
Citation: Ouyang, C.; Yi, Y.; Wang, H.;

Zhou, J.; Tian, T. FineTea: A Novel

Fine-Grained Action Recognition

Video Dataset for Tea Ceremony

Actions. J. Imaging 2024, 10, 216.

https://doi.org/10.3390/

jimaging10090216

Received: 15 July 2024

Revised: 26 August 2024

Accepted: 28 August 2024

Published: 31 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Imaging

Article

FineTea: A Novel Fine-Grained Action Recognition Video
Dataset for Tea Ceremony Actions
Changwei Ouyang 1 , Yun Yi 1,* , Hanli Wang 2 , Jin Zhou 1 and Tao Tian 3

1 School of Mathematics and Computer Science, Gannan Normal University, Ganzhou 341000, China
2 Department of Computer Science and Technology, Tongji University, Shanghai 201804, China
3 School of Computer Science and Artificial Intelligence, Chaohu University, Hefei 238024, China
* Correspondence: yunyi@gnnu.edu.cn

Abstract: Methods based on deep learning have achieved great success in the field of video action
recognition. When these methods are applied to real-world scenarios that require fine-grained
analysis of actions, such as being tested on a tea ceremony, limitations may arise. To promote the
development of fine-grained action recognition, a fine-grained video action dataset is constructed
by collecting videos of tea ceremony actions. This dataset includes 2745 video clips. By using a
hierarchical fine-grained action classification approach, these clips are divided into 9 basic action
classes and 31 fine-grained action subclasses. To better establish a fine-grained temporal model for
tea ceremony actions, a method named TSM-ConvNeXt is proposed that integrates a TSM into the
high-performance convolutional neural network ConvNeXt. Compared to a baseline method using
ResNet50, the experimental performance of TSM-ConvNeXt is improved by 7.31%. Furthermore,
compared with the state-of-the-art methods for action recognition on the FineTea and Diving48
datasets, the proposed approach achieves the best experimental results. The FineTea dataset is
publicly available.

Keywords: tea ceremony actions; fine-grained action recognition; temporal shift module; ConvNeXt

1. Introduction

Video content analysis is a significant research problem in the field of computer vision
with widespread applications in intelligent surveillance, healthcare, human–computer
interaction, etc. [1]. Action recognition is one of the basic tasks of video content analysis
and aims to recognize different human activities or action categories in videos. Fine-grained
action recognition is an important subfield of action recognition. It focuses on identifying
fine-grained actions from coarse-grained activities and includes research tasks from various
coarse-grained activities, e.g., cooking [2], baseball [3], diving [4], table tennis [5], etc. The
tea ceremony has profound cultural connotations and elegant fine-grained actions, which
bring new challenges to fine-grained action recognition. Tea ceremony action recognition
is a new task in the research area of fine-grained action recognition, opening up new
application scenarios for this research area. In general, tea ceremony action recognition
has a wide range of applications, e.g., tea ceremony robots, smart education about the tea
ceremony, promotion of tea culture, etc. These applications of the research results on tea
ceremony action recognition can enrich cultural experiences, improve operational efficiency,
and foster connections between people and their cultural heritage.

In recent years, with the vigorous development of deep learning models [6–8], the field
of video action recognition has made significant progress and breakthroughs. Although
these methods have made impressive progress on datasets like HMDB51 [9], UCF101 [10],
and Kinetics-400 [11], they only address a portion of the challenges in the field of action
recognition. One limiting factor is that most existing action recognition datasets primarily
focus on coarse-grained action categories, e.g., playing basketball, making tea, etc. This
causes a gap for many practical applications that require fine-grained action analysis.
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As shown in Figure 1, different tea ceremony actions show high similarity. In general,
tea ceremony action recognition confronts two primary challenges, i.e., low inter-class
variation and strong temporal dependencies. Specifically, there is low variation between
the classes of tea ceremony actions, as the differences between these actions are mainly
reflected in the interactions between hands and tea utensils. Moreover, the occurrence
sequence, duration, and transitions between tea ceremony actions are closely related in the
temporal domain. As shown in Section 5.6, these two challenges make the experimental
performance of existing methods relatively low. In addition, there is a lack of publicly
available datasets for tea ceremony action recognition, which hinders research in the field
of tea ceremony action recognition.

Figure 1. Examples of tea ceremony actions with high similarity.

