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Abstract: Breast cancer is the most commonly diagnosed cancer worldwide. The therapy used and
its success depend highly on the histology of the tumor. This study aimed to explore the potential of
predicting the molecular subtype of breast cancer using radiomic features extracted from screening
digital mammography (DM) images. A retrospective study was performed using the OPTIMAM
Mammography Image Database (OMI-DB). Four binary classification tasks were performed: luminal
A vs. non-luminal A, luminal B vs. non-luminal B, TNBC vs. non-TNBC, and HER2 vs. non-HER2.
Feature selection was carried out by Pearson correlation and LASSO. The support vector machine
(SVM) and naive Bayes (NB) ML classifiers were used, and their performance was evaluated with the
accuracy and the area under the receiver operating characteristic curve (AUC). A total of 186 patients
were included in the study: 58 luminal A, 35 luminal B, 52 TNBC, and 41 HER2. The SVM classifier
resulted in AUCs during testing of 0.855 for luminal A, 0.812 for luminal B, 0.789 for TNBC, and
0.755 for HER2, respectively. The NB classifier showed AUCs during testing of 0.714 for luminal
A, 0.746 for luminal B, 0.593 for TNBC, and 0.714 for HER2. The SVM classifier outperformed NB
with statistical significance for luminal A (p = 0.0268) and TNBC (p = 0.0073). Our study showed the
potential of radiomics for non-invasive breast cancer subtype classification.

Keywords: breast cancer; molecular subtypes; radiomics; mammography; support vector machine;
naive Bayes; machine learning

1. Introduction

Breast cancer accounts for 32% of all new cancer diagnoses in 2024, making it the
most commonly diagnosed cancer in the world [1]. Among women, it accounts for 7%
of cancer deaths, surpassing lung cancer as the primary cause of cancer mortality [2]. To
decrease this high mortality rate, early detection and diagnosis are of high importance.
Numerous countries worldwide have breast cancer screening programs in which digital
mammography (DM) is the gold standard imaging [3]. To confirm the diagnosis of a
suspected lesion on DM, a core needle biopsy (CNB) is performed. This provides crucial
histological information regarding the tissue, necessary for classifying the breast cancer
type and tumor grade [4]. Based on the immunohistochemical (IHC) expression of hormone
receptors and the Ki67-antigen obtained from a CNB, breast cancer can be divided into
four different subtypes. The most commonly used subtypes of breast cancer are luminal
A (estrogen receptor positive (ER+), progesteron receptor positive (PR+) and human epi-
dermal growth factor receptor negative (HER2−)), luminal B (ER+, PR+/−, and HER2−),
HER2-positive (ER−, PR−, and HER2), and triple-negative breast cancer (ER−, PR−, and
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HER2−). The Ki-67 antigen is a marker for cancer proliferation. Classifying these subtypes
and obtaining their Ki-67 antigen reveals a strong association with variations in tumor
aggressiveness, therapeutic response, and prognosis [4–6]. Accurately classifying these sub-
types is therefore crucial for guiding treatment decisions and improving patient outcomes.
Despite the benefits, CNB has its drawbacks. The risks associated with the examination
include bleeding, hematoma, and infection [7]. Patients may also experience pain during
the procedure, and initial samples can be inconclusive, leading to additional biopsies.
Obtaining the additional samples can be complicated due to previously induced changes at
the biopsy site, potentially influencing the histopathologic evaluation. Furthermore, CNB
is a technique that is expensive and requires highly specialized resources for both collection
and analysis. These resources can be very scarce in less developed countries. However, the
main limitation during CNB is the limited sample size. Since the biopsy does not represent
the entire heterogeneity of the tumor volume, it does not capture the full extent of the
tumor [4]. To address these challenges, non-invasive techniques, such as liquid biopsy,
specifically circulating tumor DNA (ctDNA) analysis, and circulating tumor cells (CTCs),
have emerged as promising alternatives. ctDNA allows for the detection of tumor-specific
genetic alterations through a blood sample [8,9]. This offers a less invasive method for the
screening, real-time monitoring treatment response, and evaluation of disease progression
compared to CNB. However, ctDNA analysis has limitations, particularly in early stages of
breast cancer, where its sensitivity is relatively low compared to many other tests. Addition-
ally, the detection rate varies by breast cancer subtype [8]. A more accurate classification
of the subtypes can significantly contribute to advanced cancer treatments and improved
clinical outcomes. Radiomics plays an important role in addressing the constraints of the
CNB and other liquid biopsy techniques. It involves extracting quantitative, tumor-specific
information from medical images that is not visible to the human eye [10,11]. Unlike CNB
or ctDNA, radiomics can derive information about heterogeneity from an entire region of
interest (ROI) [12]. Additionally, the extraction of tumor region information directly from
the DM images makes this technique more cost-effective and accessible, particularly in less
developed countries.

