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Abstract: The biomedical imaging field has grown enormously in the past decade. In the era of
digitization, the demand for computer-assisted diagnosis is increasing day by day. The COVID-19
pandemic further emphasized how retrieving meaningful information from medical repositories can
aid in improving the quality of patient’s diagnosis. Therefore, content-based retrieval of medical images
has a very prominent role in fulfilling our ultimate goal of developing automated computer-assisted
diagnosis systems. Therefore, this paper presents a content-based medical image retrieval system
that extracts multi-resolution, noise-resistant, rotation-invariant texture features in the form of a
novel pattern descriptor, i.e., MsNrRiTxP, from medical images. In the proposed approach, the input
medical image is initially decomposed into three neutrosophic images on its transformation into the
neutrosophic domain. Afterwards, three distinct pattern descriptors, i.e., MsTrP, NrTxP, and RiTxP,
are derived at multiple scales from the three neutrosophic images. The proposed MsNrRiTxP pattern
descriptor is obtained by scale-wise concatenation of the joint histograms of MsTrP × RiTxP and
NrTxP × RiTxP. To demonstrate the efficacy of the proposed system, medical images of different
modalities, i.e., CT and MRI, from four test datasets are considered in our experimental setup. The
retrieval performance of the proposed approach is exhaustively compared with several existing,
recent, and state-of-the-art local binary pattern-based variants. The retrieval rates obtained by the
proposed approach for the noise-free and noisy variants of the test datasets are observed to be
substantially higher than the compared ones.

Keywords: CBMIR systems; computer-assisted diagnosis; feature extraction; medical imaging;
texture information

1. Introduction
1.1. Background and Motivation

With the advent of the digital age, there has been a rapid escalation in the use of digital
images in applications like medical diagnosis. This has led to the formation of numerous
digital image repositories and image archives. The use of biomedical images has enormously
helped doctors make accurate diagnoses for patients [1]. Another aspect associated with the
use of digital images is the ever-increasing demand for automated computer-assisted diag-
nosis (CAD) using machine learning [2]. After the COVID-19 pandemic severely affected the
entire world, a lot of work has been put towards the computer-assisted detection of corona
virus in patients’ chest X-ray images or CT images. This has further fueled the demand
for CAD systems to ease the burden on already burdened and scarce medical personnel.
Thus, our presented work focuses on one such branch of CAD systems, i.e., medical image
retrieval (MIR) systems [3]. With the formation of medical image repositories and archives,
effective data management and retrieval are required to ensure their optimum usage [4].
The sole purpose of MIR systems is to retrieve the most relevant and meaningful images
in response to a user’s query from the existing database. MIR systems can be categorized
based on the way in which the user submits their query, i.e., text-based image retrieval or
content-based image retrieval [5].
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In text-based image retrieval, the user submits their query in the form of a string
containing keywords like lung, brain, tumor, etc., which are used to search relevant images
on the basis of automatic or manual annotation of the image. Manual annotation is
subjective and infeasible on large datasets, leading to its inability to describe complex
visual properties (such as irregular shapes, varying textures) contained within medical
images, thereby posing significant challenges for their retrieval [6]. A traditional patient
diagnosis includes a comprehensive examination of the patient’s data (both image and
non-image) in conjunction with the doctor’s previous encounters with similar situations.
It has been observed that knowledge from similar cases has been greatly enhanced with
the use of the visual content of medical images [1,2]. Therefore, the capability to search
based on medical image information is growing in significance. Content-based medical
image retrieval (CBMIR) retrieves images by extracting relevant visual properties such as
shape, color, and texture. CBMIR systems can assist in diagnosis prognosis by retrieving
images of the same anatomic location affected by the same disease [4]. Using a CBMIR
system, a clinician can search a database of known instances for images with similar traits
to those found in the abnormal diagnostic image. CBMIR offers pertinent supporting
information from previous instances, presenting the physician with training examples
with a proven diagnostic record, enabling them to garner confidence in their prognosis
of the detected disease. Less experienced practitioners can benefit from the expertise
by using visually identical retrieved images as a form of expert consultation. CBMIR
would be beneficial for medical students and researchers to search and explore extensive
collections of disease-related images based on their visual characteristics, serving as a
valuable training tool. CBMIR’s success will lead to advancements in medical services and
research, including disease tracking, differential diagnosis, noninvasive surgical planning,
clinical training, etc. [5].

1.2. State of the Art

A lot of effort has been put forth by researchers across the globe in developing such
CBMIR systems, employing a wide range of feature extraction strategies, mainly harnessing
the texture information from medical images. Medical images (mostly gray-scale images)
are rich in texture information. Therefore, their examination usually requires interpretation
of tissue appearance, i.e., local intensity variations based on different texture properties
such as smoothness, coarseness, regularity, and homogeneity [1]. Since texture information
holds such a huge importance, texture-based feature extraction methods have become
one of the most widely used techniques for medical image analysis, classification, and
retrieval [7]. All different forms of feature descriptors (color, texture, and shape) can
further be categorized into local feature descriptors (LFDs) and global feature descriptors
(GFDs) [8]. GFDs capture the overall aspect of an image, such as information corresponding
to shape and structure, e.g., information, etc., whereas LFDs capture localized information
of an image such as the presence of a lesion in a particular location that is very small in
size with respect to the entire image. GFDs are not able to accurately represent information
about such lesions. In LFDs, an image is divided into sub-images and the final feature
vector of the entire image is formed by appending the information extracted from each
of the sub-images. In GFDs, the resultant feature vector is obtained by using all the
pixels together as a whole [9]. Among the LFDs, local binary pattern (LBP) [10] has
been most widely adopted for extracting texture information. The computation of LBP
involves the encoding of pixel intensity differences within a local neighborhood constructed
around each pixel of the image. LBP, because of its superior performance in texture-based
applications, has been adopted in biomedical image processing to analyze the micro-
structure of different body organs in X-ray, CT, and MRI images [11]. However, there are
certain factors, such as difficult lighting conditions, noisy conditions, image rotation, etc.,
that limit the performance of LBP. In light of this, a lot of variants have been proposed in
the literature for CBMIR. The simplest extension of LBP is local ternary pattern (LTP) [12].
Unlike LBP, in which the neighbors are coded as either 0 or 1, LTP is as a three-valued
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code where the neighbors are coded as 0, 1, or −1. LTP has shown superior performance
in comparison to LBP under noisy, aging, and non-uniform lighting conditions. However,
scenarios like threshold selection limit its performance. Murala and Wu have worked
extensively in CBMIR and have proposed several variants of LBP: local co-occurrence
ternary pattern (LTCoP) [13] (rotation-invariant but computationally expensive), local mesh
pattern (LMeP) [14] (enhanced edge information with high computational complexity),
local mesh peak valley edge pattern (LMePVP) [15] (a ternary pattern based on first-order
derivatives, i.e., local mesh peak edge pattern (LMePEP) and second-order derivatives,
i.e., local mesh valley edge pattern (LMeVEP)), and spherical symmetric three-dimensional
LTP (SS-3D-LTP) [16] (primarily an extension of LTP from 2D to 3D). On similar grounds,
Dubey et al. have proposed several LBP-based CBMIR variants such as local wavelet
pattern (LWP) [17] (encodes the local inter-pixel relationship in the wavelet domain),
local diagonal extrema pattern (LDEP) [18] (low-dimensional pattern incorporating only
diagonal relationships among neighboring pixels), local bit-plane dissimilarity pattern
(LBDISP) [19], and local bit-plane decoded pattern (LBDP) [20]) (decomposes an image
into bit planes and forms a resultant feature vector by combining the local dissimilarity
at each bit plane). Deep et al. also proposed two new CBMIR methods: directional
local ternary quantized extrema pattern (DLTerQEP) (encodes relationship along three
selected directions of mesh patterns) and local mesh ternary pattern (LMeTP) (encodes
relationship along horizontal, vertical, diagonal, and anti-diagonal directional of local
neighborhood) [21,22]. An improvement in retrieval performance of DLTerQEP has been
presented as local quantized extrema quinary pattern (LQEQryP) [23]. Other promising
variants of LBP used for retrieval and classification of facial images, texture images, etc.,
are local tetra pattern (LTP) [24], local gradient hexa pattern [25], local tri-diagonal pattern
(LTDP) [26], local neighborhood difference pattern (LNDP) [27], local neighborhood intensity
pattern (LNIP) [28], local directional gradient pattern (LDGP) [29], local directional relation
pattern (LDRP) [30], local directional ZigZag pattern (LDZP) [31], local jet pattern (LJP) [32],
local morphological pattern (LMP) [33], multichannel local ternary co-occurrence pattern
(MCLTCoP) [34], and scale-pattern adaptive local binary pattern (SPALBP) [35]. Recently,
deep learning has gained significant popularity in the research community owing to its ability
to synthesize automated feature representations without manual intervention. Deep learning
is data-driven and automatically generates features for a given set of training data, unlike
handcrafted methods that rely on domain knowledge for feature construction. This has led
to its wide spread use in MIR applications for medical image analysis [36–40]. Undoubtedly,
the retrieval performance of such deep learning methods has been observed to be much
superior to the other handcrafted feature extraction methods. However, the downside
with such methods is their dependence on the data. The performance of such systems is
impaired if the amount of data is too small to train them effectively (even in the case of
transfer learning).