To address the above issues, a fine-grained video dataset for the task of tea ceremony
action recognition is constructed, which is named Fine-grained Tea (FineTea). To the best
of our knowledge, FineTea is the first video dataset specifically designed for the fine-
grained recognition task of tea ceremony actions. Unlike existing datasets, the FineTea
dataset is hierarchically subdivided into tea ceremony activities based on verb attributes,
and it encompasses a large number of videos and diverse action categories. This dataset
comprises 2745 video clips. By using a hierarchical fine-grained action classification method,
these video clips are categorized into 9 basic action classes and 31 fine-grained action
subclasses. Additionally, the action features of participants performing the same type of tea
ceremony activity are highly consistent across different video clips. This consistency makes
it challenging to assess the generalization ability of models using the conventional random
split of training and testing datasets. Therefore, a non-repeating occurrence algorithm
based on dynamic programming is designed that divides the dataset into two sets at a ratio
of about 50%: namely, set 1 and set 2. To mitigate potential biases caused by a particular
split of the data, a two-fold cross-validation strategy is employed in our experiments.
Consequently, two splits of the dataset are obtained: denoted as split 1 and split 2. In split
1, set 1 is used for training, and set 2 is used for testing. Conversely, in split 2, set 2 is
utilized for training, and set 1 is utilized for testing. So the percentages of training and
testing data are about 50% each. Four state-of-the-art action recognition methods [12–15]
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are evaluated on the FineTea dataset, and the experimental results demonstrate that the
dataset is challenging.

Based on the ConvNeXt [16] architecture, a fine-grained action recognition method
named TSM-ConvNeXt is proposed as a benchmark method for the FineTea dataset. TSM-
ConvNeXt achieves strong capabilities for spatiotemporal modeling by employing a high-
performance convolutional neural network as the model backbone and introducing a
temporal shift module (TSM) [17] to model temporal information in videos. On the
FineTea dataset, TSM-ConvNeXt obtains a 7.31% improvement over the baseline TSM
method [17]. Compared with the state-of-the-art action recognition methods, the proposed
TSM-ConvNeXt achieves the best experimental results on the FineTea and Diving48 datasets.
The main contributions are summarized as follows.

1. FineTea is built as the benchmark dataset for the task of fine-grained action recognition
and includes high-quality and fine-grained annotations. The FineTea dataset is
publicly available at https://github.com/Changwei-Ouyang/FineTea (accessed on
27 August 2024).

2. For fine-grained action recognition, the TSM-ConvNeXt network is designed to
enhance temporal modeling capability. The proposed TSM-ConvNeXt achieves better
performance than the baseline methods. Moreover, TSM-ConvNeXt obtains the best
experimental results on the FineTea and Diving48 datasets.

2. Related work
2.1. Coarse-Grained Action Recognition Datasets

Datasets are essential for the success of deep learning methods, so researchers are
working hard to create higher-quality datasets. Although each dataset has its specific
motivation, their common goal is to provide a unified evaluation standard, which in turn
promotes the development of the related fields. Early datasets can be traced back to
KTH [18] and Weizmann [19], followed by more challenging datasets such as HMDB51,
UCF101, Kinetics, ActivityNet [20], and a series of other datasets [21,22]. Although these
datasets have made significant progress in providing class labels, they are still limited
to coarse-grained action categories, such as playing basketball or making tea. In coarse-
grained datasets, neural network models often learn features that are not the action itself
but the background context, which may lead to the network model’s lack of focus on the
action itself. So the generalization ability of the model is reduced. In [23], the TSN model
achieved an accuracy of 85% on the UCF101 dataset using only three frames in training.
This suggests that models are easily affected by the learning of background features when
using coarse-grained datasets for video action recognition. Therefore, there is an urgent
need to create more challenging fine-grained datasets to further promote research and
development in the field of action recognition.

2.2. Fine-Grained Action Recognition Datasets

To enable action recognition methods to focus more on action motion and temporal
context information, researchers have tried to construct datasets for fine-grained action
recognition. For example, Rohrbach et al. [2] annotated the individual steps of various
cooking behaviors, defined the verb part of the action as the fine-grained action category,
such as “cut” for the action of cutting carrots, and constructed the MPII Cooking dataset.
Goyal et al. [24] collected everyday human–object interactions, such as putting down objects
or picking up objects from somewhere, and built the Something–Something V1 dataset.
Based on the combination of four action attributes, Li et al. [4] collected 48 fine-grained
diving action videos and established the Diving48 dataset. Shao et al. [25] focused on
collecting fine-grained action videos from gymnastics competitions and constructed two
versions of fine-grained action recognition datasets for gymnastics. Piergiovanni et al. [3]
constructed the MLB-YouTube dataset by collecting videos of various fine-grained baseball
actions such as hit, strike, swing, and foul. Martin et al. [5] recorded videos of table tennis
matches between 17 different players in real-world environments, annotated fine-grained

https://github.com/Changwei-Ouyang/FineTea
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table tennis actions such as the serve forehand sidespin and the serve backhand backspin,
and built a fine-grained table tennis action recognition dataset.

A comprehensive comparison between the proposed FineTea dataset and other fine-
grained action recognition datasets is presented in Table 1. In this table, “Number of
classes” refers to the number of action categories in the corresponding dataset. “Number of
clips” indicates the number of video clips in each dataset. “Video source” represents the
origin of the video clips: for example, “Self-collected” means that the videos were recorded
by the creators of the dataset, while “Major League Baseball” and “Diving competition”
indicate that the videos were obtained from baseball and diving events, respectively. In
contrast to these datasets, FineTea has the following characteristics. First, FineTea contains
more complex hand gestures, which causes new challenges for action recognition methods.
Second, FineTea adopts a unique non-repeating appearance split strategy to ensure that
participants’ videos in the same action category do not appear in both the training set and
testing set simultaneously. Third, based on expert knowledge, a unified standard is applied
to annotate all categories, and cross-checking is carried out to ensure the accuracy and
consistency of annotations.

