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Abstract: Echocardiography is a reliable and non-invasive method for assessing cardiac structure and
function in both clinical and experimental settings, offering valuable insights into disease progression
and treatment efficacy. The successful application of echocardiography in murine models of disease
has enabled the evaluation of disease severity, drug testing, and continuous monitoring of cardiac
function in these animals. However, there is insufficient standardization of echocardiographic
measurements for smaller animals. This article aims to address this gap by providing a guide and
practical tips for the appropriate acquisition and analysis of echocardiographic parameters in adult
rats, which may also be applicable in other small rodents used for scientific purposes, like mice. With
advancements in technology, such as ultrahigh-frequency ultrasonic transducers, echocardiography
has become a highly sophisticated imaging modality, offering high temporal and spatial resolution
imaging, thereby allowing for real-time monitoring of cardiac function throughout the lifespan of
small animals. Moreover, it allows the assessment of cardiac complications associated with aging,
cancer, diabetes, and obesity, as well as the monitoring of cardiotoxicity induced by therapeutic
interventions in preclinical models, providing important information for translational research.
Finally, this paper discusses the future directions of cardiac preclinical ultrasound, highlighting the
need for continued standardization to advance research and improve clinical outcomes to facilitate
early disease detection and the translation of findings into clinical practice.

Keywords: echocardiography; murine models; heart function

1. Introduction

Echocardiography is a medical imaging technique that uses sound waves to generate
images of the heart [1]. Since its inception, it has evolved significantly in terms of technology
and applications. The first echocardiogram in humans was successfully recorded in 1953
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by Inge Edler and Carl Hellmuth Hertz, marking the birth of modern echocardiography [2].
This technique is rooted in ultrasound technology, which was developed in the early
20th century [3]. The first form of echocardiography was motion mode (M-mode), which
produced one-dimensional images of the heart [3]. These images allowed for measurements
of heart chamber sizes and valvular motion. In the early 1960s, two-dimensional (2D)
echocardiography greatly improved imaging by enabling cross-sectional visualization
of the heart’s structures [4]. In 1973, M-mode was used for the first time to determine
left ventricular regional wall motion abnormalities [4,5]. Subsequent innovations, such
as color and spectral Doppler techniques [6] and transesophageal echocardiography [4],
expanded the clinical applications in the 1970s. The addition of three-dimensional (3D)
echocardiography has revolutionized cardiac imaging, providing real-time, dynamic, and
volumetric images for more accurate assessments of cardiac function and anatomy [5,6].
Echocardiography has progressed from a one-dimensional, experimental technique to
a sophisticated imaging modality that is pivotal in diagnosing and monitoring various
cardiovascular conditions [6,7]. Its non-invasive nature, real-time imaging, and ongoing
technological advancements have made it an indispensable tool in cardiology [5].

Rodents, particularly mice and rats, are valuable models for cardiovascular research
due to their well-characterized genome, uniform study populations, reproducible patholog-
ical phenotypes, and the ease of creating genetically modified models [8]. Housing rodents
is also cost-effective compared to larger animals, making them accessible for a wide range
of research budgets [8,9]. Surgical techniques that induce myocardial overload, infarction,
and dysfunction in mice and rats facilitate the reliable identification and assessment of
key physiological, molecular, and biochemical mechanisms underlying cardiovascular
diseases [10]. Additionally, assessing the effects of cardiac therapies on non-cardiac models
can reveal potential side effects [11]. Non-invasive imaging techniques, such as echocar-
diography, have facilitated comprehensive cardiovascular evaluations in rodents. This has
contributed to the translational development of novel diagnostic methods and therapeutic
strategies aimed at predicting and preventing complications of cardiovascular diseases in
humans [9]. Advancements in this technology have successfully addressed key challenges
encountered in rodent cardiac imaging. These challenges include the small size of the
animal and the high heart rates observed. These obstacles have been overcome through the
development of high-frequency transducers with improved signal processing and superior
imaging frame rates.

Ultrasonography has proven advantageous in several studies, including those related
to cardiovascular diseases, research techniques and physiology, phenotyping transgenic
mice, and drug research and development [12–16]. Echocardiography can also be used to
evaluate the heart’s response to stress, aiding in the assessment of interventions, such as
exercise or pharmacological treatments on cardiac function in real-time preclinical research,
including treatments in fields such as oncology and neurology [17,18].

