Additionally, we employed the widely used KITTI2015 [49] stereo dataset, to further test our
network’s performance. Notably, we did not train our network but used the official training
set of KITTI2015 for our evaluation, allowing for an unbiased evaluation. Furthermore,
we incorporated the RWU3D [50] dataset, a novel dataset designed for the fusion of stereo
and Time-of-Flight (ToF) sensors, capturing indoor industrial environments. The dataset
includes images with a different resolution; in this work, the resolution 960 × 540 pixels
was used. For testing purposes, we selected a subset of 32 images, excluding the calibration
scene and scenes intended for characterizing the ToF camera.

4.1. Metrics

To evaluate our network, we employed a variety of evaluation metrics. In this regard,
we adopted the evaluation methodology of LAF-Net, which exhibits subtle differences from
the evaluation approach utilized in SEDNet. We prioritized the perspective of trust over
uncertainty and have, therefore, opted for an evaluation approach. When determining the
stereo error, the predicted disparity was taken into account and not the underlying physical
distance, as the disparity represents the direct error of the network. The physical error of
the distance also depends on the network, but also on the camera setting and the distance
of the area under consideration, depending on which dataset is being evaluated.

First, we used the training metrics. These included the Mean Squared Error (MSE)
between the ground truth disparity and the predicted disparity, as well as the difference
between the predicted confidence and the label for confidence. Second, we used additional
evaluation metrics. We employed the Bad3 metric to evaluate the stereo part and used the
area under the curve (AUC) to evaluate the confidence part.

4.1.1. Bad3 (Bad Pixels Rate)

The Bad3 metric provides an assessment of the accuracy of our stereo model in
estimating disparities. It measures the percentage of pixels for which the disparity error
exceeds a threshold of 3. A lower Bad3 value indicates better performance, as it signifies a
smaller proportion of pixels with large disparity errors. In the RWU3D dataset, an error of
3 pixels corresponds to an error of 0.034 m at a distance of 1 m.

4.1.2. Area Under the Curve (AUC)

An optimal confidence algorithm produces a value for each pixel that is inverse to
its error. The lower the error level, the higher the confidence should be. To evaluate the
performance of each confidence measure in identifying correct matches, as outlined in [17],
we sorted the pixels in a disparity map in descending order of confidence and calculated
the error rate (Bad3) on sparse maps generated through iterative sampling (e.g., 5% of
pixels at a time) from the density map. This means that first the error of 5% of pixels with
the highest confidence was calculated. Next, the error of the 10% of pixels with the highest
confidence was calculated, and so on. The plot of error rates produces a sparsification curve,
which allowed us to quantitatively measure the effectiveness of the confidence measure
through its AUC. The lower the AUC, the better the performance of the confidence measure.
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The optimal AUC is achieved when the confidence measure is able to identify all correct
matches first and is equal to

AUCOpt =
∫ 1

1−ϵ

x − (1 − ϵ)

x
dx = ϵ + (1 − ϵ)ln(1 − ϵ) (4)

with ϵ being the Bad3 computed over the disparity map. Looking at the ROC curve, one
can tell how high the error is, for example, if 80% of the pixels with the highest confidence
are observed.

4.2. Implementation Details

We implemented the network in PyTorch v1.13.1 and trained it with an Nvidia
RTX 4090 GPU (Nvidia Corporation, Santa Clara, CA, USA). For training, we used 35,454 stereo
pairs from the training set of the Scene Flow dataset. Before input, the raw images were
randomly cropped to a size of 288 × 576. Adam [51] (β1 = 0.9, β2 = 0.999) was used as
the optimizer. We started with a learning rate of 0.001, which was gradually halved every
10 epochs after 20 epochs. Each configuration was trained for 70 epochs, with a batch size
of 4. Firstly, the stereo and confidence parts were trained sequentially, which corresponds to
the results of the AANet and LAF-Net, whereby only the 1/3 resolution of the cost function
could be used, as the AANet does not have a total cost function.

Secondly, the network was trained in parallel using the proposed loss function. The
loss function was used with λ values of 5, 10, and 20. For each training configuration,
the network was randomly initialized. It should be noted that the values for λ should be
significantly greater than 1, as the values for stereo loss are much greater than those for the
condensation loss function. This is due to the fact that the predicted value for the disparity
was between 0 and 192, while the predicted value for confidence was only between 0 and 1.