Table 1. Comparison of relevant datasets.

Dataset Field Number of Classes Number of Clips Video Source

MPII Cooking [2] Cooking 67 5609 Self-collected
MLB-YouTube [3] Baseball 9 4290 Major League Baseball

Diving48 [4] Diving 48 18,404 Diving competition
TTStroke-21 [5] Table tennis 21 1154 Self-collected

FineTea Tea ceremony 31 2745 Self-collected

2.3. Action Recognition Methods

The task of video action recognition aims to recognize human actions in a video.
Due to its wide range of applications in the real world, researchers have explored
this area extensively in the past few decades, with techniques developing from early
hand-crafted feature methods to deep learning models [26,27]. Early attempts included
DeepVideo [28], which was the pioneering work that first applied convolutional neural
networks to video content understanding. Subsequently, the Two-Stream Network [29]
started a new direction by training convolutional neural networks on the optical flow
stream as a second path to capture the temporal information in videos. The Two-Stream
Network method surpassed traditional hand-crafted feature methods and established the
groundwork for subsequent research. Based on this study, many innovative methods
have emerged, such as Fusion [30], TSN [23], TSM [17], etc. However, optical-flow-based
methods have the problem of high computational cost, which prompted researchers to
design 3D convolutional structures to better capture temporal features and semantic
information in videos; examples include I3D [31], Non-local [32], and SlowFast [33]. With
the success of the Transformer model, which is based on a self-attention mechanism, in
the fields of natural language processing and image recognition, researchers in the field
of video action recognition have started to explore the application and development of
Vision Transformers (ViTs) [34]. TimeSformer [12] extended the self-attention mechanism
to the temporal dimension by incorporating spatiotemporal modules into the ViT model
so that the model can handle spatiotemporal information in videos. Currently, methods
based on Transformer structures have achieved state-of-the-art results on most video action
recognition datasets.

3. FineTea Dataset

The goal of the FineTea dataset is to create a challenging benchmark with high-quality
annotations and with a particular focus on tea ceremony actions. This dataset includes
three types of tea ceremony activities, i.e., the green tea activity, the black tea activity,
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and the oolong tea activity. The green tea activity consists of 8 fine-grained actions that
require participants to use a glass cup to brew green tea with relatively simple steps. The
black tea activity consists of 10 fine-grained actions that require participants to brew black
tea using the bowl-covering method. The oolong tea activity involves 13 fine-grained
actions and requires participants to use the double-cup technique to brew oolong tea. In
total, the FineTea dataset includes 3 types of tea ceremony activities, 9 basic actions, and
31 fine-grained actions, as shown in Figure 2.

Figure 2. An overview of the actions in the FineTea dataset.

3.1. Video Collection

In the process of collecting tea ceremony action videos, a total of 18 volunteers
participated for the recording of the videos. These volunteers completed a tea ceremony
course, and their tea ceremony skills range from a beginner level to that of amateur
tea artists. This varying skill level among the volunteers enables the FineTea dataset to
incorporate actions spanning different skill levels for the tea ceremony, thereby making it
a particularly challenging dataset. The process includes three categories of tea ceremony
activities, i.e., brewing green tea, brewing black tea, and brewing oolong tea. Before starting
the process, these participants were instructed on examples of tea ceremony actions. This
ensured that they could accurately perform and complete each tea ceremony action.

The recording process followed a strict procedural flow to ensure the accuracy and
consistency of data collection. The experimental paradigm is described as follows. First, a
volunteer places the phone stand 1 m in front of the participant and adjusts the angle to
ensure that all action details appear completely in the video. Second, to precisely capture
valid action data, the recording begins after the participant takes a seat at the tea table and



J. Imaging 2024, 10, 216 6 of 17

makes a ready gesture, and recording ends when the “serve tea” action is completed and
excludes the last tea-tasting session. Third, the entire recording time for the tea ceremony
activities is approximately 4 to 9 min. Each participant conducts several sessions for the tea
ceremony action collection.

Altogether, the participants generated a total of 272 long videos covering three types
of tea ceremony activities. The total duration of these videos exceeds 1185 min, which
is equivalent to about 2,133,000 frames. These videos were recorded in a tea ceremony
classroom. The resolution of these videos is 1280 × 720 pixels, and the frame rate is
30 frames per second.