1.3. Identified Gap and Contributions

Despite significant advancements in CBMIR techniques, existing methods often strug-
gle with the effective retrieval of medical images due to the complexity and variability
inherent in medical data. These challenges include the difficulty in accurately capturing
and representing the subtle texture patterns in medical images, which are essential for
diagnostic purposes. Additionally, many current systems rely heavily solely on either local
features or global features or simple descriptors, which may not be sufficient to differentiate
between similar yet diagnostically distinct images. The gap that this study addresses lies
in the inadequacy of existing CBMIR methods to effectively utilize texture features for
the retrieval of medical images. Current methods are often vulnerable to noise and lack
the ability to represent features across multiple scales, which is critical for accurate image
analysis. The inability to handle noise effectively and capture multi-scale information
results in reduced retrieval accuracy, particularly on complex medical datasets. This limita-
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tion hampers the potential of CBMIR systems to assist healthcare professionals in making
accurate diagnosis.

In light of the strengths and shortcomings of the above-mentioned methods and the
current need to develop effective and efficient CBMIR CAD systems, an attempt has been
made in this paper to put forth a CBMIR system encompassing the novel idea of extracting
noise-resistant texture features at multiple scales from neutrosophic transformed images
of input medical image. Neutrosophic sets, with their ability to encode “indeterminacy”
alongside “truth” and “falsity”, have garnered tremendous success in areas as diverse as
decision making, information retrieval, and artificial intelligence, etc. [41,42]. Consequently,
their use in image processing- and computer vision-related applications has been gaining a
lot of attention, especially in areas like medical diagnosis, pattern recognition, etc. [43–45].
This paper aligns with the similar interest of utilizing neutrosophic information to develop
a computer-assisted diagonsis system based on CBMIR. The key contributions of the paper
are as follows:

1. A new idea of using neutrosophic information for extracting underlying textures from
medical images. Neutrosophic images offer flexibility in representing texture informa-
tion by allowing each pixel to have varying degrees of truth, indeterminacy, and falsity.
This flexibility accommodates the diverse and complex nature of texture patterns in
medical images, providing a more adaptable framework for feature extraction.

2. A new approach, MsNrRiTxP, is presented that extracts texture features from all three
neutrosophic images, i.e., truth (T), indeterminacy (I), and falsity (F). The texture
features from each of the T, I, and F images are appended together to form the final
feature vector for MsNrRiTxP.

3. The presented work delineates an innovative approach which exhibits a significant en-
hancement over the existing CBMIR approaches by integrating a comprehensive set of
features, i.e., noise resilience, rotation invariance, local and neighborhood information
embedding, global information embedding, multi-scale feature representation, etc., un-
der one umbrella. This approach is distinguished by its holistic one-stop solution strat-
egy, which seamlessly amalgamates multiple traits into a singular, cohesive technique.

4. The proposed approach demonstrates superior retrieval performance by significantly
outperforming the existing state-of-the-art LBP-based CBMIR and texture feature ex-
traction approaches on four standard medical test datasets. To further substantiate the
effectiveness of the proposed approach, an additional set of experiments is performed
on noisy images of four test datasets.

The remainder of the paper is organised in the following manner: A detailed explana-
tion of our proposed MsNrRiTxP texture descriptor is given in Section 2. The experimental
framework employed to test the retrieval performance of the proposed and the compared
techniques is presented in Section 3. The experimental findings on four test medical datasets
are shown in Section 4. Lastly, Section 5 concludes the presented work.

2. Proposed Multi-Scale Noise-Resistant Rotation-Invariant Texture Pattern
(MsNrRiTxP) Approach

This section presents the detailed working and layout of the proposed approach.
The proposed approach is built from multiple sub-modules, which are detailed below.

1. Firstly, the medical image is transformed to the neutrosophic domain, such that
for every input medical image, we obtain three neutrosophic images, i.e., truth (T),
indeterminacy (I), and falsity (F).

2. Secondly, from each of the T, I, and F images, rotation-invariant and noise-robust
texture feature pattern descriptors, MsNrRiTxPT

r , MsNrRiTxPI
r , and MsNrRiTxPF

r
are extracted. The computation of the proposed pattern is based on construction of
a symmetric neighborhood of 8r members around every pixel at a distance r from it.
The parameter r also determines the spatial scale of the MsNrRiTxPT

r , MsNrRiTxPI
r ,

and MsNrRiTxPF
r patterns, which produces a constant dimensionality histogram at

any spatial scale r with 8r sampling points for each neutrosophic image. In our work,
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texture features are extracted at multiples scales to capture the multi-resolution view
of the image.

3. Lastly, the final MsNrRiTxP{T,I,F}
r pattern is formed by scale-wise appending of

the individual patterns MsNrRiTxPT
r , MsNrRiTxPI

r , and MsNrRiTxPF
r extracted

from the T, I, and F images, respectively. In other words, the MsNrRiTxP{T,I,F}
r

pattern is formed by appending the patterns MsNrRiTxP{T,I,F}
1 , MsNrRiTxP{T,I,F}

2 ,

MsNrRiTxP{T,I,F}
3 , and so on, where each MsNrRiTxP{T,I,F}

i pattern is obtained by
concatenating the patterns MsNrRiTxPT

i , MsNrRiTxPI
i , and MsNrRiTxPF

i .

2.1. Construction of Neutrosophic Images

Neutrosophic sets, developed as a generalization of fuzzy sets, extend classical binary
logic to embrace uncertainty and inconsistency [41]. They capture not just whether some-
thing belongs to a set (like “true”) or not (like “false”), but also the degree of indeterminacy
or in betweenness. These sets incorporate three degrees of membership: truth (T), indeter-
minacy (I), and falsity (F). Each element belongs to these categories with independent val-
ues ranging from 0 to 1, allowing for more nuanced representations of data than traditional
sets. A neutrosophic set NS is represented in the form, NS = ⟨µNS(x), σNS(x), τNS(x)⟩,
where µNS(x), σNS(x), and τNS(x) represent the degree of membership function, the de-
gree of indeterminacy, and the degree of non-membership, respectively, for each element x
(x ∈ X, where X is a non-empty fixed set) to the set NS.

Building on this domain knowledge, a neutrosophic image ZNS is characterized by
TNS, INS, and FNS membership sets [43]. A pixel P (i.e., P = ZNS(i, j)) in the neutrosophic
domain can be represented as P = ⟨t, i, f ⟩, which reflects that the pixel is t% true, i%
indeterminate, and f % false, where t = TNS(i, j), i = INS(i, j), and f = FNS(i, j). Thus,
a pixel Z(i, j) of an (original) image Z is transformed into the neutrosophic domain as
ZNS(i, j) = ⟨TNS(i, j), INS(i, j), FNS(i, j)⟩, where TNS(i, j), INS(i, j), and FNS(i, j) are the
membership values belonging to the membership sets; truth, indeterminacy, and falsity, re-
spectively. The neutrosophic transformation of the original image Z into three neutrosophic
domain images TNS, INS, and FNS is particularly well suited for medical image analysis.
Medical images, like X-rays or MRIs, often hold vital information encoded in their textures.
These images can be inherently ambiguous, due to factors like noise, or subtle variations in
tissue density. Improper handling of this uncertainty often leads to inaccurate diagnosis
or missed interpretations. Neutrosophic sets, with their ability to encode indeterminacy
alongside truth and falsity, can better capture these nuances, leading to more robust analy-
sis. The mathematical notations to derive the three neutrosophic domain images TNS, INS,
and FNS are given below:

TNS(i, j) =
Z̄(i, j)− Z̄min

Z̄max − Z̄min
(1)

Z̄(i, j) =
1

w × w

i+w/2

∑
m=i−w/2

j+w/2

∑
n=j−w/2

Z(m, n) (2)

INS(i, j) =
δ(i, j)− δmin

δmax − δmin
(3)

δ(i, j) = abs(Z(i, j)− Z̄(i, j)) (4)

FNS(i, j) = 1 − TNS(i, j) (5)

where for every (i, j)th pixel, Z(i, j) represents its intensity value in the original image Z,
Z̄(i, j) represents the mean intensity value in the w×w local neighborhood centered around
it, and δ(i, j) represents the absolute of the difference between its intensity and its local
mean value. Figure 1 shows the TNS, INS, and FNS images obtained by the neutrosophic
transformation of different samples of medical images.
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Figure 1. Neutrosophic images of input medical image when transformed into neutrosophic domain:
(a) Sample noise-free and noisy medical images, (b) truth image (TNS), (c) indeterminacy image (INS),
and (d) falsity image (FNS).