Several studies have shown that radiomics extracted from contrast-enhanced spectral
mammography (CESM) shows the potential for non-invasively predicting breast cancer
subtypes [13–17]. In CESM, the injection of a contrast agent makes it an invasive proce-
dure, posing the risk of allergic reactions in patients. Furthermore, CESM is not the gold
standard for breast cancer screening. Therefore, it is of high importance to explore the
potential of using DM images for predicting breast cancer subtypes. Previous studies
have demonstrated the capability of predicting breast cancer subtypes based on radiomic
features extracted from DM images [18–22]. Table 1 provides a summary of these studies,
highlighting their investigations into breast cancer subtype prediction through radiomics.
Many existing studies rely on CESM as the imaging technique, involve small datasets, or
focus on predicting a single breast cancer subtype. In contrast, our study aims to predict
all molecular subtypes of breast cancer using a large database and DM images, which is a
widely available and the current gold standard imaging technique.

The purpose of this study was to investigate the potential of predicting the molecular
subtypes of breast cancer with the use of machine learning (ML) and radiomic features
extracted from screening DM images.
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Table 1. Overview of research on breast cancer subtype predictions with the use of radiomics.

Technique Purpose Findings

W. Ma [18] DM Luminal vs. non-luminal
TNBC vs. non-TNBC
HER2 vs. non-HER2

TNBC was differentiated from non-TNBC with an
AUC/accuracy of 0.865/0.796. HER2 could be distinguished
with an AUC/accuracy of 0.784/0.748 and the luminal type
0.752/0.788

J. Son [13] Synthetic DM Luminal vs. non-luminal
TNBC vs. non-TNBC
HER2 vs. non-HER2

The AUC, accuracy, sensitivity, and specificity for the TNBC
model were 0.838, 0.803, 0.833, and 0.797. For HER2, this re-
sulted in values of 0.556, 0.704, 0.111, and 0.790, respectively.
When distinguishing the luminal subtype, AUC, accuracy, sen-
sitivity, and specificity values of 0.645, 0.507, 0.440, and 0.667
were obtained.

J. Zhou [19] DM HER2 vs. non-HER2 The SVM classifier resulted in AUC, accuracy, sensitivity, and
specificity values of 0.740, 0.730, 0.688, and 0.609. The logis-
tic regression model resulted in AUC/ACC/SENS/SPEC of
0.787/0.770/0.688/0.739.

Y. Deng [20] DM HER2 vs. non-HER2 The AUC and accuracy of distinguishing HER2 vs. non-HER2
was 0.776 and 0.712 during testing. In the external validation set,
the AUC and accuracy was 0.702 and 0.700.

L. Wang [21] DM TNBC vs. non-TNBC Accuracy, sensitivity, and specificity values of 0.84, 0.81, and
0.78, respectively, were obtained.

Y. Zhang [14] CESM TNBC vs. non-TNBC Resulted in AUC, sensitivity, and specificity values of 0.90, 0.97,
and 0.69.

A. Petrillo [15] CESM HER2 vs. non-HER2 Tested accuracies, sensitivities, and specificities for the logistic
regression, CART, and Random Forest models. A combination
of features from CC and MLO showed the highest accuracies
of > 90% using a classification tree algorithm. For HER2 classifi-
cation, the best accuracies were obtained with an RF algorithm.