3.2. Annotation

After completing the process of video recording, a series of steps were taken to annotate
these videos. According to the type of tea (i.e., green tea, black tea, or oolong tea), we
put the 272 long videos into three tea-level folders, each of which includes videos about a
specific tea ceremony activity. Then, videos in each tea-level folder were annotated in detail
according to the established fine-grained actions in the corresponding tea ceremony activity.
After annotating all of the long videos, we obtained a total of 2745 video clips. Based on
the results of the annotations, these video clips were divided into 31 fine-grained actions.

Table 2 reports the statistics of the FineTea dataset. As shown in this table, the number
of clips for each fine-grained action may be different. The main reasons for this phenomenon
are as follows. First, some fine-grained actions are repeated twice in a tea ceremony activity,
e.g., “Infuse the black teacup with hot water”, “Pour the black tea into the fair cup”, etc.
Second, some video clips were discarded because the volunteers’ fine-grained actions in
these clips did not meet the standards of the corresponding tea ceremony activity.

Table 2. Statistics of the FineTea dataset.

ID Action Number of Clips Tea Ceremony Activity

1 Rinse the cover bowl 99 Black tea
2 Rinse the black teacup 81 Black tea
3 Present the black tea 98 Black tea
4 Place the black tea leaves 97 Black tea
5 Swirl the black teacup 88 Black tea
6 Pour out the water from the black teacup 82 Black tea
7 Infuse the black teacup with hot water 163 Black tea
8 Pour the black tea into the fair cup 136 Black tea
9 Distribute the black tea soup among the black teacups 86 Black tea

10 Serve the black tea 99 Black tea
11 Flip over the glass cup 91 Green tea
12 Rinse the glass cup 92 Green tea
13 Present the green tea 86 Green tea
14 Place the green tea leaves 90 Green tea
15 Pour water into the glass cup 79 Green tea
16 Swirl the glass cup 54 Green tea
17 Infuse the glass cup with hot water 90 Green tea
18 Serve the green tea 89 Green tea
19 Flip over the smelling cup 76 Oolong tea
20 Flip over the tasting cup 76 Oolong tea
21 Rinse the teapot 76 Oolong tea
22 Rinse the fair cup 76 Oolong tea



J. Imaging 2024, 10, 216 7 of 17

Table 2. Cont.

ID Action Number of Clips Tea Ceremony Activity

23 Rinse the smelling cup 76 Oolong tea
24 Rinse the tasting cup 75 Oolong tea
25 Present the oolong tea 72 Oolong tea
26 Place the oolong tea leaves 72 Oolong tea
27 Infuse the teapot with hot water 147 Oolong tea
28 Pour out the water from the tasting cup 76 Oolong tea
29 Pour the oolong tea into the fair cup 72 Oolong tea
30 Distribute the oolong tea soup among the tasting cups 74 Oolong tea
31 Serve the oolong tea 74 Oolong tea

To ensure high-quality annotations of tea ceremony actions in each video, two specially
trained annotators were invited. They were familiar with the annotation standards and
methods for fine-grained action categories. The annotation tasks were to determine the
starting frame and the ending frame of each action instance in the videos and to assign
the corresponding action labels. The EIVideo tool (https://github.com/PaddlePaddle/
PaddleVideo/tree/develop/applications/EIVideo, accessed on 27 August 2024) was
utilized to annotate these videos; it is an interactive intelligent video annotation toolbox
provided by the Baidu PaddlePaddle platform. By using this tool, the annotators rapidly
previewed the video content, precisely located the starting and ending frames of the
action instances in the video timeline, and assigned the respective action labels. This
interactive strategy not only improves annotation precision but also reduces the potential
for mislabeling and the time required. To ensure the accuracy and consistency of the
annotation results, the two annotators cross-checked each other’s annotation results.

3.3. Dataset Split

After analyzing the characteristics of tea ceremony actions in the dataset, a common trend
is observed: that is, the action characteristics of participants exhibit high consistency when they
perform the same type of tea ceremony actions in different video clips. This raises a crucial
concern that neural network models might tend to take shortcuts during the learning process
and rely on features unrelated to the actions themselves. These features may be contextually
irrelevant background information such as clothing or appearance in videos. This could
potentially impact the generalization ability of networks across different environments.

To better evaluate the generalization performance of network models, it is crucial to
ensure that video clips of the same participant performing the same tea ceremony action
do not simultaneously appear in both the training set and the testing set. Therefore, a non-
repetition algorithm based on dynamic programming for dataset splitting was designed to
implement two types of splits. The algorithm includes the following steps. First, for each
category of tea ceremony fine-grained actions, all data are aggregated in the action-level
folders, each of which contains videos about a specific fine-grained action. The number
of participants and the number of their corresponding video clips are calculated. Second,
the video clips of each participant are regarded as an indivisible entity, and a dynamic
programming algorithm is utilized to combine videos with different participants at a ratio
of about 50%. Third, based on the partitioning results, these videos are assigned to either
the training set or the testing set.