2.2. Proposed MsNrRiTxP Pattern Descriptor

The fundamental design behind the working of the proposed approach has been drawn
from the LBP operator [10]. Similar to LBP, the proposed approach captures the spatial
structure of a local image texture in TNS, INS, and FNS images by constructing a circular
symmetric neighborhood centered around every pixel of the image. This allows the multi-
resolution analysis of the image and enables the extraction of rotation-invariant features
from them. Formally, given a pixel pc of the input image P, where P ∈ {TNS, INS, FNS},
a circular symmetric neighborhood is constructed around it at a distance r. Now, on this
circular neighborhood, corresponding to distance parameter r, 8r neighboring pixels of pc
are sampled that are evenly distributed along this circle of radius r. Assuming the center
pixel, i.e., pc, to be at origin (0, 0), the coordinates of the neighboring pixels are given by(
−rsin(2πn)/8r, rcos(2πn)/8r

)
. The gray values of neighboring pixels which do not fall

exactly at the center of pixels are estimated by interpolation. For instance, a total of 8, 16,
24, etc., neighboring pixels of pc will be sampled for circular neighborhoods at distances
r = 1, 2, 3, respectively, from pc. Let p(i,j)

r represent the neighbor vector of pixel pc (located
at the (i, j)th location in image P), mentioning its 8r neighboring pixels.

p(i,j)
r =

[
p(i,j)
(r,0), . . . , p(i,j)

(r,8r−1)

]
(6)

In our work, three different forms of binary patterns, i.e., MsTrP, NrTxP, and RiTxP
are computed for every pixel of three neutrosophic images TNS, INS, and FNS using their
neighbor vectors p(i,j)

r . The detailed process of computing these patterns is described in the
following subsections.
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2.2.1. Pattern 1: MsTrP

In the computation of this pattern, the neighbor vector p(i,j)
r containing 8r elements

corresponding to a circular neighborhood at distance r from pc is transformed to the median
quantized neighbor vector mqp(i,j)

r by applying the median filter along the arc to restrict its
count of elements to 8. In other words, irrespective of the scale of the input image (determined
by the value of the r parameter), the median quantized neighbor vector mqp(i,j)

r always
consists of 8 elements. The following table (Table 1) illustrates this fact with suitable examples.

Table 1. An illustration describing the count of elements in neighbor vector and median quantized
neighbor vector at different scales.

Scale r |p(i,j)
r | |mqp(i,j)

r |

1 1 8 8
2 2 16 8 (Pair-wise median filtering)
3 3 24 8 (Triplet-wise median filtering)
4 4 32 8 (Quadruplet-wise median filtering)
5 5 40 8 (Quintuplet-wise median filtering)
6 6 48 8 (Sextuplet-wise median filtering)
7 7 56 8 (Septuplet-wise median filtering)
8 8 64 8 (Octuplet-wise median filtering)
9 9 72 8 (Nonuplet-wise median filtering)

The median quantized neighbor vector mqp(i,j)
r is defined as

mqp(i,j)
r =

[
mqp(i,j)

(r,0), . . . , mqp(i,j)
(r,7)

]
(7)

where

mqp(i,j)
(r,k) = MEDIAN

([
p(i,j)
(r,rk), . . . , p(i,j)

(r,rk+t)

])
,

k ∈ {0, 1, . . . , 7}, t ∈ {0, . . . , r − 1} (8)

Thus, given mqp(i,j)
r , a local binary pattern descriptor with respect to the center pixel pc is

computed as follows:

TrP(i,j)
r =

7

∑
n=0

s(mqp(i,j)
(r,n) − pc)2n, s(x) =

{
1 x ≥ 0
0 x < 0

(9)

where s() is the sign function. It can be easily observed that for any parameter r there will
always be 28 = 256 TrPr patterns in total. Furthermore, the transformation of neighbor vectors
from pr to mqpr makes the pattern more robust to noise, as illustrated in Figures 2 and 3 with
the help of a suitable example. Following the inspiration of rotation-invariant LBP in [46],
the TrPr patterns are transformed to make them rotation-invariant and reduce the count of
possible patterns (thereby, reducing the dimensionality) at any scale (i.e., for any value of r
parameter) from 256 to 10. The transformed MsTrPr patterns are defined as follows:

MsTrP(i,j)
r =

{
∑7

n=0 s
(

mqp(i,j)
(r,n) − pc

)
if U

(
TrP(i,j)

r

)
≤ 2

9 otherwise
(10)

where the function U() reflects the use of rotation-invariant uniform patterns having at
most two transitions in bit value (i.e., from 1 to 0 or from 0 to 1) along the neighbors. Thus,
exactly 9 uniform binary patterns exists which will be assigned labels from {0, 1, . . . , 7, 8}
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corresponding to a cardinality of 1 in the bit pattern. All remaining non-uniform bit patterns
are assigned the label {9}.

U
(

TrP(i,j)
r

)
=

∣∣∣s(mqp(i,j)
(r,7) − pc

)
− s

(
mqp(i,j)

(r,0) − pc

)∣∣∣+
7

∑
n=1

∣∣∣s(mqp(i,j)
(r,n) − pc

)
− s

(
mqp(i,j)

(r,n−1) − pc

)∣∣∣ (11)

Therefore, for three neutrosophic images TNS, INS, and FNS, assuming a size M × N,
the MsTrPr pattern is computed for every pixel

{
(i, j)|i ∈ {1 + r, . . . , M − r}, j ∈ {1 +

r, . . . , N − r}
}

. Thus, TNS, INS, and FNS are represented by the probability distribution
(histogram) of the MsTrPr patterns as follows:

MsTrPT
r (η) =

M−r

∑
i=1+r

N−r

∑
j=1+r

ζ
((

MsTrP(i,j)
r

)T , η
)

, η ∈ {0, 1, . . . , 8, 9} (12)

MsTrPI
r(η) =

M−r

∑
i=1+r

N−r

∑
j=1+r

ζ
((

MsTrP(i,j)
r

)I , η
)

, η ∈ {0, 1, . . . , 8, 9} (13)

MsTrPF
r (η) =

M−r

∑
i=1+r

N−r

∑
j=1+r

ζ
((

MsTrP(i,j)
r

)F, η
)

, η ∈ {0, 1, . . . , 8, 9} (14)

where ζ is calculated by the following rule:

ζ(α1, α2) =

{
1, if α1 = α2

0, otherwise.
(15)

Figure 2. A sample image patch (around a center pixel pc, highlighted in red) from noise-free
and noisy image for illustration of noise robustness of the TrPr pattern. The figure also shows
the multi-resolution view of the image patches at four scales S1, S2, S3, and S4, corresponding to
r = 1, 2, 3, 4, respectively.
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Figure 3. Example illustrating the computation of proposed TrPr pattern for center pixel pc (high-
lighted in RED color) at multiples scales S1, S2, S3, and S4, corresponding to r = 1, 2, 3, 4, respectively,
on noise-free and noisy image patch shown in Figure 2: (a) Neighbor vectors pr at scales S1, S2, S3,
and S4 for noise-free image patch; (b) median quantized neighbor vectors mqpr at scales S1, S2, S3,
and S4 for noise-free image patch; (c) proposed TrPr binary pattern; (d) median quantized neighbor
vectors mqpr at scales S1, S2, S3, and S4 for noisy image patch; (e) neighbor vectors pr at scales S1,
S2, S3, and S4 for noisy image patch.

2.2.2. Pattern 2: NrTxP

This pattern quantizes the neighbor vector p(i,j)
r with respect to the magnitude of

local differences in gray values of the neighboring pixels with the center pixel pc, unlike
the MsTrP pattern, where the quantization is performed with respect to the output of the
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median filter. In the NrTxP pattern, the neighbor vector p(i,j)
r is initially transformed to the

local differences neighbor vector ldp(i,j)
r by taking the absolute value of the local differences

between the center pixel pc and its neighboring pixels, as shown below:

ldp(i,j)
r =

[
ldp(i,j)

(r,0), . . . , ldp(i,j)
(r,8r−1)

]
(16)

where
ldp(i,j)r,k =

∣∣p(i,j)r,k − pc
∣∣, k ∈ {0, 1, . . . , 8r − 1} (17)

Now, the local differences neighbor vector ldp(i,j)
r is quantized to obtain the mean local

differences quantized neighbor vector mldqp(i,j)
r by averaging the absolute value of the

local differences along the arc to restrict its cardinality to 8. Similar to mqp(i,j)
r , the count

of elements in the mldqp(i,j)
r neighbor vector will always be 8, irrespective of the scale

of the neighborhood (or the value of parameter r). The idea behind averaging the local
differences is to induce noise robustness capability in the NrTxP pattern. By averaging the
local difference, the impact of noise in the local neighborhood is significantly reduced.