5. Results

Table 1 presents the comparison metrics of different settings against SEDNEet. Overall,
our networks outperform the SED network, primarily due to the use of AANet as the
backbone for stereo matching, which already demonstrates superior stereo performance.
However, it is noteworthy how much better our approach generalizes to real data compared
to the SED network, without requiring re-training. The results in Table 1 also show that
the combination of training confidence and stereo leads to an improved performance in
terms of confidence. The results depend on the values used for λ in the loss function.
With a small value of 5, the stereo results do not suffer, and the confidence performance is
still better. Increasing the value of λ increases the MSE and Bad3 of the stereo, but decreases
the MSE of confidence. This clear trend can be seen particularly well with Scene Flow.
In principle, this observation can also be made with the other datasets, although this trend
sometimes shows outliers. Several factors can explain this phenomenon. Overweighting
the confidence components can result in overfitting, which may worsen performance on
a new dataset. However, adjusting the confidence level slightly can prevent overfitting
the stereo and improve, or at the very least maintain, the stereo score. Alternatively, the
smaller real test dataset may have introduced some normal noise. To summarize, parallel
training leads to a better overall result, which can be easily determined using the AUC
value. When the stereo and confidence components are trained together, the AUC values
are closer to the AUCOpt value than when they are trained separately. The AUCOpt value is
the lower bound and is the value that can be theoretically achieved with optimal confidence
estimation. The AUC value is influenced by both the stereo performance and the confidence
performance. Therefore, this will be a good indication of which λ value is most appropriate.
With the Scene Flow dataset, it is λ = 5; with KITTI2015 and RWU3D, it is λ = 10
where the lowest AUC is found. Therefore, we can deduce that an optimal value lies
between 5 and 10.
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Table 1. Evaluation results with different training configurations for Scene Flow, KITTI2015, and
RWU3D datasets. Parallel (λ) is our network with the different λ values (5, 10, and 20) for the
loss function.

Network MSE MSE Bad3 [%] AUC AUCoptDisparity Confidence

Scene Flow
SEDNet [48] 0.835 - 4.31 0.36 0.19
Sequential 0.680 0.0280 3.21 0.37 0.19
Parallel(5) 0.674 0.0236 3.34 0.32 0.20
Parallel(10) 0.695 0.0220 3.47 0.32 0.21
Parallel(20) 0.720 0.0203 3.71 0.33 0.21

KITTI2015
SEDNet [48] 10.828 - 35.33 9.55 4.61
Sequential 1.858 0.2705 10.70 3.71 1.23
Parallel(5) 1.878 0.2579 11.20 3.32 1.31
Parallel(10) 1.738 0.2921 10.36 2.76 1.20
Parallel(15) 1.852 0.2679 10.82 2.89 1.27

RWU3D
SEDNet [48] 11.835 - 39.07 13.47 7.10
Sequential 2.445 0.1547 17.30 6.77 2.32
Parallel(5) 2.681 0.0860 18.65 6.17 2.85
Parallel(10) 2.571 0.0824 17.89 5.22 2.46
Parallel(15) 2.613 0.0657 18.85 5.42 2.71

As mentioned above, the AUC is the most interesting value. So, let us look at the un-
derlying sparsification curve shown in Figure 2. The curves show the advantage of parallel
training with λ = 10 even more clearly than the figures in the table. The curve shows a
bad pixel rate when looking at the pixels with the highest confidence. The sparsification
indicates the percentage of pixels with low confidence that are ignored. Especially for the
two real test datasets RWU3D and KITTI2015, the improvement is even more visible than
for the test data from Scene Flow. Therefore, we can assume that our training approach has
even led to an increase in generalization ability or, at least, that no overfitting has taken
place. In particular, the generalization to a new real dataset is evident when compared to
SENet. This improvement is mainly due to the stereo component of the network, which has
a strong influence on the AUC curve. Upon detailed examination of the sparsification curve
Figure 2, it is possible to identify the bad pixel rates that are reached when only considering
the pixels with the highest confidence values. By ignoring 20% of the low-confidence
pixels identified through sequential training, the error rate of the remaining pixels in the
KITTI2015 dataset is reduced to 0.05. With parallel training and an improved confidence
estimation, this error rate could be further reduced to 0.035. This shows that, by masking
pixels with low confidence, the total error of the overlaid pixels is smaller. However, for
an application, it is important that the masked pixels are as evenly distributed as possible,
which is the case with our confidence estimate, as can be seen in the example image in
Figure 3. It is evident that the application of confidence estimation allows the removal
of erroneous pixels. By establishing a threshold value of 0.3, any pixel with a confidence
estimate lower than this threshold is excluded. This observation aligns with the AUC
values, indicating that the filtered pixels are distributed throughout the image and do not
signify a substantial loss of critical information.