Therefore, two distinct sets are generated for model training and testing. Table 3 shows
the statistics of the two sets. A two-fold cross-validation strategy is employed to obtain
two distinct splits, denoted as split 1 and split 2. In split 1, set 1 is used for training and
set 2 is used for testing. Conversely, in split 2, set 2 is used for training and set 1 is used
for testing.

https://github.com/PaddlePaddle/PaddleVideo/tree/develop/applications/EIVideo
https://github.com/PaddlePaddle/PaddleVideo/tree/develop/applications/EIVideo


J. Imaging 2024, 10, 216 8 of 17

Table 3. Statistics of the two sets in the FineTea dataset.

Set Tea Ceremony Activity Number of Clips Total

Set 1
Green Tea 331

1378Black Tea 530
Oolong Tea 517

Set 2
Green Tea 340

1367Black Tea 499
Oolong Tea 528

4. Proposed Method

In this section, the proposed method for action recognition is detailed. First, the
backbone network ConvNeXt is introduced in Section 4.1. Following that, Section 4.2
presents the temporal shift module. Finally, the network architecture of the TSM-ConvNeXt
model is illustrated Section 4.3.

4.1. ConvNeXt Backbone

The ConvNeXt network is an efficient convolutional neural network with a structural
design similar to the Swin Transformer network [35] and ResNet [6]. To introduce
the ConvNeXt block more clearly, Figure 3 shows a comparison between the ResNet
Block and ConvNeXt Block. As shown in this figure, compared to the traditional
ResNet block, the ConvNeXt block utilizes depth-wise convolution (DWConv) with larger
kernels. Additionally, it uses fewer regularization and activation functions, replacing the
Batch Normalization (BN) layer [36] and ReLU with a LayerNorm layer [37] and GELU,
respectively. This design transforms the architecture of ConvNeXt into a convolutional
neural network with the style of a Transformer.

7×7 DWConv

1×1 Conv

1×1 Conv

LayerNorm

GELU

1×1 Conv

3×3 Conv

1×1 Conv

BN
ReLU

BN
ReLU

BN

ReLU

(a) ResNet Block (b) ConvNeXt Block

Figure 3. A structural diagram of the ResNet [6] block and ConvNeXt [16] block.

In order to adapt to different tasks, the ConvNeXt network provides various
variants with different scales. Among them, ConvNeXt-T, ConvNeXt-S, ConvNeXt-B,
and ConvNeXt-L respectively correspond to Swin-T, Swin-S, Swin-B, and Swin-L in the
Swin Transformer network. According to the experimental results in [16], ConvNeXt-B
achieves a recognition accuracy of 83.8% on the ImageNet dataset [38], and the performance
of the corresponding ConvNeXt models surpasses that of Swin Transformer networks.
With its concise and efficient structural design and outstanding performance, ConvNeXt
demonstrates significant potential for applications in the field of video content analysis.

4.2. Temporal Shift Module

The temporal shift module (TSM) is a critical component designed specifically for
video content analysis [17]. The primary purpose of the TSM is to capture temporal
information within video sequences. The TSM achieves this by performing shift operations
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on input features along the temporal dimension. This introduces variations in the temporal
domain. So the spatiotemporal model of a video can be built by integrating the TSM into
two-dimensional convolutional neural networks (2D CNNs).

When applied to the fine-grained action recognition task for tea ceremony actions, the
TSM introduces temporal variations between adjacent frames by using the bidirectional
channel shifts in the 2D CNNs. This enables the establishment of a model with specific
time information for tea ceremony actions.

4.3. TSM-ConvNeXt

To establish a fine-grained temporal model for tea ceremony actions, a fine-grained
action recognition method based on the ConvNeXt network, named TSM-ConvNeXt, is
proposed as the benchmark method for the FineTea dataset. By using the high-performance
ConvNeXt-B as the backbone and introducing the TSM to model temporal information in
videos, the TSM-ConvNeXt method can build a stronger spatiotemporal model with lower
computational cost. The overall framework of the network is depicted in Figure 4. The
sampled video frames are input into a 2D convolution layer with a 4 × 4 kernel. There are
four stages in TSM-ConvNeXt. The number of blocks stacked in each stage is 3, 3, 27, and
3, respectively. Between two consecutive stages, a downsampling module is utilized to
double the number of channels (i.e., C) and reduce the spatial dimensions (i.e., H and W) by
half. As shown in Figure 4c, the downsampling module includes a LayerNorm layer and a
convolutional layer with a kernel size of 2 × 2 and a stride of 2. The predictions of action
categories are obtained by using a global average pooling layer and a classification layer.

Figure 4. The overall hierarchical architecture of TSM-ConvNeXt.

According to [17], directly inserting the TSM into the model may shift some channels
to adjacent frames, which renders the feature information in those channels unavailable
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for the current frame and severely compromises the spatial feature learning ability of the
model. Inspired by [17], a strategy is employed to shift only a portion of the channels. The
degree of channel shifting is controlled by a shift proportion parameter. Considering the
residual connection block structure of the ConvNeXt block, the TSM block is placed before
the DWConv layer in the ConvNeXt block.