The mean local differences quantized neighbor vector mldqp(i,j)
r is defined as

mldqp(i,j)
r =

[
mldqp(i,j)

(r,0), . . . , mldqp(i,j)
(r,7)

]
(18)

where

mldqp(i,j)
(r,k) =

1
r

r−1

∑
t=0

ldp(i,j)r,rk+t, k ∈ {0, 1, . . . , 7} (19)

Similar to TrPr, the second local binary pattern descriptor TxPr, with respect to the center pixel
pc, is computed using the mean local differences quantized neighbor vector, as shown below:

TxP(i,j)
r =

7

∑
n=0

s(mldqp(i,j)
(r,n) − νr)2n, s(x) =

{
1 x ≥ 0
0 x < 0

(20)

where νr is defined as

νr =
j+r

∑
y=j−r

µld((i−r),y)
r +

j+r

∑
y=j−r

µld((i+r),y)
r +

i+r−1

∑
x=i−r+1

µld(x,(j−r))
r +

i+r−1

∑
x=i−r+1

µld(x,(j+r))
r (21)

for i ∈ {1 + r, . . . , M − r}, j ∈ {1 + r, . . . , N − r}. Also, µldr is the mean local differences
image, obtained as follows:

µld(i,j)r =
1

(8r)

8r−1

∑
n=0

ldp(i,j)
(r,n), i ∈ {1 + r, . . . , M − r} j ∈ {1 + r, . . . , N − r} (22)

The TxPr patterns are then made noise-resistant using the same transformation as adopted
in the case of the TrPr patterns. Thus, like the MsTrPr patterns, the dimensionality of
the transformed TxPr patterns, i.e., NrTxPr, is always 10, irrespective of the scale of the
neighborhood (or the value of parameter r). The NrTxPr patterns are defined as follows:

NrTxP(i,j)
r =

{
∑7

n=0 s
(

mldqp(i,j)
(r,n) − νr

)
if U

(
TxP(i,j)

r

)
≤ 2

9 otherwise
(23)

Summarizing, for the neutrosophic images TNS, INS, and FNS, the probability distribution
(histogram) of the NrTxPr patterns for the three images at scale r are given as
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NrTxPT
r (η) =

M−r

∑
i=1+r

N−r

∑
j=1+r

ζ
((

NrTxP(i,j)
r

)T , η
)

, η ∈ {0, 1, . . . , 8, 9} (24)

NrTxPI
r(η) =

M−r

∑
i=1+r

N−r

∑
j=1+r

ζ
((

NrTxP(i,j)
r

)I , η
)

, η ∈ {0, 1, . . . , 8, 9} (25)

NrTxPF
r (η) =

M−r

∑
i=1+r

N−r

∑
j=1+r

ζ
((

NrTxP(i,j)
r

)F, η
)

, η ∈ {0, 1, . . . , 8, 9} (26)

2.2.3. Pattern 3: RiTxP

Lastly, to construct this pattern, the center pixel pc is encoded into one of the two bins
formed by thresholding its gray value against the local mean gray value (µr) in the neighbor-
hood of pc at scale r. Thus, the dimensionality of the histogram formed from the RiTxP patterns
will always be 2, irrespective of the scale of the neighborhood (or the value of parameter r).

RiTxP(i,j)
r = s(pc − µr), s(x) =

{
1 x ≥ 0
0 x < 0

(27)

where µr is defined as

µr =
j+r

∑
y=j−r

p((i−r),y)
r +

j+r

∑
y=j−r

p((i+r),y)
r +

i+r−1

∑
x=i−r+1

p(x,(j−r))
r +

i+r−1

∑
x=i−r+1

p(x,(j+r))
r (28)

For neutrosophic images TNS, INS, and FNS, the probability distribution (histogram) of the
RiTxPr patterns at scale r is given as

RiTxPT
r (η) =

M−r

∑
i=1+r

N−r

∑
j=1+r

ζ
((

RiTxP(i,j)
r

)T , η
)

, η ∈ {0, 1} (29)

RiTxPI
r(η) =

M−r

∑
i=1+r

N−r

∑
j=1+r

ζ
((

RiTxP(i,j)
r

)I , η
)

, η ∈ {0, 1} (30)

RiTxPF
r (η) =

M−r

∑
i=1+r

N−r

∑
j=1+r

ζ
((

RiTxP(i,j)
r

)F, η
)

, η ∈ {0, 1} (31)

2.2.4. Final Construction of MsNrRiTxP Pattern Descriptor

The final histogram of the proposed MsNrRiTxP pattern is constructed from the joint
histograms of the three pattern descriptors, i.e., MsTrP, NrTxP, and RiTxP. The joint
histogram of MsTrP, NrTxP, and RiTxP, i.e., MsTrP × NrTxP × RiTxP has a very high
dimensionality of 200 features (10 × 10 × 2) at every scale. Accordingly, if five scales have
been considered to perform multi-resolution analysis of the input image, the total number
of features will accumulate to 1000 (5 × 200), which is very high considering we have
three neutrosophic images (corresponding to every input image) to work with. Therefore,
in our work, instead of taking the joint histogram of all three patterns, the joint histogram
of MsTrP × RiTxP is concatenated with the joint histogram of NrTxP × RiTxP, thereby
reducing the dimensionality of the MsNrRiTxP pattern to 40 (10 × 2 + 10 × 2) bins at
every scale. The sequence of concatenation adopted for the construction of the MsNrRiTxP
pattern for the input (medical) image at a single scale (i.e., for a particular value of r) is
explained below.

MsNrRiTxP{T,I,F}
r = MsNrRiTxPT

r

∣∣∣∣∣∣ MsNrRiTxPI
r

∣∣∣∣∣∣ MsNrRiTxPF
r (32)
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where
∣∣∣∣∣∣ ⇒ Concatenation Operator and

MsNrRiTxPT
r = MsRiTxPT

r

∣∣∣∣∣∣ NrRiTxPT
r , (33)

MsNrRiTxPI
r = MsRiTxPI

r

∣∣∣∣∣∣ NrRiTxPI
r , (34)

MsNrRiTxPF
r = MsRiTxPF

r

∣∣∣∣∣∣ NrRiTxPF
r , (35)

where MsRiTxP and NrRiTxP are joint histograms defined as

MsRiTxPT
r = MsTrPT

r ⊗ RiTxPT
r ,

NrRiTxPT
r = NrTxPT

r ⊗ RiTxPT
r ,

(36)

MsRiTxPI
r = MsTrPI

r ⊗ RiTxPI
r ,

NrRiTxPI
r = NrTxPI

r ⊗ RiTxPI
r ,

(37)

MsRiTxPF
r = MsTrPF

r ⊗ RiTxPF
r ,

NrRiTxPF
r = NrTxPF

r ⊗ RiTxPF
r ,

(38)

The MsNrRiTxP pattern for multi-scale resolutions, i.e., for different values of r (r = 1,
2, 3, . . .), is constructed by concatenating the single-scale MsNrRiTxPr patterns, as de-
scribed below:

MsNrRiTxP{T,I,F}
{r=1,2,...,S} = MsNrRiTxP{T,I,F}

1

∣∣∣∣∣∣
MsNrRiTxP{T,I,F}

2 . . .
∣∣∣∣∣∣ . . .

∣∣∣∣∣∣ MsNrRiTxP{T,I,F}
S (39)

3. Experimental Setup

This section outlines the computational framework adopted to evaluate the effec-
tiveness of our proposed methodology in contrast to recent and state-of-the-art retrieval
techniques detailed in Table 2. To ensure fairness, all the methods were implemented in
MATLAB 2020b.

Table 2. Names and abbreviations of all the compared methods.

S. No. Abbreviation Method Name

1 LBP Local Binary Pattern
2 LTP Local Ternary Pattern
3 LQP Local Quinary Pattern
4 LTrP Local Tetra Pattern
5 LTCoP Local Ternary Co-Occurrence Pattern
6 LMeP Local Mesh Pattern
7 LMePVEP Local Mesh Peak Valley Edge Pattern
8 LDEP Local Diagonal Extrema Pattern
9 LWP Local Wavelet Pattern
10 LQEP Local Quantized Extrema Pattern
11 SS-3D-LTP Spherical Symmetric 3D Local Ternary Pattern
12 LBDP Local Bit-Plane Decoded Pattern
13 LBDISP Local Bit-Plane Dissimilarity Pattern
14 DLTerQEP Directional Local Ternary Quantized Extrema Pattern
15 LTDP Local Tri-Directional Pattern
16 LGHP Local Gradient Hexa Pattern
17 LDGP Local Directional Gradient Pattern
18 LQEQP Local Quantized Extrema Quinary Pattern
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Table 2. Cont.

S. No. Abbreviation Method Name

19 LMeTP Local Mesh Ternary Patterns
20 LNIP Local Neighborhood Intensity Pattern
21 LNDP Local Neighborhood Difference Pattern
22 LDZZP Local Directional ZigZag Pattern
23 LMP Local Morphological Pattern
24 LJP Local Jet Pattern
25 LDRP Local Directional Relation Pattern
26 SPALBP Scale and Pattern Adaptive Local Binary Pattern

3.1. Similarity Measure

The effectiveness of any CBMIR system relies extensively on the selection of a strong
similarity measure to compare the feature vector of the query image with the feature vectors
of database images. The extended Canberra distance [47] is a commonly used and popular
similarity measure in retrieval applications. The mathematical expression for the extended
Canberra distance is given by

DECD(t, Q) =
dim

∑
τ=1

∣∣FQ(τ)− Ft(τ)
∣∣

(FQ(τ) + µQ) + (Ft(τ) + µt)
(40)

where

µQ =
1

dim

dim

∑
τ=1

FQ(τ), µt =
1

dim

dim

∑
τ=1

Ft(τ) (41)

and FQ and Ft are the feature vectors of query image Q and database image t, respectively.