Although this article primarily provides a guide and practical tips for the appropri-
ate acquisition and analysis of echocardiographic parameters in adult rats, the informa-
tion provided can also be applied to other rodent models, including mice. It includes
considerations for animal preparation, such as anesthesia and physiological monitoring.
Additionally, it provides a practical and detailed guide for using ultrasound to evaluate
cardiac structure and function, describing several cardiovascular parameters applicable in
preclinical models.

2. Principles of Echocardiography

Transthoracic imaging involves the use of high-frequency sound beams that penetrate
the thoracic cavity and reflect back to the ultrasound transducer when they reach an
interface between tissues of different acoustic impedance, such as the myocardium, valves,
and blood. This reverberated signal is then processed by the software, producing a real-time
image of the heart. In adult rats, the myocardium reflects more ultrasound than the blood.
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Echocardiography, like other medical imaging techniques, has advantages and lim-
itations, as shown in (Table 1). It is non-invasive and provides real-time images of the
heart’s structure and function, allowing for immediate assessment and diagnosis during
the examination [12,14–16,19–25]. Additionally, the portable equipment enhances usability
in terms of both space and time, allowing for examinations on both awake and anes-
thetized animals with ease [12–16,19]. A wide variety of cardiac measurements can be
taken [19,25,26], and the resulting images are highly reproducible, making it suitable for
monitoring changes in cardiac function over time or comparing results before and after
treatment [14,16,19,22,27,28]. Echocardiography is often considered a more cost-effective al-
ternative to other cardiac imaging techniques, such as cardiac magnetic resonance imaging
(MRI) or computed tomography (CT) [12,15,19,21,26,27].

Table 1. Advantages and limitations of using echocardiography in the diagnosis and prevention of
heart diseases in rats [12–16,19–28].

Advantages Limitations

Non-invasive procedure Time-consuming (more than 20 min)
Portable Complex and subjective interpretation

Awake or anesthetized animals Medical specialist training
Real-time imaging Limited tissue penetration

Very versatile Low image contrast
Reproducible Stress factor
Cost-effective Under anesthesia, heart rate needs to be monitored

Although echocardiography provides valuable insights into cardiac structure and func-
tion, it also has certain limitations. Firstly, the procedure can be time-consuming, sometimes
exceeding 20 min, even when no abnormalities are detected [24]. This extended duration is
due to multiple measurement parameters, which add complexity and subjectivity to the
process [24]. Moreover, echocardiography is considered an operator-dependent technique,
which means that the quality of images and measurements can vary depending on the
operator’s skills and experience, potentially leading to inconsistencies in the results [12,24].
Therefore, this technique requires the expertise of a medically trained specialist to ensure
accuracy and reliability.

Despite its limitations, echocardiography remains a versatile tool for evaluating car-
diac function and diagnosing various cardiac diseases, including valvular heart
disease [8,29,30], cardiomyopathies [8,9,30,31], congenital heart disease [8,29,31], ischemic
heart disease [8,9,30,32], cardiac tumors [30], pulmonary hypertension [8,30,33,34], and
cardiac transplants [30]. Its significance lies in providing valuable information for treat-
ment planning, monitoring disease progression, and assessing intervention effectiveness.
This establishes it as a fundamental component of modern cardiology practice [14,19,22].

3. Practical Aspects of Echocardiography in Rodent Research

When recording ultrasound images, it is crucial to maintain the animals’ calmness,
as even minor movements can interfere with signal acquisition, resulting in inaccurate
results. Therefore, immobilization is necessary. There are several factors to consider when
preparing animals for anesthesia, including the drugs’ selection, induction, maintenance,
and recovery of the anesthesia, as well as post-anesthetic care [35]. The success and
reliability of echocardiography studies in rodents depend on several factors, including
the administration of anesthesia, the choice of drugs and administration route, and the
positioning of the animal. It is important to note that all procedures carried out on animals
outside of their normal routine can cause stress and lead to harmful effects on studies.
Therefore, compliance with the 3Rs should be ensured.
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3.1. Anesthesia

In rodent research, echocardiography can be performed in two ways: on awake
animals or on those under anesthesia. When performed on awake animals, acclimatization
to the imaging environment is required in order to get the animals familiarized with the
procedures, especially when conducting serial measurements on the same individual,
to ensure a stress-free environment for accurate and consistent results [12,19]. When
conducted under anesthesia, it is essential to monitor the animals carefully to prevent
suffering and maintain a heart rate (HR) between 400 and 650 beats per minute [12],
ensuring the ethical and effective use of echocardiography in rodent studies.