D. La Forgia
[16]

CESM Histological outcome Resulted in AUC values of
ER+/ER−: 0.838, PR+/PR−: 0.755, Ki67+/Ki67−: 0.848,
high-grade/low-grade: 0.799, TNBC/NTNBC: 0.768, and
HER2/HER2−: 0.909.

S. Zhu [17] CESM Luminal vs. non-luminal
TNBC vs. non-TNBC
HER2 vs. non-HER2

Showed AUC values during combined low energy and recom-
bined images during testing for luminal, HER2, and TNBC val-
ues of 0.93, 0.89, and 0.87, respectively. For the external dataset,
this resulted in AUC values of 0.82, 0.83, and 0.68 for luminal,
HER2, and TNBC, respectively.

S. Niu [23] DM, DBT, and
MRI

Intra- and peritumoral regions AUC values for distinguishing luminal A, luminal B, HER2,
and TNBC of 0.762, 0.757, 0.756, and 0.771 were obtained for
DM images.

S. GE [22] DM TNBC vs. non-TNBC Distinguishing TNBC vs. non-TNBC resulted in AUC, accuracy,
sensitivity, and specificity values of 0.809, 0.806, 0.720, and 0.801.

2. Materials and Methods
2.1. Database

A retrospective study based on the OPTIMAM Mammography Image Database (OMI-
DB) was performed [24]. This dataset contains screening DM images and patient data from
the United Kingdom breast cancer screening program within a time period of 2011 until May
2020. The entire database included information from 173,000 women, of which 10,000 were
normal cases; 5,500 and 800 were marked and unmarked as malignant, respectively; and
600 and 1000 were benign marked and unmarked, respectively. Based on the hormone
receptor status available in the database, the molecular subtypes were determined and
classified into groups (Table 2): luminal A, luminal B, TNBC, and HER2. Furthermore, the
database contained detailed image annotations made by expert radiologists regarding the
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tumor regions. These marks were used to provide accurate reference points for the tumor
locations. Images from different mammography equipment manufacturers were included.
The equipment manufacturers used was predominantly Hologic (Bedford, MA, USA)
(384 images), followed by Siemens (Siemens AG, Healthcare Sector, Erlangen, Germany)
(14 images), GE (Madison, WI, USA) (8 images), and Sectra (Sectra AB, Linköping, Sweden)
(7 images). The images all had 16-bit quantization with varying pixel sizes ranging from
0.0625 × 0.0652 mm to 0.1 × 0.1 mm.

Table 2. Immunohistochemical (IHC) expression and the subtype classification scheme applied
during this study.

ER PR HER2

Luminal A + + −
Luminal B + +/− −

TNBC − − −
HER2 − − +

2.2. In- and Exclusion Criteria

A flowchart of the in- and exclusion criteria is depicted in Figure 1. During this study,
all types of lesions, including masses, calcifications, architectural distortions, and asymme-
tries, were included. The inclusion criteria for the study were as follows: (I) malignantly
proven DM images; (II) determined hormone receptor status; and (III) annotated ROIs by
expert radiologists. Patients were excluded if they had the following: (I) missing image
data; (II) poor DM image quality, (III) breast implants; (IV) a DM image that could not be
segmented; or (V) incorrect image segmentation determined by a radiologist. Finally, a total
of 186 patients were included in the study, grouped as follows: 58 luminal A, 35 luminal B,
52 TNBC, and 41 HER2. The images were translated into a total of 413 images, including
cranio caudal (CC) and mediolateral oblique (MLO) views. Combining CC and MLO views
has shown improved classification performance [18,19]. The included images were divided
into a training set (70%) and a testing set (30%).