3.2. Performance Measures

All of the images in the database were used as query images in our experiments.
The following four performance metrics, i.e., average precision rate (avgP), average re-
trieval rate (avgR), F-score (Fscore), and mean average precision (MavgP) have been em-
ployed to evaluate the effectiveness of every retrieval method.

avgP(%) =
number of relevant images retrieved
total number of images retrieved (η)

avgR(%) =
number of relevant images retrieved

total number of relevant images in the database

avgP(%) =
100
ω

ω

∑
i=1

r(DBi)

η
(42)

avgR(%) =
100
ω

ω

∑
i=1

r(DBi)

g(DBi)
(43)

Fscore(%) =
2 × avgP × avgR

avgP + avgR
(44)

MavgP(%) =
100
ω

ω

∑
i=1

g(DBi)

∑
η=1

r(DBi)

η
(45)

where ω denotes the image count in the database DB, and r(DBi) and r(DBi) are the
number of relevant images retrieved and the number of relevant ground truth images
available for the ith query image, respectively.
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3.3. Dataset Description

Four test datasets were considered in our experimental framework to test the retrieval
prowess of the proposed and the compared approaches. These include the Emphysema
CT database [48] and the NEMA CT database for the purpose of retrieving CT images.
Additionally, the OASIS MRI database [49] and the NEMA MRI database were used for
the retrieval of MRI images. A summary of these datasets is given in Table 3. The intent of
these datasets is to evaluate the effectiveness of the proposed and compared approaches to
encode a multitude of textural information present in CT and MR images. Additionally,
the experiments assess the methods’ effectiveness in representing changes in shape at both
global and local scales. The Emphysema CT database and OASIS MRI database both consist
of images depicting specific anatomical regions, namely, the lung and brain, respectively.
Therefore, in order to achieve a high level of retrieval performance on these datasets, it
is necessary for a method to possess the capability to effectively differentiate between
images that may appear identical in general but actually differ significantly due to the
local variations in their shapes. However, when it comes to the NEMA CT and NEMA
MRI databases, which consist of images of various body parts, the method must possess
superior information representation capability to effectively distinguish between images
that have very distinct overall representations, particularly on a global scale. A sample
image from each class of the four test datasets is shown in Figure 4.

Figure 4. Sample image from each class of (a) Emphysema CT database, (b) NEMA CT database,
(c) OASIS MRI database, and (d) NEMA MRI database.
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Table 3. Summary of datasets used in the experimental setup

CT Image Datasets MR Image Datasets

Emphysema CT NEMA CT OASIS MRI NEMA MRI

No. of Images 168 600 416 372
Image Size 61 × 61 512 × 512 208 × 208 256 × 256
No. of Classes 3 10 4 5
Images per Class 59, 50, 59 54, 70, 66, 50, 15 125, 104, 91, 96 72, 100, 76, 59, 65

60, 52, 104, 60, 69

To further substantiate the superiority of the proposed approach over the existing
methods, an additional set of experiments performed under noisy conditions on these
datasets were performed in this paper. The noisy images were generated by introduc-
ing zero-mean additive white Gaussian noise with standard deviation varying between
[5, 50]. For the purpose of evaluating the noise robustness capability of the proposed and
the compared approaches, the noise-free images were used as database images in these
experiments, while the noisy images were used as query images. Figure 5 shows a sample
noisy image from each class of the four test datasets.

Figure 5. Sample noisy image from each class of (a) Emphysema CT database, (b) NEMA CT database,
(c) OASIS MRI database, and (d) NEMA MRI database.
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4. Experimental Results and Discussions

The proposed method was tested on four test databases with both noise-free and
noisy images and a comparison with the existing texture classification methods mentioned
in Table 2 is presented in this section. The proposed MsNrRiTxP pattern is computed
at nine scales (i.e., r = {1, 2, . . . , 9}) for the NEMA CT, NEMA MRI, and OASIS MRI
databases. However, for the Emphysema CT database, the number of scales considered
in our approach is five (i.e., r = {1, 2, . . . , 5}). This is because the number of pixels in
the Emphysema CT database images is much less (i.e., 61 × 61). For the sake of fairness,
the parameter settings for the compared methods were kept as mentioned in their respective
sources. For comparative analysis, the implementations of the compared methods available
in the public domain were used wherever possible. In the case that the implementations
were not available, we used our implementation of that method, developed as per our best
understanding. For every query image, the retrieval results for the top 100 matches are
tabulated here.

4.1. Performance Analysis on Noise-Free Images

Tables 4–7 compares the retrieval rates on noise-free images of the four test datasets
yielded by the proposed MsNrRiTxP and the compared approaches. From the tables,
it is very evident that the proposed approach substantially surpassed all the compared
approaches on all four test datasets using all four performance metrics. In the case of the
Emphysema CT database, the proposed approach amassed average gains in retrieval rates of
12.61%, 7.25%, 9.21%, and 9.59% for avgR, avgP, Fscore, and MavgP, respectively, over all the
compared approaches. Among the compared approaches, LDGP demonstrated the worst
retrieval performance of 63.64%, 35.55%, 45.61%, and 47.57%, lagging behind the proposed
approach with substantial differences of 18.72%, 10.79%, 13.70%, and 16.25% in terms
of avgR, avgP, Fscore, and MavgP, respectively. On the other end, the recently proposed
SPALBP approach showed excellent retrieval capability among the compared approaches,
lagging behind our proposed MsNrRiTxP approach by approximately 1.00% in terms of all
four performance metrics. In contrast to the Emphysema CT database that comprises CT
images specifically focused on lung tissues, the NEMA CT database consists of CT images
of different body parts. Due to the greater ease of distinguishing between CT images of
various body parts compared to different lung tissues, the retrieval rates on the NEMA
CT database were significantly higher than those on the Emphysema CT database. Table 5
clearly demonstrates that the proposed MsNrRiTxP approach surpassed all other methods,
with an average increases in retrieval rates of 5.17%, 6.50%, 6.29%, and 2.83% for avgR, avgP,
Fscore, and MavgP, respectively. LBDISP demonstrated the worst retrieval performance,
lagging behind the proposed approach by 27.57% (avgR), 23.91% (avgP), 26.02% (Fscore),
and 17.15% (MavgP). The multi-scale encoding of texture features enables our proposed
approach to capture the underlining shape of the body organ distinctively, and therefore, it
is able to effectively distinguish between shapes of different organs with pin-point accuracy.

For the OASIS MRI dataset, the task of retrieving matching images similar in structure
to the query image is more intricate compared to the NEMA MRI dataset. The images in the
OASIS dataset pose a significant challenge due to their subtle inter-class variations. While
the images may appear to be similar on the surface, they can be differentiated very minutely
based on the shape of the ventricular area of the brain. In light of this, the retrieval rates
attained on the OASIS dataset were lower compared to all of the other datasets. The retrieval
performance was 42.93% (avgR), 44.52% (avgP), 43.71% (Fscore), and 53.11% (MavgP) for the
proposed MsNrRiTxP approach on the OASIS dataset, in comparison to 100% (avgR), 83.47%
(avgP), 90.99% (Fscore), and 100% (MavgP) attained on the NEMA MRI dataset. The proposed
approach demonstrated clear superiority over all the compared approaches, thereby achieving
remarkable improvements of 11.73% and 2.08% in avgR, 11.37% and 7.57% in avgP, 11.56%
and 5.49% in Fscore, and 14.60% and 0.83% in MavgP on the OASIS and NEMA MRI datasets,
respectively. Despite the inherent difficulty in distinguishing the images of the OASIS dataset,
the proposed approach showcased substantial gains with respect to the NEMA MRI dataset.
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This highlights the remarkable discriminatory power that the proposed approach possesses
by encoding the complex intricacies present in the texture and shape data. With retrieval rates
28.49% (avgR), 30.43% (avgP), 30.08% (Fscore), and 13.32% (MavgR) lower with respect to the
proposed approach, LWP yielded the lowest retrieval rates among all the compared methods.
The NEMA MRI database represents merely five classes, each class being associated with a
different anatomical part of the body. Thus, there is a very little room for ambiguity when it
comes to classifications, as the classes are clearly separated from each other. This leads to
enhanced retrieval rates on the NEMA dataset in comparison to OASIS. The query results on
all the test datasets are illustrated in Figure 6.

Table 4. Table representing the proposed approach’s retrieval performance in comparison to all other
methods on Emphysema CT database. The values are expressed as percentages (%).