The TSM-ConvNeXt block contains a TSM block, a DWConv layer with a 7 × 7 kernel,
a LayerNorm layer, and a MultiLayer Perceptron (MLP) module. The MLP module consists
of a fully connected (FC) layer for upsampling, a GELU activation function, and an FC layer
for downsampling. Let Xin ∈ RT×C×H×W be the input tensor, where T is the number
of sampled video frames, H and W are the height and width, respectively, and C is
the number of feature channels. After the DWConv layer, the tensor’s dimensions are
permuted to T × H ×W × C, which allows the fully connected layer to operate along the C
dimension. Before the residual connection, the dimensions of the tensor are rearranged back
to T × C × H ×W, thereby ensuring consistency between the input and output dimensions
of the module. The output tensor after the ConvNeXt block Xout ∈ RT×C×H×W can be
obtained as follows.

X1 = LayerNorm(DWConv(TSM(Xin))) (1)

Xout = Xin + s ⊗ MLP(X1) (2)

where LayerNorm(·) is the function of the LayerNorm layer, DWConv(·) is the function of
the DWConv layer, TSM(·) is the function of the TSM block, ⊗ is the element-wise product,
s ∈ RC is a learnable parameter for scaling the feature map, and MLP is the function of the
MLP block.

5. Experiment
5.1. Dataset

To evaluate the proposed method, extensive experiments were conducted on two
fine-grained action recognition datasets: FineTea and Diving48 [4]. The FineTea dataset
was introduced in Section 3. Regarding the evaluation, the performances of the different
methods on this dataset were evaluated by using a two-fold cross-validation strategy.
The average recognition accuracy was obtained by averaging the experimental results of
the two splits, and it was used for performance comparisons between different methods.
The Diving48 dataset is a large-scale fine-grained action recognition dataset containing
48 diving action categories. According to the standard experimental process [4], we used
approximately 15 k videos to train networks and 2 k videos to test the trained models, and
we reported the Top-1 accuracy.

5.2. Experimental Setup

The pre-trained weights of ConvNeXt on the ImageNet dataset are used as the initial
weights of the model. Then, the parameters are optimized to effectively reduce the training
time, and the performance of the model is improved for the task of fine-grained action
recognition. RGB frames are used as the input of the model.

In the experiments, the video data require a series of preprocessing steps before being
input into the network for training. The video frames are sampled by using a sparse
sampling strategy. Specifically, for an input video, the video is divided into K segments
on average, and then one frame is randomly sampled from each segment of the video.
Regarding the training of the network, the data augmentation strategy consistent with the
TSM method [17] is adopted. Specifically, the frame is first cropped to a width of 256 pixels,
and then the size is adjusted to 224 × 224 pixels using multi-scale cropping and center
cropping strategies. A flipping operation with a probability of 0.5 is performed. The SGD
optimizer is used to train the network model. The learning rate is set to 0.01, the weight
decay is 1 × 10−4, the momentum parameter is 0.9, and the learning rate is reduced ten
times in the twentieth and fortieth epochs. The total number of epochs is 50. For the FineTea
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dataset, 8 frames are uniformly sampled, and the batch size is fixed to 8. Regarding the
Diving48 dataset, 32 frames are uniformly sampled, and the batch size is set to 4. In the
testing stage, only the center cropping strategy is performed.

5.3. Comparison with the Baseline Method

In this section, a comparison experiment is conducted to verify the effectiveness of the
TSM-ConvNeXt method. The TSM method [17] with ResNet50 as the backbone network is
selected as the baseline method. The pre-trained weights on the ImageNet dataset are used
as the initial weights for both methods. To ensure a fair comparison, these methods utilize
the same hyperparameters as introduced in Section 5.2. Moreover, the shift proportion
parameter of TSM-ConvNeXt is empirically set to 1/8.

These methods are trained on the two splits of the FineTea dataset, i.e., split 1 and split
2. The loss curves are shown in Figure 5, where the horizontal axis is the number of epochs
and the vertical axis is the loss value. As shown in this figure, TSM-ConvNeXt converges
faster than the baseline method and reaches a lower loss value at convergence.

Figure 5. Comparison of training loss curves.

The experimental results are shown in Table 4. Compared to the baseline method,
the results of TSM-ConvNeXt are improved by 4.53% and 10.09% for split 1 and split 2,
respectively. The average recognition accuracy is improved by 7.31%. This demonstrates
that TSM-ConvNeXt obtains a significant performance improvement over the baseline
method for the task of fine-grained action recognition of tea ceremony actions. Moreover, a
superior backbone can give the model a stronger temporal representation learning ability,
thereby improving the performance of the model in downstream tasks.

Table 4. Comparison between TSM-ConvNeXt and the baseline method.