Anesthesia serves the critical role of immobilizing animals and reducing stress and
anxiety. It can be administered through continuous inhalation of a gas or intraperitoneal
injection. The choice of anesthetic significantly affects cardiac function during rodent
echocardiography [36]. It is essential to ensure accurate dosage based on the animal’s
weight to guarantee a safe procedure and facilitate a smooth recovery. The anesthetics
commonly used for mouse echocardiography are isoflurane, avertin, ketamine, and xy-
lazine [36,37]. Isoflurane is a commonly used anesthetic for both initiating and maintaining
anesthesia [19]. Animals are typically exposed to this anesthetic in an induction chamber at
20 ◦C [38]. Our research team has successfully used a combination of ketamine (Imalgene®

1000, Merial S.A.S., Lyon, France) and xylazine (Rompun® 2%, Bayer S.A., Kiel, Germany)
at a dose of 75 mg/kg and 10 mg/kg, respectively, via the intraperitoneal route to anes-
thetize rats for echocardiographic examination. When selecting an anesthetic, it is crucial
to consider the study’s specific requirements and its potential impact on cardiac function,
including blood pressure, HR, cardiac function, and recovery time [12]. Additionally, it
is important to consider the effects on cerebral metabolism, as most anesthetic agents
suppress cerebral metabolism. To ensure the animal’s wellbeing during the procedure, it is
critical to perform regular physiological monitoring, ideally every 15 min [12,35].

3.2. Animal Positioning

Accurate positioning of animals is essential for obtaining optimal-quality ultrasound
images. This task should be undertaken by researchers with relevant experience. Further-
more, it is imperative to maintain the animals’ body temperature at 37 ± 0.5 ◦C, which can
be achieved by placing the animal on a heating pad in a supine position [16]. To prevent the
eye region from drying out, it is recommended to apply eye lubricant to each eye. Before
beginning the imaging process, it is important to prepare the area by removing hair with a
depilatory cream or carefully shaving with an appropriately sized clipper [39]. Then, apply
pre-warmed ultrasound gel to the chest area at the imaging location.

To carry out echocardiography on the rat during experimental trials, after anesthesia,
as indicated above, our research group places the animal in the supine position and tri-
chotomizes the thoracic region using a machine clipper (AESCULAP® GT420 Isis; Aesculap
Inc., Center Valley, PA, USA). Then, the acoustic gel (Aquasonic®; Parker Laboratories Inc.,
Fairfield, NJ, USA) is applied to the region to be examined.

3.3. Ultrasound Equipment

Ultrasound equipment is a medical device that utilizes high-frequency sound waves
to produce images of internal body structures. The equipment emits and receives tissue
reflections of ultrasound waves, forming the echocardiography images [12,40]. For echocar-
diography imaging in adult mice, it is recommended to use transducers with a frequency
between 30 and 40 MHz for body weights less than 35 g. This ensures the maintenance
of a real-time imaging frame rate exceeding 30 frames per heartbeat [41]. For adult rats,
frequencies between 10 and 25 MHz are considered appropriate for obtaining high-quality
echocardiographic images [42]. Our research team uses a real-time scanner (Logic P6®;
General Electric Healthcare, Milwaukee, WI, USA) with a 4–10 MHz linear probe (Model
I739, General Electric Healthcare, Milwaukee, WI, USA) for echocardiography in rats. To
avoid potential artifacts in echocardiography, it is important to consider several other
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factors related to ultrasound equipment. These factors include controlling ambient light
levels in the room, ensuring heart rates remain above 350 beats per minute (bpm) for rats
and 450 bpm for mice, and preventing animal hypothermia. It is crucial to highlight that the
recommendations are applicable to other comparable equipment available on the market,
with similar outcomes anticipated.

3.4. Echocardiography Modes
3.4.1. B-Mode

Brightness mode (B-mode) is the simplest form of echocardiography. It generates real-
time black-and-white images of the heart and other vasculatures, such as the carotid artery,
pulmonary artery, and aortic arch [14]. B-mode enables the non-quantitative evaluation of
cardiac physiology, cardiac chamber dimensions, and cardiac anatomical components [12],
as well as the systolic function [43]. The program and equipment can gather multiple
measurements from the generated images. The ultrasound probe can be linked to a motor,
allowing for 3D visualization through the combination of 2D images [44].