Performance Measures Improvement

avgR avgP Fscore MavgP (Proposed–Compared)

Proposed 82.36 46.34 59.31 63.82 avgR avgP Fscore MavgP
SPALBP 80.71 45.41 58.12 62.54 1.65 0.93 1.19 1.28
LJP 79.89 44.95 57.53 61.91 2.47 1.39 1.78 1.91
LDRP 79.06 44.49 56.94 61.27 3.30 1.85 2.37 2.55
LBDISP 77.69 43.48 55.75 62.20 4.67 2.86 3.56 1.62
LMP 76.14 42.61 54.64 60.96 6.22 3.73 4.67 2.86
LZZP 75.36 42.18 54.08 60.33 7.00 4.16 5.23 3.49
LWP 74.46 41.35 53.17 57.08 7.90 4.99 6.14 6.74
LGHP 72.97 40.52 52.11 55.94 9.39 5.82 7.20 7.88
LTCoP 70.08 39.15 50.24 57.39 12.28 7.19 9.07 6.43
DLTerQEP 69.64 39.63 50.51 50.72 12.72 6.71 8.80 13.10
LBDP 68.69 38.04 48.97 56.41 13.67 8.30 10.34 7.41
LQEQP 68.67 38.98 49.73 51.44 13.69 7.36 9.58 12.38
LQEP 68.00 38.32 49.02 48.91 14.36 8.02 10.29 14.91
LTP 66.99 37.53 48.11 53.20 15.37 8.81 11.20 10.62
LBP 66.98 37.53 48.11 52.41 15.38 8.81 11.20 11.41
LMeP 66.68 37.27 47.81 53.72 15.68 9.07 11.50 10.10
SS-3D-LTP 66.12 36.98 47.43 55.61 16.24 9.36 11.88 8.21
LMeTP 65.82 36.83 47.23 52.41 16.54 9.51 12.08 11.41
LTrP 65.61 36.86 47.20 50.95 16.75 9.48 12.11 12.87
LMePVEP 65.45 36.70 47.03 50.96 16.91 9.64 12.28 12.86
LDEP 65.34 36.56 46.89 49.61 17.02 9.78 12.42 14.21
LQP 65.21 36.51 46.81 51.47 17.15 9.83 12.50 12.35
LNDP 65.10 36.52 46.80 48.86 17.26 9.82 12.51 14.96
LTDP 64.62 36.16 46.37 48.02 17.74 10.18 12.94 15.80
LNIP 64.61 36.20 46.40 47.99 17.75 10.14 12.91 15.83
LDGP 63.64 35.55 45.61 47.57 18.72 10.79 13.70 16.25

Average Improvement 12.61 7.25 9.21 9.59

Table 5. Table representing the proposed approach’s retrieval performance in comparison to all other
methods on the NEMA CT database. The values are expressed as percentages (%).

Performance Measures Improvement

avgR avgP Fscore MavgP (Proposed–Compared)

Proposed 98.71 69.11 81.30 99.56 avgR avgP Fscore MavgP
SPALBP 97.72 66.35 79.03 99.06 0.99 2.76 2.27 0.50
DLTerQEP 96.45 64.92 77.61 99.00 2.26 4.19 3.69 0.56
LQEP 96.43 64.70 77.44 98.96 2.28 4.41 3.86 0.60
LNDP 96.42 64.62 77.38 98.07 2.29 4.49 3.92 1.49
LMeTP 96.36 64.98 77.62 98.55 2.35 4.13 3.68 1.01
LMP 96.26 64.92 77.54 98.45 2.45 4.19 3.76 1.11
LZZP 96.17 64.85 77.46 98.35 2.54 4.26 3.84 1.21
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Table 5. Cont.

Performance Measures Improvement

avgR avgP Fscore MavgP (Proposed–Compared)

LJP 96.07 64.79 77.39 98.25 2.64 4.32 3.91 1.31
LMeP 96.19 64.64 77.32 98.12 2.52 4.47 3.98 1.44
LTDP 96.18 64.50 77.21 98.50 2.53 4.61 4.09 1.06
LTP 95.99 64.52 77.17 98.83 2.72 4.59 4.13 0.73
SS-3D-LTP 95.92 64.62 77.22 98.43 2.79 4.49 4.08 1.13
LTrP 95.92 64.26 76.96 97.92 2.79 4.85 4.34 1.64
LQEQP 95.83 64.65 77.21 98.56 2.88 4.46 4.09 1.00
LDRP 95.71 64.11 76.78 97.46 3.00 5.00 4.51 2.10
LGHP 95.62 64.04 76.71 97.37 3.09 5.07 4.59 2.19
LDGP 95.52 63.98 76.63 97.27 3.19 5.13 4.67 2.29
LTCoP 95.47 63.55 76.31 98.36 3.24 5.56 4.99 1.20
LNIP 95.45 63.93 76.57 97.68 3.26 5.18 4.73 1.88
LQP 95.27 64.00 76.56 98.48 3.44 5.11 4.74 1.08
LDEP 95.02 63.72 76.28 97.23 3.69 5.39 5.02 2.33
LBP 94.19 62.25 74.96 97.85 4.52 6.86 6.34 1.71
LMePVEP 93.51 62.91 75.22 97.43 5.20 6.20 6.08 2.13
LWP 80.37 52.76 63.70 89.89 18.34 16.35 17.60 9.67
LBDP 76.91 50.06 60.64 84.45 21.80 19.05 20.66 15.11
LBDISP 71.14 45.20 55.28 82.41 27.57 23.91 26.02 17.15

Average Improvement 5.17 6.50 6.29 2.83

Table 6. Table representing the proposed approach’s retrieval performance in comparison to all other
methods on OASIS MRI database. The values are expressed as percentages (%).

Performance Measures Improvement

avgR avgP Fscore MavgP (Proposed–Compared)

Proposed 42.93 44.52 43.71 53.11 avgR avgP Fscore MavgP
SPALBP 40.78 42.29 41.53 50.45 2.15 2.23 2.19 2.66
LBDISP 37.89 40.35 39.08 45.81 5.04 4.17 4.63 7.30
LMP 36.75 39.14 37.91 44.44 6.18 5.38 5.80 8.67
LZZP 35.65 37.97 36.77 43.10 7.28 6.55 6.94 10.01
LJP 34.58 36.83 35.67 41.81 8.35 7.69 8.04 11.30
LTCoP 33.30 35.51 34.37 40.73 9.63 9.01 9.34 12.38
LQP 32.69 34.78 33.70 40.26 10.24 9.74 10.01 12.85
SS-3D-LTP 31.84 33.84 32.81 39.58 11.09 10.68 10.90 13.53
LBDP 31.18 32.87 32.01 42.40 11.75 11.65 11.70 10.71
LTDP 30.99 33.12 32.02 38.17 11.94 11.40 11.69 14.94
LNIP 30.88 33.00 31.90 38.29 12.05 11.52 11.81 14.82
LTP 30.76 32.79 31.74 38.20 12.17 11.73 11.97 14.91
LNDP 30.75 32.75 31.72 38.30 12.18 11.77 11.99 14.81
LBP 30.29 32.26 31.25 37.13 12.64 12.26 12.46 15.98
LMeP 30.26 32.29 31.24 37.84 12.67 12.23 12.47 15.27
LQEQP 29.94 31.74 30.82 36.37 12.99 12.78 12.89 16.74
LMeTP 29.46 31.37 30.39 37.32 13.47 13.15 13.32 15.79
DLTerQEP 29.43 31.15 30.27 35.87 13.50 13.37 13.44 17.24
LDRP 29.13 30.93 30.00 36.77 13.80 13.59 13.71 16.34
LTrP 29.04 30.84 29.92 36.66 13.89 13.68 13.79 16.45
LMePVEP 28.33 30.19 29.23 35.49 14.60 14.33 14.48 17.62
LGHP 28.11 29.95 29.00 34.61 14.82 14.57 14.71 18.50
LDGP 28.08 29.92 28.97 33.60 14.85 14.60 14.74 19.51
LDEP 27.84 29.51 28.65 33.39 15.09 15.01 15.06 19.72
LQEP 27.61 29.38 28.47 33.13 15.32 15.14 15.24 19.98
LWP 25.65 27.12 26.36 31.66 17.28 17.40 17.35 21.45

Average Improvement 11.73 11.37 11.56 14.60
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Figure 6. Query results of the proposed method for noise-free query images on (a) Emphysema CT
database, (b) NEMA CT database, (c) OASIS MRI database, and (d) NEMA MRI database.
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Table 7. Table representing the proposed approach’s retrieval performance in comparison to all other
methods on NEMA MRI database. The values are expressed as percentages (%).

Performance Measures Improvement

avgR avgP Fscore MavgP (Proposed–Compared)

Proposed 100.00 83.47 90.99 100.00 avgR avgP Fscore MavgP
SPALBP 100.00 81.80 89.99 100.00 0.00 1.67 1.00 0.00
LJP 100.00 80.98 89.49 100.00 0.00 2.49 1.50 0.00
LZZP 100.00 80.17 89.00 100.00 0.00 3.30 1.99 0.00
LMP 100.00 79.37 88.50 100.00 0.00 4.10 2.49 0.00
LDRP 100.00 78.58 88.00 100.00 0.00 4.89 2.99 0.00
LGHP 100.00 77.79 87.51 100.00 0.00 5.68 3.48 0.00
LBP 100.00 77.06 87.04 100.00 0.00 6.41 3.95 0.00
LTP 100.00 77.06 87.04 100.00 0.00 6.41 3.95 0.00
LTrP 100.00 77.06 87.04 100.00 0.00 6.41 3.95 0.00
LTCoP 100.00 77.06 87.04 100.00 0.00 6.41 3.95 0.00
LMeP 100.00 77.06 87.04 100.00 0.00 6.41 3.95 0.00
LMePVEP 100.00 77.06 87.04 100.00 0.00 6.41 3.95 0.00
LNIP 100.00 77.06 87.04 100.00 0.00 6.41 3.95 0.00
LTDP 100.00 77.06 87.04 100.00 0.00 6.41 3.95 0.00
LNDP 100.00 77.06 87.04 100.00 0.00 6.41 3.95 0.00
LDGP 100.00 77.06 87.04 100.00 0.00 6.41 3.95 0.00
LQEP 100.00 77.06 87.04 100.00 0.00 6.41 3.95 0.00
DLTerQEP 100.00 77.06 87.04 100.00 0.00 6.41 3.95 0.00
LBDISP 99.99 77.05 87.03 99.99 0.01 6.42 3.96 0.01
LQEQP 98.83 76.06 85.96 99.86 1.17 7.41 5.03 0.14
LMeTP 98.80 76.06 85.95 99.77 1.20 7.41 5.04 0.23
LQP 98.79 75.95 85.88 99.80 1.21 7.52 5.11 0.20
LDEP 97.90 74.96 84.91 99.63 2.10 8.51 6.08 0.37
SS-3D-LTP 96.22 73.51 83.34 98.87 3.78 9.96 7.65 1.13
LBDP 83.80 63.36 72.16 93.93 16.20 20.11 18.83 6.07
LWP 71.51 53.04 60.91 86.68 28.49 30.43 30.08 13.32