The strong correlation between error and lower confidence prediction is evident in
Figure 4, particularly within the highlighted example region. Regions with height errors
often also have a lower confidence; this correlation can be used to obtain a higher confidence
for the stereo image in the application.
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Figure 2. The sparsification curves show the rate of bad pixels at threshold 3 when a certain percentage
of pixels with the lowest prediction confidence are excluded.
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Lowest confidence Disparity after removal
of pixels

Error after removal
of pixels

Figure 3. The example shows the left and right RGB input images and the ground truth disparity in
the top row. The middle row shows the predicted confidence, the predicted disparity, and the error
map of the disparity. In the error map, the black pixels have an error of more than 3 disparity values.
Using the predicted confidence, 20% of the pixels with the lowest confidence were removed, resulting
in the disparity map shown in the middle of the third row. The corresponding error map for this
disparity map is shown next. In the disparity maps, yellow indicates high disparity (short distance),
while dark blue signifies low disparity (long distance). It should be noted that the number of black
pixels is now lower, indicating that the predicted confidence has removed pixels appropriately.
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Disparity Error map Confidence

Figure 4. Example scene from the RWU3D dataset. In the left column, the disparity map is visualized,
in the center is the corresponding error map, and on the right is the predicted confidence with white
showing high confidence. In the disparity maps, yellow indicates high disparity (short distance),
while dark blue signifies low disparity (long distance). The green rectangles show some areas where
the confidence is correctly low, as there is also a larger error there.

Computational Performance and Efficiency

The computational complexity of the proposed network is evaluated by measuring
the time required for a single stereo and confidence prediction on a 960 × 540 image using
an Nvidia RTX 4090 GPU. With a processing time of 98 ms, the network achieves a frame
rate of more than 10 frames per second, which makes our network interesting for real-time
applications. The stereo computer is the most complex of the networks and, by using the
AANet’s computing power instead of other popular stereo networks such as GwcNet [30],
a very high response time is still achieved. Additionally, the number of parameters shown
in Table 2 is significantly lower than the number of parameters in SEDNet.

Table 2. Number of parameters.

Architecture Parameters (M)

SEDNet 6.91

Our Network
Stereo Component 3.93
Confidence Component 0.54
Total 4.47

6. Conclusions

We have demonstrated the feasibility of combining deep stereo networks with a
confidence estimation network. In contrast to the stereo techniques employed in evaluating
LAF-Net, the stereo output produced by AANet exhibits minimal inconsistencies. However,
our network successfully attains a robust confidence estimate. Training the stereo and
confidence components simultaneously improves the overall results compared to training
them sequentially. This can improve the AUC values by about 15% for the synthetic datasets.
When using real datasets, an improvement of about 30% can be observed. It is therefore
clear that parallel training offers benefits and is a potential form of multi-task learning.
Additionally, our findings reveal that synergizing the training of stereo and confidence
networks yields even more promising results. Through the judicious exclusion of pixels
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with lower confidence scores, we can generate stereo depth images that are notably more
reliable. Applications in the field of same-vehicle driving could be interesting. Due to
the higher filling reliability and the, nevertheless, light architecture, the approach can be
used well on mobile devices. However, there is still scope for improvement to achieve the
optimal confidence estimate. The proposed system could be adapted to some of the recently
released stereo networks to achieve further improvements. LightStereo [39] could be a
promising network for this approach.
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