Method Backbone Pre-Train
Accuracy/%

Split 1 Split 2 Average

Baseline [17] ResNet50 ImageNet 51.65 64.37 58.01
TSM-ConvNeXt ConvNeXt-B ImageNet 56.18 74.46 65.32

5.4. Selection of the Hyperparameter

As introduced in Section 4.3, the shift proportion parameter has a critical impact on
the performance of the model, as it controls the amount of channel shift in the temporal
dimension of the TSM. To find the appropriate value of this parameter, ablation experiments
are performed. The shift proportion parameter is set to 1/8, 1/4, or 1/2. The results on
the FineTea dataset are shown in Table 5. For a fair comparison, only the shift proportion
parameter is changed in these experiments; the other parameters for these three methods
remain unchanged.



J. Imaging 2024, 10, 216 12 of 17

Table 5. Results of TSM-ConvNeXt method with different parameter on the FineTea dataset.

Shift Proportion Parameter
Accuracy/%

Split 1 Split 2 Average

1/8 56.18 74.46 65.32
1/4 59.69 76.42 68.06
1/2 45.72 67.27 56.50

As shown in Table 5, the TSM-ConvNeXt method achieves the best experimental
results on both split 1 and split 2 when this parameter is set to 1/4. This indicates that
when this parameter is set too high, too much information is lost for the current video
frame, which can damage the spatial feature learning ability of the network. Based on
the analysis of the above results, when this parameter is set to 1/4, the model can better
learn the temporal features of fine-grained actions in tea ceremony actions. Therefore, this
parameter is fixed to 1/4 in the next experiments.

5.5. Ablation Experiments

To further validate the effectiveness of the proposed TSM-ConvNeXt method, we
conducted ablation experiments on the FineTea dataset. The experimental results are
shown in Table 6, where ”ConvNeXt” is the method without the TSM module. To make a
fair comparison, all experiments in this section follow the same experimental setup.

Table 6. Ablation experiments on the FineTea dataset.

Method Backbone Pre-Train
Accuracy/%

Split 1 Split 2 Average

ConvNeXt ConvNeXt-B ImageNet 57.28 75.76 66.52
TSM-ConvNeXt ConvNeXt-B ImageNet 59.69 76.42 68.06

As shown in this table, the TSM-ConvNeXt method obtains better experimental results
than ConvNeXt on both split 1 and split 2 of the FineTea dataset. The experimental results
partly demonstrate that incorporating the TSM enhances the temporal modeling capabilities
of the network, thereby improving its performance in fine-grained action recognition tasks.

5.6. Comparison with State-of-the-Art Methods
5.6.1. Comparison on the FineTea Dataset

In this section, four state-of-the-art action recognition methods (i.e., TimeSformer [12],
VideoSwin [13], VideoMAE [14], and AIM [15]) are used to test the performance of fine-
grained action recognition on the FineTea dataset. To compare in a relatively fair way,
backbone networks with parameters equivalent to those of ConvNeXt-B are selected for
these methods: namely, ViT-Base [34] and Swin-Base [35]. For the TimeSformer method,
the space-only model [12] is selected for testing.

Regarding implementation, the MMAction toolbox [39] is utilized to carry out the
experiments using TimeSformer and VideoSwin, and their official codes are used to conduct
the experiments using VideoMAE and AIM. For TimeSformer, VideoSwin, and AIM,
the training epochs are uniformly set to 50. VideoMAE is a self-supervised learning
method, which usually requires more epochs to train the model. So the training epochs
for VideoMAE are set to 300. As shown in Table 7, the parameters of the four methods are
set according to the original settings. During the testing stage, all methods do not perform
additional operations except for sampling the specified video frames.
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Table 7. Experimental parameters of the state-of-the-art methods.

Parameter TimeSformer [12] VideoSwin [13] VideoMAE [14] AIM [15]

Optimizer SGD AdamW AdamW AdamW
Optimizer momentum 0.9 β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999

Weight decay 1 × 10−4 0.05 0.05 0.05
Learning rate 5 × 10−3 1 × 10−3 5 × 10−4 3 × 10−4

Batch size 8 2 4 4

The experimental results are shown in Table 8, where “TSM-ConvNeXt8” indicates the
TSM-ConvNeXt method that samples 8 frames as model input, and “TSM-ConvNeXt16” is
the TSM-ConvNeXt method that samples 16 frames. As shown in this table, among the
four methods, TimeSformer obtains better experimental result than the others on split 1,
AIM obtains the best result on split 2, and VideoSwin achieves the best average recognition
accuracy. Compared with TimeSformer, which also samples 8 frames, TSM-ConvNeXt8
improves the average recognition accuracy by 2.9%. Compared with VideoSwin, which has
the best performance among the four methods, the average accuracy of TSM-ConvNeXt8
is 2.82% higher than that of VideoSwin. Moreover, the performance of TSM-ConvNeXt is
further improved when the method samples 16 frames. In summary, the proposed TSM-
ConvNeXt obtains the best experimental results for the fine-grained action recognition task
of tea ceremony actions.

Table 8. Comparison with the state-of-the-art methods on the FineTea dataset.