Average Improvement 2.08 7.57 5.49 0.83

4.2. Performance Analysis on Noisy Images

This section highlights the noise robustness of the proposed and all the compared
approaches to retrieve images similar to that of a noise-degraded query image. Tables 8–11
compare the performance of the proposed MsNrRiTxP approach with other methods on
noise-induced versions of four test datasets. The proposed approach obtained retrieval
rates of 81.28% (avgR), 46.95% (avgP), 59.52% (Fscore), and 63.62% (MavgP) on noisy im-
ages from the Emphysema CT database; 64.78% (avgR), 44.78% (avgP), 52.95% (Fscore), and
49.27% (MavgP) on noisy images from the NEMA CT database; 38.56% (avgR), 37.50%
(avgP), 38.02% (Fscore), and 38.44% (MavgP) on noisy images from the OASIS MRI database;
and 69.92% (avgR), 53.36% (avgP), 60.53% (Fscore), and 57.95% (MavgP) on noisy images from
the NEMA MRI database; these are close to the 82.36% (avgR), 46.34% (avgP), 59.31% (Fscore),
and 63.82% (MavgP); 98.71% (avgR), 69.11% (avgP), 81.30% (Fscore), and 99.56% (MavgP);
42.93% (avgR), 44.52% (avgP), 43.71% (Fscore), and 53.11% (MavgP); and 100.00% (avgR),
83.47% (avgP), 90.99% (Fscore), and 100.00% (MavgP) obtained on their noise-free variants, re-
spectively. The noise-resilient characteristic demonstrated by the proposed approach allowed
it to amass an average improvement in retrieval rates of 17.78% (avgR), 11.38% (avgP), 13.93%
(Fscore), and 24.03% (MavgP) on noisy images from the Emphysema CT database; 42.42%
(avgR), 31.81% (avgP), 36.58% (Fscore), and 36.51% (MavgP) on noisy images from the NEMA
CT database; 12.84% (avgR), 10.95% (avgP), 11.90% (Fscore), and 11.69% (MavgP) on noisy
images from the OASIS MRI database; and 36.70% (avgR), 22.74% (avgP), 28.74% (Fscore),
and 26.93% (MavgP) on noisy images from the NEMA MRI database over all the compared
approaches. The query results under noise conditions are shown in Figure 7. Figures 8 and 9
present the comparative performance analysis of the proposed and the compared methods for
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noisy and noise-free images of all four test datasets in context with avgP and MavgP values,
respectively. The figure clearly illustrates that all the approaches under review had a substan-
tial decrease in their retrieval rates when tested on the four noisy databases. This decline,
in comparison to noise-free images, underlines their inability to effectively retrieve images in
noisy environments. The decrease in retrieval rates of the proposed approach is negligible
in comparison to those of the existing approaches. The same can also be substantiated from
Figure 10, which clearly depicts that the proposed approach yielded the minimum coefficient
of variation (CV) among all the compared methods over noise-free and noisy images from
all four test datasets. The formula for computing CV is given below. The lower values of
CV signify that the proposed approach is highly robust to noise and its performance is least
affected by the degradation. These results corroborate the effectiveness of the suggested
approach in efficiently retrieving similar images, even in challenging conditions.

CV =
Standard Deviation

Mean
(46)

One of the greatest strengths of the proposed MsNrRiTxP approach is its robustness to
image noise, which means that even in situations where the query image suffers from noise
degradation, the proposed approach is still able to extract the intricate texture and shape
details buried within the noise. This allows our approach to generate excellent retrieval
rates that are almost on par with those obtained on noise-free images. Among all the
compared methods, the proposed method exhibited minimum deviation in retrieval rates
on noisy and noise-free images, altogether attaining the highest retrieval performances on
all four test datasets. This robustness of the proposed approach is attributed to the use
of neutrosophic images for texture and shape extraction. The indeterminacy component
in neutrosophic images helps in capturing and representing uncertain regions, which can
arise due to noise or artifacts in the image. By incorporating indeterminacy, neutrosophic
images tend to be more robust to noise compared to other approaches. Neutrosophic
images provide a comprehensive representation of texture information by including truth
(representing a certain or true texture), indeterminacy (capturing uncertain or ambiguous
texture regions), and falsity (indicating false or non-texture regions). This comprehensive
representation allows for a nuanced understanding of the texture patterns within the image.

Table 8. Table representing the proposed approach’s retrieval performance in comparison to all other
methods on noisy images of Emphysema CT database. The values are expressed as percentages (%).

Performance Measures Improvement

avgR avgP Fscore MavgP (Proposed–Compared)

Proposed 81.28 46.95 59.52 63.72 avgR avgP Fscore MavgP
LWP 78.26 43.63 56.03 57.06 3.02 3.32 3.49 6.66
SPALBP 76.69 42.76 54.91 55.92 4.59 4.19 4.61 7.80
LJP 75.16 41.90 53.81 54.80 6.12 5.05 5.71 8.92
LBDP 71.41 39.64 50.98 52.41 9.87 7.31 8.54 11.31
DLTerQEP 64.85 37.02 47.13 41.42 16.43 9.93 12.39 22.30
LBDISP 64.86 36.47 46.69 40.55 16.42 10.48 12.83 23.17
LQEQP 64.08 36.05 46.14 39.71 17.20 10.90 13.38 24.01
LQEP 63.15 35.64 45.56 39.32 18.13 11.31 13.95 24.40
LTCoP 62.51 35.02 44.89 40.27 18.77 11.93 14.63 23.45
LDRP 62.32 34.91 44.76 40.15 18.96 12.04 14.76 23.57
LZZP 62.14 34.81 44.62 40.03 19.14 12.14 14.90 23.69
LDEP 61.22 34.68 44.28 35.60 20.06 12.27 15.24 28.12
LBP 60.51 34.08 43.60 36.55 20.77 12.87 15.92 27.17
LTP 60.72 34.06 43.64 37.24 20.56 12.89 15.88 26.48
LMeP 60.35 33.94 43.45 37.43 20.93 13.01 16.07 26.29
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Table 8. Cont.

Performance Measures Improvement

avgR avgP Fscore MavgP (Proposed–Compared)

LMePVEP 60.50 33.93 43.48 35.52 20.78 13.02 16.04 28.20
LTrP 60.30 33.92 43.42 35.86 20.98 13.03 16.10 27.86
SS-3D-LTP 60.90 33.90 43.56 36.48 20.38 13.05 15.96 27.24
LNIP 60.42 33.84 43.38 35.22 20.86 13.11 16.14 28.50
LMeTP 60.90 33.84 43.51 34.33 20.38 13.11 16.01 29.39
LMP 60.60 33.67 43.29 34.16 20.68 13.28 16.23 29.56
LNDP 59.96 33.61 43.07 34.95 21.32 13.34 16.44 28.77
LQP 60.22 33.44 43.00 34.08 21.06 13.51 16.52 29.64
LGHP 59.92 33.43 42.92 33.91 21.36 13.52 16.60 29.81
LDGP 59.67 33.43 42.85 34.57 21.61 13.52 16.67 29.15
LTDP 59.38 33.07 42.48 34.36 21.90 13.88 17.04 29.36

Average Improvement 17.78 11.38 13.93 24.03

Table 9. Table representing the proposed approach’s retrieval performance in comparison to all other
methods on noisy images of NEMA CT database. The values are expressed as percentages (%).