3.4.2. M-Mode

M-mode echocardiography is a technique that involves tracing B-mode scan images
continuously along a single line or axis. This provides a visual representation of myocardial
wall movement during systole and diastole [12]. It evaluates the systolic function and left
ventricular (LV) size in parasternal long-axis (PLAX) and parasternal short-axis (PSAX)
views. The M-mode tracings are optimal at the papillary muscle level. A circular LV
shape in the PSAX view indicates proper imaging, while an oval appearance indicates
oblique imaging.

3.4.3. Doppler Mode

Doppler imaging is a technique used in echocardiography to assess blood flow within
the heart and blood vessels [45]. It involves measuring the change in frequency of sound
waves as they reflect off moving objects, such as red blood cells. This information is
then used to create images and quantify blood flow velocities [7,46]. Pulsed wave and
color Doppler focus on blood cells, while tissue Doppler imaging assesses myocardial
tissue movement.

3.4.4. Speckle-Tracking Echocardiography

Speckle-tracking echocardiography is a non-invasive technique that enables precise
assessment of cardiac function and myocardial mechanics. It offers valuable insights into
cardiac physiology and pathology [47] by tracking the movement of natural acoustic mark-
ers within the myocardium, known as “speckles”, over the cardiac cycle. This method
provides detailed insights into temporal resolution compared to traditional echocardio-
graphic techniques [48]. Speckle-tracking echocardiography is particularly invaluable in
small animal models like rats, where accurate measurements are vital for detecting subtle
changes in cardiac function [49]. This technique has become a powerful tool in preclinical
research, enabling a comprehensive assessment of cardiac mechanics. It has contributed
significantly to our understanding of cardiovascular diseases and the development of new
therapeutic approaches [50].

3.4.5. Three-/Four-Dimensional Imaging

Three-dimensional imaging is an advanced imaging technique that provides a more
comprehensive and detailed view of the heart compared to traditional 2D echocardio-
graphy. This allows clinicians to assess the heart’s anatomy, function, and blood flow
dynamics, visualizing the cardiac chambers (atria and ventricles) and the heart valves [40].
The technique uses sound waves to create a real-time 3D image of the heart and its struc-
tures [15,51]. Three-dimensional echocardiography captures a volume of data, resulting
in a more comprehensive and realistic representation of the heart [52]. This is particularly
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beneficial for assessing complex cardiac structures and abnormalities [53], such as ventricu-
lar volumes, ejection fraction, and regional wall motion abnormalities [54]. Although 3D
echocardiography offers significant advantages, it also presents challenges. These include
the need for specialized equipment, increased data processing requirements, and a steep
learning curve for operators. Additionally, interpretation and analysis of 3D images may
require expertise [53].

Four-dimensional echocardiography, also known as real-time three-dimensional echocar-
diography, provides clinicians and researchers with real-time dynamic visualization of
cardiac structures and function. This imaging technique offers improved spatial resolution
and valuable insights into complex cardiac anatomy and pathology for clinicians and
researchers [55,56]. This technology allows for more precise evaluation of cardiac condi-
tions and aids in improved surgical planning and interventions, particularly in cases of
congenital heart defects, valvular diseases, and cardiomyopathies [57]. However, it requires
a high-quality ultrasound machine and specialized training, making it less standardized in
preclinical models due to its higher cost. At the time of writing, there are several companies
offering a diverse range of premium ultrasound equipment, including probes that facilitate
the acquisition of high-quality 4D images.