Method Backbone Pre-Train Parameter/M Epoch Frames
Accuracy/%

Split 1 Split 2 Average

TimeSformer [12] ViT-B ImageNet-21K 86 50 8 56.40 75.91 65.16
VideoSwin [13] Swin-B ImageNet 88 50 32 54.50 75.98 65.24
VideoMAE [14] ViT-B Kinetics-400 88 300 16 38.45 60.23 49.34

AIM [15] ViT-B CLIP 97 50 16 51.50 77.36 64.43
TSM-ConvNeXt8 ConvNeXt-B ImageNet 88 50 8 59.69 76.42 68.06
TSM-ConvNeXt16 ConvNeXt-B ImageNet 88 50 16 62.69 80.12 71.41

5.6.2. Comparison on the Diving48 Dataset

To further validate the effectiveness of the proposed TSM-ConvNeXt method,
experiments were conducted on the Diving48 dataset. The experimental results are shown
in Table 9. On the Diving48 dataset, the proposed TSM-ConvNeXt method achieves higher
recognition accuracy than other CNN-based methods. Compared to the Transformer-
based methods that use the same pre-trained weights, the proposed TSM-ConvNeXt
method also obtains better performance than TimeSformer-L and RPE-STDT. In conclusion,
TSM-ConvNeXt achieves better experimental performance than the other methods on the
Diving48 dataset.

Table 9. Comparison with the state-of-the-art methods on the Diving48 dataset.

Method Backbone Pre-Train Accuracy/%

CAMA-Net [40] ResNet101 ImageNet 76.9
STC [41] ResNet50 ImageNet 77.9

AIA(TSM) [42] ResNet50 ImageNet 79.4
TimeSformer-L [12] ViT-B ImageNet 81.0

TQN [43] S3D [44] Kinetics-400 81.8
RPE-STDT [45] ViT-B ImageNet 81.8

RSANet-R50 [46] ResNet50 ImageNet 84.2
TSM-ConvNeXt ConvNeXt-B ImageNet 85.5
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5.7. Comparison of Training and Testing Times

To evaluate the efficiencies of different methods, we conducted experiments on split
1 of the FineTea dataset. Table 10 reports the training and testing times of five methods,
i.e., TimeSformer, VideoSwin, AIM, TSM-ConvNeXt8, and TSM-ConvNeXt16. Note that
in this table, the training time is measured in hours, and the testing time is measured
in seconds. For a fair comparison, all methods are trained for 50 epochs, and only one
NVIDIA Tesla V100 GPU is used. As shown in this table, AIM has the lowest training
time because it has the fewest tunable parameters [15]. Although the proposed TSM-
ConvNeXt16 method requires longer training and testing times than AIM, it obtains a
significant performance improvement. In conclusion, TSM-ConvNeXt achieves a balance
between time cost and accuracy.

Table 10. Comparison of training and testing times on split 1 of the FineTea dataset.

Method Frames Training Time/h Testing Time/s Accuracy/%

TimeSformer [12] 8 2.65 213 56.40
VideoSwin [13] 32 5.73 300 54.50

AIM [15] 16 2.08 87 51.50
TSM-ConvNeXt8 8 2.23 86 59.69
TSM-ConvNeXt16 16 3.45 129 62.69

5.8. Analysis and Discussion

To further analyze the fine-grained recognition of tea ceremony actions, the confusion
matrices of the proposed TSM-ConvNeXt16 on split 1 and split 2 are shown in Figure 6. The
figure visualizes the recognition results of the 31 actions contained in the FineTea dataset.
The number of samples in the testing sets of split 1 and split 2 is not the same, so the
number of instances of each action is also different. By jointly analyzing the two confusion
matrices, it can be found that actions with ID values of 11, 12, 13, 14, 15, 17, and 18 achieve
good recognition results. These seven actions are all green tea activities. This partly shows
that the fine-grained action recognition for the green tea ceremony is relatively easy, and
the fine-grained action recognition for the black tea and oolong tea ceremonies is more
challenging. In terms of confused actions, action 9 is easily confused with action 2, action
21 is easily confused with action 27, and action 22 and action 29 are easily confused with
each other.

Figure 6. Confusion matrices for the test sets of the two splits.

6. Conclusions

To promote the development of action recognition methods at the fine-grained level,
the FineTea dataset is constructed for fine-grained action recognition of tea ceremony
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actions. To better establish a fine-grained temporal model for tea ceremony actions, TSM-
ConvNeXt is proposed as the benchmark method for this dataset. Extensive experiments
are conducted on the FineTea and Diving48 datasets. The experimental results show that
TSM-ConvNeXt obtains better experimental results than the baseline method. Compared
with the state-of-the-art action recognition methods from recent years, the proposed method
achieves the best experimental results with a similar parameter size. For future research,
we will explore the design of lightweight fine-grained modules to improve the performance
of the method in the fine-grained action recognition task. Additionally, more videos of
fine-grained tea ceremony actions will be collected to expand the dataset.
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