Performance Measures Improvement

avgR avgP Fscore MavgP (Proposed–Compared)

Proposed 64.78 44.78 52.95 49.27 avgR avgP Fscore MavgP
SPALBP 58.89 40.71 48.14 44.79 5.89 4.07 4.81 4.48
LBDP 47.11 32.57 38.51 35.83 17.67 12.21 14.44 13.44
LWP 46.51 31.03 37.23 31.00 18.27 13.75 15.72 18.27
LJP 42.86 22.75 29.72 21.85 21.91 22.04 23.23 27.42
LDRP 28.58 15.17 19.81 14.57 36.20 29.62 33.14 34.70
LBDISP 19.05 10.11 13.21 9.71 45.73 34.67 39.74 39.56
LQP 18.45 9.73 12.74 8.83 46.33 35.05 40.21 40.44
LDEP 18.39 10.27 13.18 9.48 46.39 34.51 39.77 39.79
LMP 17.47 9.76 12.52 9.01 47.31 35.03 40.43 40.26
LDGP 17.28 9.05 11.88 8.99 47.50 35.73 41.07 40.28
LTrP 17.03 9.16 11.91 9.03 47.75 35.62 41.04 40.24
LMePVEP 16.81 9.18 11.87 8.69 47.97 35.60 41.08 40.58
LTP 16.80 9.18 11.87 8.87 47.98 35.60 41.08 40.40
LZZP 16.80 9.18 11.87 8.87 47.98 35.60 41.08 40.40
LTCoP 16.77 9.14 11.83 8.72 48.01 35.64 41.12 40.55
SS-3D-LTP 16.75 9.24 11.91 8.77 48.03 35.54 41.04 40.50
DLTerQEP 16.68 9.10 11.77 8.66 48.10 35.68 41.18 40.61
LMeTP 16.67 9.18 11.84 8.61 48.11 35.60 41.11 40.66
LQEQP 16.67 9.18 11.84 8.68 48.11 35.60 41.11 40.59
LGHP 16.67 9.18 11.84 8.68 48.11 35.60 41.11 40.59
LMeP 16.66 8.91 11.61 7.67 48.12 35.87 41.34 41.60
LTDP 16.59 8.97 11.64 8.70 48.19 35.81 41.31 40.57
LBP 16.59 8.79 11.49 9.22 48.19 35.99 41.46 40.05
LQEP 16.55 8.93 11.60 8.52 48.23 35.85 41.35 40.75
LNDP 16.42 10.09 12.50 7.88 48.36 34.69 40.45 41.39
LNIP 16.24 8.67 11.31 8.01 48.54 36.11 41.64 41.26

Average Improvement 42.42 31.81 36.58 36.51
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Table 10. Table representing the proposed approach’s retrieval performance in comparison to all
other methods on noisy images of OASIS MRI database. The values are expressed as percentages (%).

Performance Measures Improvement

avgR avgP Fscore MavgP (Proposed–Compared)

Proposed 38.56 37.50 38.02 38.44 avgR avgP Fscore MavgP
SPALBP 35.06 34.09 34.56 34.94 3.51 3.41 3.46 3.49
LJT 33.39 32.46 32.92 33.28 5.17 5.03 5.10 5.16
LMP 31.80 30.92 31.35 31.69 6.76 6.58 6.67 6.74
LZZP 30.28 29.45 29.86 30.19 8.28 8.05 8.16 8.25
LDRP 28.84 28.04 28.44 28.75 9.72 9.45 9.58 9.69
LGHP 27.47 26.71 27.08 27.38 11.09 10.79 10.94 11.06
LBDP 24.97 24.28 24.62 24.89 13.59 13.22 13.40 13.55
LWP 24.47 25.56 25.00 25.76 14.09 11.94 13.02 12.68
LBDISP 24.31 24.72 24.51 24.75 14.25 12.78 13.51 13.69
SS-3D-LTP 24.17 25.54 24.84 25.55 14.39 11.96 13.18 12.89
LTP 24.15 25.60 24.85 25.40 14.41 11.90 13.17 13.04
LDGP 24.11 26.60 25.30 26.35 14.45 10.90 12.72 12.09
LMePVEP 24.07 25.55 24.79 25.70 14.49 11.95 13.23 12.74
LTDP 24.06 26.06 25.02 26.08 14.50 11.44 13.00 12.36
LQEP 24.05 25.55 24.78 25.43 14.51 11.95 13.24 13.01
LTrP 24.04 25.84 24.91 25.91 14.52 11.66 13.11 12.53
LDEP 24.03 23.89 23.96 24.02 14.53 13.61 14.06 14.42
LQP 24.02 24.67 24.34 24.80 14.54 12.83 13.68 13.64
LNIP 24.01 26.55 25.21 26.47 14.55 10.95 12.81 11.97
LBP 24.01 25.59 24.78 25.49 14.55 11.91 13.24 12.95
LMeTP 24.00 25.77 24.85 25.81 14.56 11.73 13.17 12.63
LMeP 23.95 25.70 24.80 25.62 14.61 11.80 13.22 12.82
DLTerQEP 23.95 25.50 24.70 25.41 14.61 12.00 13.32 13.03
LQEQP 23.95 25.32 24.62 25.24 14.61 12.18 13.40 13.20
LTCoP 23.90 25.27 24.57 25.37 14.66 12.23 13.45 13.07
LNDP 23.78 24.99 24.37 25.07 14.78 12.51 13.65 13.37

Average Improvement 12.84 10.95 11.90 11.69

Table 11. Table representing the proposed approach’s retrieval performance in comparison to all
other methods on noisy images of NEMA MRI database. The values are expressed as percentages (%).

Performance Measures Improvement

avgR avgP Fscore MavgP (Proposed–Compared)

Proposed 69.92 53.36 60.53 57.95 avgR avgP Fscore MavgP
SPALBP 63.57 48.51 55.03 52.68 6.36 4.85 5.50 5.27
LBDP 60.54 46.20 52.40 50.17 9.38 7.16 8.13 7.78
LJP 55.61 44.80 49.62 50.45 14.32 8.57 10.91 7.50
LWP 46.34 37.33 41.35 42.04 23.58 16.03 19.18 15.91
LBDISP 34.91 29.98 32.26 30.05 35.01 23.38 28.27 27.90
LMP 33.73 32.59 33.15 33.24 36.19 20.78 27.38 24.71
LDRP 30.66 29.62 30.13 30.22 39.26 23.74 30.40 27.73
LTCoP 30.36 29.33 29.84 29.92 39.56 24.03 30.69 28.03
LZZP 30.49 29.26 29.87 27.45 39.43 24.10 30.66 30.50
LGHP 30.19 28.97 29.57 27.18 39.73 24.39 30.96 30.77
LQEQP 30.04 28.83 29.42 27.04 39.88 24.53 31.11 30.91
LNDP 29.90 27.92 28.88 28.14 40.02 25.44 31.65 29.81
LDEP 29.84 28.96 29.39 27.08 40.08 24.40 31.14 30.87
SS-3D-LTP 29.56 28.28 28.91 28.06 40.36 25.08 31.62 29.89
LMeTP 29.45 28.69 29.06 26.90 40.47 24.67 31.47 31.05
LQP 28.36 27.05 27.69 26.63 41.56 26.31 32.84 31.32
LMeP 27.37 27.20 27.29 26.92 42.55 26.16 33.24 31.03
DLTerQEP 27.33 27.20 27.26 26.92 42.59 26.16 33.27 31.03
LBP 27.28 27.14 27.21 27.14 42.64 26.22 33.32 30.81
LDGP 26.96 26.94 26.95 26.95 42.96 26.42 33.58 31.00
LMePVEP 26.90 26.89 26.90 26.88 43.02 26.47 33.63 31.07
LTP 26.89 26.89 26.89 26.88 43.03 26.47 33.64 31.07
LNIP 26.89 26.88 26.88 26.88 43.03 26.48 33.65 31.07
LTDP 26.89 26.88 26.89 26.88 43.03 26.48 33.64 31.07
LTrP 26.88 26.88 26.88 26.88 43.04 26.48 33.65 31.07
LQEP 26.88 26.88 26.88 26.88 43.04 26.48 33.65 31.07

Average Improvement 36.70 22.74 28.74 26.93
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Figure 7. Query results of the proposed method for noisy query image on (a) Emphysema CT
database, (b) NEMA CT database, (c) OASIS MRI database, and (d) NEMA MRI database.
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Figure 8. Proposed approach’s retrieval performance in comparison to all other methods in terms of
avgP on noisy and noise-free images of four test datasets.
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Figure 9. Proposed approach’s retrieval performance in comparison to all other methods in terms of
MavgP on noisy and noise-free images of four test datasets.
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Figure 10. Proposed approach’s retrieval performance in comparison to all other methods in terms of
CV (coefficient of variation) on noisy and noise-free images of four test datasets.

5. Conclusions

In this paper, a new effective and robust descriptor, i.e., MsNrRiTxP, pattern has been
presented to perform content-based retrieval of medical images in an attempt towards
the development of computer-assisted diagnosis systems. The key contributions of the
proposed work are the design of a novel pattern descriptor based in the neutrosophic
domain, where, corresponding to every medical image, three neutrosophic images, i.e., truth
(T), indeterminacy (I), and falsity (F) are obtained. These images provide a comprehensive
representation of texture information by including truth (representing a certain or true
texture), indeterminacy (capturing uncertain or ambiguous texture regions), and falsity
(indicating false or non-texture regions). This comprehensive representation allows for a
nuanced understanding of the texture patterns within the image. The MsNrRiTxP pattern is
composed of three different patterns, i.e., MsTrP, NrTxP, and RiTxP, which extracts noise-
resistant and rotation-invariant texture and shape features at multiple scales from each of the
three neutrosophic images. The histogram of the proposed MsNrRiTxP pattern is generated
by scale-wise concatenation of the joint histograms of MsTrP × RiTxP and NrTxP × RiTxP.
The proposed method has been tested on both noisy and noise-free CT and MRI images
from four standard test datasets. The experimental results confirm the superiority of the
proposed pattern as compared to the existing state-of-the-art texture classifying descriptors.
The average improvement in the retrieval rates achieved by the proposed approach over
the compared approaches is very significant, especially in the case of noisy images. This
substantiates the noise-robustness of the proposed approach, which is primarily achieved
through infusion of neutrosophic information in the construction of MsNrRiTxP.
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