Figure 1. The in- and exclusion criteria flowchart used during this study.
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2.3. Tumor Segmentation

A visual presentation of the image segmentation process is shown in Figure 2. First,
we normalized the DM images to a scale of [0, 1]. After this DM image normalization,
breast lesions classified as ‘calcification’ underwent contrast enhancement, shown in
Figure 3. This process highlighted variations in pixel intensities, increasing the intensities
of calcification while minimizing those of surrounding breast tissue. Tumors classified
as ‘mass’ underwent lesion segmentation through a semi-automatic approach using the
region-growing algorithm [25]. The MaxDiff parameter was used to set the maximum
allowable difference in average pixel intensity among the segmented pixels. For both
segmentations, calcification and mass, the initial masks were refined in MATLAB (version
R2023b) with the Image Segmenting tool, after which, an expert breast radiologist with
over 30 years of experience reviewed 80 segmentations (19%) and confirmed, adjusted, or
excluded these segmentations.

Figure 2. The tumor segmentation process. Starting with normalization of the original DM image,
where breast lesions (red) classified as ‘calcification’ underwent image enhancement. Breast lesions
classified as ‘mass’ underwent segmentation using a region-growing algorithm. The segmenta-
tions were finalized with the use of the image segmenter tool from MATLAB to obtain the final
tumor segmentation.

(a) (b)
Figure 3. An example of image enhancement for a calcification region where (a) is the original DM
image and (b) is the enhanced image, making the calcification more pronounced.
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2.4. Radiomics Features

Radiomics features were extracted from the segmented images using Pyradiomics,
an open-source Python package (https://pyradiomics.readthedocs.io/en/latest/, version
3.1.0, accessed on 31 July 2024). A total of 107 features were extracted: 14 shape-based fea-
tures, 18 first-order statistics features, 24 gray-level co-occurrence matrix (GLCM) features,
16 gray-level run-length matrix (GLRLM) features, 16 gray-level size zone matrix (GLSZM)
features, 14 gray-level distance zone matrix (GLDZM) features, and 5 neighborhood gray-
tone difference matrix (NGTDM) features. Prior to their use in ML models, these features
were normalized using z-score normalization.

Feature selection was performed using Pearson’s correlation and Least Absolute
Shrinkage and Selection Operator (LASSO). Pearson’s correlation was used to pre-select
features, and the correlation threshold was set to 0.8. If the correlation coefficient between
two features exceeded this threshold, the feature with the highest mean absolute corre-
lation coefficient was removed to eliminate redundancy. When employing LASSO, the
hyperparameter lambda was tuned through ten-fold cross-validation. In cross-validation,
the model was trained and evaluated 10 times, each with a different subset as the test set.
Radiomic features with non-zero LASSO coefficients were selected for the model. Both
naive Bayes (NB) and support vector machine (SVM) classifiers were employed for the
classification tasks. During SVM classification, the optimal kernel (linear, sigmoid or radial)
was determined, and the cost parameter was tuned through ten-fold cross-validation.

Our study focused on four binary classification tasks: (1) luminal A vs. non-luminal A,
(2) luminal B vs. non-luminal B, (3) TNBC vs. non-TNBC, and (4) HER2 vs. non-HER2. The
dataset was randomly divided into a training set (70%) and a testing set (30%). To overcome
the problem of class imbalance in the training set, we applied the Synthetic Minority
Oversampling Technique (SMOTE), as was performed in previous studies addressing the
same problem for class imbalance [18,20]. SMOTE combines undersampling of the majority
class with oversampling of the minority class. The percentage of oversampling was set to
100% (balancing the training data to a 50–50% split).

2.5. Statistical analysis

Features selected by Pearson’s correlation were evaluated for statistical significance
(p < 0.05) using the Kruskal–Wallis test. Classification performance was assessed by area
under receiver operating characteristic curve (AUC) and accuracy. DeLong’s test was used
to compare the AUCs between the SVM and NB classifier.

All feature selection, model building, and statistical analysis were performed in
Rstudio (version 2023.09.0).

3. Results

The patients’ ages ranged from 47 to 79 years, with an average age at screening of
59.6 ± 6.9. The age variable was not tested for normality. A one-way ANOVA test showed
no statistically significant differences in age between the groups (p > 0.05).

3.1. Radiomic Features

The radiomic features were extracted based on the tumor segmentations, with ex-
amples shown in Figure 4. Two radiomic features, namely original_shape_Flatness and
original_shape_LeastAxisLength, were excluded due to yielding zeros during the feature
extraction process. Pearson correlation pre-identified 13, 14, 14, and 16 features for luminal
A, luminal B, TNBC, and HER2, respectively. All 16 features pre-selected by Pearson corre-
lation showed statistically significant differences between the subtypes. After using LASSO
for further feature selection, this resulted in a final set of 12, 10, 6, and 5 features for luminal
A, luminal B, TNBC, and HER2, respectively. The selected features and corresponding
LASSO coefficients are depicted in Figure 5.

 https://pyradiomics.readthedocs.io/en/latest/
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(a) (b) (c) (d)

Figure 4. Examples of breast tumor segmentations for (a) luminal A, (b) luminal B, (c) TNBC, and
(d) HER2.

(a) Luminal A vs. non-luminal A (b) Luminal B vs. non-luminal B

(c) TNBC vs. non-TNBC (d) HER2 vs. non-HER2

Figure 5. The selected radiomic features for (a) luminal A vs. non-luminal A, (b) luminal B vs.
non-luminal B, (c) TNBC vs. non-TNBC, and (d) HER2 vs. non-HER2 classification tasks.

3.2. Classification Performance

Table 3 shows the classification performance of the SVM and NB classifiers for the
testing set. As can be seen, AUCs in SVM classification ranged from 0.755 to 0.855, while
AUCs in NB classification ranged from 0.593 to 0.714. The corresponding ROC curves are
depicted in Figure 6. DeLong’s test revealed that the AUCs from SVM classification were
higher compared to the NB classifier, and statistically significant differences were observed
for luminal A (p = 0.027) and TNBC (p = 0.007). There were no significant differences found
for the luminal B (p = 0.273) and HER2 (p = 0.596) classification. The accuracy ranged from
0.581 to 0.815 for SVM classification and ranged from 0.484 to 0.750 for NB classification. In
SVM classification, higher accuracies were observed for luminal A and TNBC. For luminal
B and HER2 classification, the NB classifier showed greater accuracies.
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Table 3. Classification performance for SVM and NB classification tasks for the testing set.

SVM NB
Accuracy AUC Accuracy AUC

(95%-CI) (95%-CI)

Luminal A 0.815 0.855 0.726 0.714
(0.779–0.930) (0.616–0.812)

Luminal B 0.734 0.812 0.750 0.746
(0.736–0.889) (0.655–0.837)

TNBC 0.581 0.789 0.484 0.593
(0.701–0.878) (0.482–0.704)

HER2 0.637 0.755 0.718 0.714
(0.644–0.867) (0.608–0.819)

(a) Luminal A vs. non-luminal A (b) Luminal B vs. non-luminal B

(c) TNBC vs. non-TNBC (d) HER2 vs. non-HER2

Figure 6. The ROC curves of the SVM (blue) and NB (yellow) classifiers for (a) luminal A vs. non-
luminal A, (b) luminal B vs. non-luminal B, (c) TNBC vs. non-TNBC, and (d) HER2 vs. non-HER2.

4. Discussion

The aim of this study was to explore the potential for non-invasively predicting breast
cancer subtypes using screening DM images. Four binary classification tasks (luminal
A vs. non-luminal A, luminal B vs. non-luminal B, TNBC vs. non-TNBC, and HER2 vs.
non-HER2) were designed, and two ML classifiers were used, the SVM and NB classifiers.

Previous studies showed the associations between DM image characteristics and
breast cancer subtypes. S. Taneja [26] described that HER2 and TNBC tumors tend to show
more indistinct margins and fewer spiculated lesions on DM images, unlike luminal A
and luminal B subtypes, which are more likely to show spiculated lesions. M. Boisserie-
Lacroix [27] also explored the relationship between DM images and breast cancer subtype
characteristics. Similar to S. Taneja, their study revealed that luminal A and luminal B
tend to show more spiculated masses with irregular shapes. Further, M. Boisserie-Lacroix
described HER2 lesions to be irregular in shape with indistinct margins, while TNBC
lesions were more often oval in shape with distinct edges. A comprehensive investigation
of the associations between breast cancer subtypes and their corresponding radiomic
features was performed. Pearson correlation pre-identified features for the classification
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of each molecular subtype, and it is worth mentioning that all features showed statistical
significance between the subtypes.

The results of the feature selection showed that the zone variance was identified as
an important feature for luminal A classification. The zone variance feature describes
the roughness of the tumoral edges as well as the strength feature that describes tumor
margins. Our findings revealed that values of zone variance were highest in HER2, which
indicated that HER2 may present rougher edges and unclear margins. This finding was in
line with previous research that reported higher zone variance values for HER2 tumors [23].
On the other hand, the lowest values were found in TNBC, suggesting clearer and more
well-defined margins, aligning with Biosserie-Lacroix’s study [27]. Strength was selected
for both luminal A and luminal B classification, where luminal B reached the highest values.
This result suggests that luminal B tumors tend to be associated with unclear margins,
confirming Boisserie-Lacroix and S. Niu’s studies [23,27].

Regarding the heterogeneity of the tumor, the features coarseness, contrast, and
correlation were selected. Coarseness describes the differences in the gray level between
the central pixel and surrounding area, with high values indicating a more homogeneous
lesion [10]. The values of this feature were highest for luminal B and lowest for TNBC;
thus, luminal B tends to be more homogeneous and TNBC more heterogeneous. In our
work, ngtdm_Contrast retrieved the highest values for luminal B, suggesting luminal B
tumors to be more homogeneous compared to the other subtypes, which is in accordance
with L. Nicosa’s study [28]. The correlation feature describes the relationship between
gray levels of neighboring pixels. This feature was selected for luminal A and TNBC
classification, with higher correlation values suggesting a homogeneous lesion. W. Ma’s
study [18] showed the highest correlation values for luminal lesions; however, during our
study, the highest values were shown in TNBC lesions. Though the coarseness and contrast
features are in line with W. Ma’s study, the correlation features suggest that TNBC tumors
may be smoother in texture compared to the other subtypes.

A feature that describes the shape of the tumor which was selected for each binary
classification was MajorAxisLength. Higher MajorAxisLength values suggesting tumors to
be rounder in shape. Our results showed that HER2 lesions exhibited the highest values
and TNBC the lowest for MajorAxisLength. This suggests that HER2 tumors tend to be
rounder in shape, in contrast with TNBC tumors that may be less round. While several
articles describe TNBC tumors to be rounder in shape [10,18], others report TNBC tumors
to be larger and irregular in shape [29].

These varying descriptions of tumor shape and tumor heterogeneity characteristics
associated with breast cancer subtypes in the existing literature, as well as the differing
results in our study, indicate that further research is necessary to clarify the characteristic
associated with breast cancer subtypes.

Most previous studies on the prediction of breast cancer subtypes or breast cancer
risk focused on using one ML classifier. During our study, two commonly used ML
classifiers were used, and their performance was compared: the SVM, which is mainly
used for classifying multidimensional data, and NB classification, which is a relatively
simple method that calculates probabilities to make predictions [30,31]. The SVM classifier
resulted in higher AUC during testing compared to the NB classifier. There was only
statistical significance between the SVM and NB for luminal A (p = 0.0268) and TNBC
(p = 0.0073). The study of N. Mao [32] found similar results, with the SVM outperforming
NB in distinguishing benign and malignant tumors.

Our study has presents some limitations. One of these limitations is the image seg-
mentation process. Although we were given the exact location of the lesion in the form of a
rectangular ROI, the segmentations were carried out by one (inexperienced) person. Since
radiomic features are highly influenced by the segmentation, this introduces a potential
bias with regards to the extracted features. On the other hand, our study applied the
RegGrow algorithm, which is a semi-automatic segmentation approach. This approach
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offers a notable advantage since it is less time-consuming and less subjective compared to
manual segmentation.

Additionally, while the current accuracy of the radiomics-based approach is under
80%, it is important to highlight that this technique is currently a complementary tool
rather than a replacement for CNB in this stage. At present, radiomics could be used in
conjunction with biopsy results to improve the decision-making by narrowing down the
subtype classification before more invasive procedures are performed, ultimately reducing
the number of unnecessary biopsies.

Furthermore, only a portion of the segmented lesions was checked by an expert radi-
ologist. The lack of inter-observer reproducibility assessment may introduce an observer
bias. Differences in tumor segmentation can lead to variations in feature extraction for
similar areas of interest, as was mentioned in previous studies [33–35]. To address these
limitations, it should be ensured that all the segmented regions are revised and adjusted by
an expert radiologist in related future work. Subsequently, feature extraction should be
repeated to verify the results.

Moreover, this was a retrospective study, and the DM images were from a single
dataset. It is important to verify the performance obtained during this study using an
external dataset to confirm generalizability of the models. Also, the current results are a
first step, and with relatively low accuracies, our research indicates that there is significant
room for further improvements. For example, even larger datasets and ensemble machine
learning methods can be incorporated.

Currently, there is a lack of consensus on the optimal ML classifier for predicting breast
cancer subtypes, and limited studies compare the performance of various classifiers. Our
study focused on two ML classifiers; however, future research should explore and compare
more classifiers such as kNN, Random Forest, and logistic regression. By evaluating these
classifiers’ performance, more insight into the most effective method for the prediction of
breast cancer subtypes can be gained. This could enhance the generalizability and utility of
radiomic features in predicting breast cancer subtypes, potentially laying the groundwork
for a robust radiomic workflow in this field.

DM is currently the most commonly used technique in breast cancer screening. How-
ever, DBT has also gained attention in routine screening and has been shown to improve
screening performance when compared to DM [36]. The study of S. Nui explored different
imaging modalities for the diagnosis of breast cancer, including DM, DBT, and MRI [37].
Standalone DBT images achieved higher AUCs in validation compared to the AUC from
standalone DM images, yet the study showed that the combination of DM and DBT features
in a model significantly improved the performance. The OMI-DB database that was used
includes over 2000 DBT cases, each linked to their corresponding DM images. Future
research could look into the potential of combining DM and DBT into a model and com-
paring these results to the current DM-only models to check if combining these modalities
increases the model efficacy.

The rise of larger databases and greater computing power has increased interest in
other AI algorithms based on deep learning and convolutional neural networks (CNNs).
In fact, there are some recently published works addressing the use of these type of AI
in predicting the breast cancer molecular subtype in mammography images [20–22,38].
Three of them focus on a binary classification for just one molecular subtype [20–22], while
another applies data balancing techniques to classify all molecular types [38]. As for
the latter, which is the first study using CNNs to classify the tumor considering all the
subtypes, although the focus was on the data balancing method, the AUCs obtained for
each subtype are all lower than those we obtained in our study. Deep learning/CNN
algorithms do not require precise segmentation, only a region of interest containing the
lesion, thus eliminating the need for the important segmentation step. However, this
segmentation of the tumors, extraction of their features, and analysis using conventional
statistical and machine learning algorithms give us a much deeper understanding of what
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we are studying, in some cases making it easier to understand how the models behave in a
certain way.

5. Conclusions

In conclusion, our study suggests that quantitative image features extracted from
DM images show the potential to contribute to the classification of breast cancer subtypes.
Although the SVM classifier showed better performance compared to the NB classifier, the
overall accuracies are still sub-optimal. Our findings show that while radiomic features
are associated with breast cancer characteristics, the current model’s performance is not
yet sufficient for standalone clinical use. Further research is warranted to validate these
models using external datasets and assess their generalizability. Additionally, exploring the
combination of DM and DBT radiomic features could potentially improve its performance.
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ML Machine learning
MLO Medio-lateral oblique
MRI Magnetic Resonance Imaging
NB Naive Bayes
OMI-DB OPTIMAM Mammography Image Database
PR Progesteron receptor
ROC Receiver Operating Curve
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SMOTE Synthetic Minority Oversampling Technique
SVM Support vector machine
TNBC Triple-negative breast cancer
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