4. Data Collection and Analysis

Following the considerations outlined above, a comprehensive echocardiographic
examination can be conducted to evaluate heart function in rats. This is crucial in ex-
perimental studies that aim to comprehend the pathophysiology of cardiac diseases and
investigate the effects of innovative therapies. To perform this examination, images from
four transthoracic echocardiography views should be acquired sequentially: PLAX, PSAX,
apical four-chamber, and apical five-chamber. It is important to maintain a consistent order
and timing across individuals to reduce variability, although the sequence may be chosen
according to personal preferences and data acquisition priorities. The parameters may be
measured using electronic cursors integrated into the ultrasound apparatus or exported
and measured using a free MicroDicom 2023.1 viewer and software (Figure 1).
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observed (created with BioRender.com, accessed on 10 April 2024). Ao VTI—aortic velocity–time
integral; Aod—aorta diameter; D1—left ventricle short-axis diameter parallel; D2—left ventri-
cle short-axis diameter perpendicular; HR—heart rate; IVS—intraventricular septum thickness;
LA—left atrium; LV—left ventricle; LVET—left ventricle ejection time; LVID—left ventricle internal
diameter; LVOT—left ventricular outflow tract; LVPW—left ventricle posterior wall thickness; PA
diameter—pulmonary artery; PA VTI—pulmonary artery velocity–time integral; PAAT—pulmonary
artery acceleration time; PLAX—parasternal long axis; PSAX—parasternal short axis; RA—right
atrium; TAPSE—tricuspid annular plane systolic excursion.

4.1. Measurable Parameters in Rat Echocardiography
4.1.1. Parasternal Long-Axis (PLAX) View

The PLAX view offers a complete longitudinal cross-section of the heart, encompassing
the ventricles, atria, and interventricular septum [12,58]. To obtain this view, the transducer
should be positioned over the left third of the animal’s chest wall, aligning the notch
toward the animal’s right shoulder [47,59]. The PLAX view allows the measurement of
aorta diameter (Aod, mm) during diastole. This is performed by using B-mode or M-mode
in the aortic root during diastole [14,16,45,47]. An elevated Aod indicates an increased
risk of adverse events [39,58], which may suggest the presence of an aortic aneurysm [60].
This measurement is crucial for assessing the risk and extent of aortic dissection, particu-
larly in conditions such as aortic stenosis or regurgitation, which are influenced by aortic
valve function [61].

How to measure Aod

To measure this parameter, it is first necessary to identify the aorta in the echocardio-
graphic image. Typically, the aorta is visible adjacent to the left ventricle and may appear as
a tubular structure with bright echogenic walls. To ensure accurate measurement, the mitral
valve (left atrioventricular valve) must be visualized in its open position during diastole.
The cursor should be placed perpendicular to the long axis of the aorta, from the inner edge
of the anterior wall to the inner edge of the posterior wall, using the measurement tools
provided by the software (Figure 2).
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Figure 2. Aorta diameter (Aod, mm) measured in 26-week-old female Wistar rats using B-mode
at diastole, obtained in PLAX view. The image was obtained using a real-time scanner (Logic P6®;
General Electric Healthcare, Milwaukee, WI, USA) with a 4–10 MHz linear probe. Measurements
were taken using MicroDicom 2023.1 viewer and software.
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Interventricular septum thickness (IVS, mm) is another important echocardiographic
parameter that is measured in PLAX view using B-mode. It assesses the thickness of the
muscular wall between the left and right ventricles during systole and diastole [62]. IVS
in diastole (IVSd) is measured just before systole onset [19], while IVS in systole (IVSs) is
measured at the peak of systole [19]. Abnormalities in the IVS may indicate conditions
such as hypertrophic cardiomyopathy [63]. Assessing both the IVSs and IVSd provides
dynamic insights into how the septum behaves throughout the cardiac cycle.

Regarding left ventricle parameters, the left ventricle internal diameter (LVID, mm)
is a crucial parameter that provides valuable information about the size, contractility,
and overall performance of the left ventricle [64]. This measurement is typically taken
in the PLAX view with B-mode at systole or diastole [62] and reflects the left ventricle’s
internal dimension at the end of systole and diastole. During diastole, LVID (LVIDd)
reflects the left ventricle’s capacity to fill with blood in its relaxed state [65], while during
systole (LVIDs) indicates the degree of contraction and ejection of blood from the left
ventricle [54]. These measurements provide important information about left ventricular
function. Monitoring LVID can aid in the diagnosis and monitoring of conditions like
hypertrophic cardiomyopathy, as well as predict cardiovascular events such as myocardial
infarction [63,66,67].

Left ventricle posterior wall thickness (LVPW, mm) is measured in the PLAX view
with B-mode at systole and diastole [62]. This measurement provides valuable information
about the dynamics of the left ventricle throughout the cardiac cycle [65]. At diastole,
LVPW indicates maximum posterior wall thickness, which helps assess the left ventricle’s
ability to fill with blood [68]. During systole, it represents the minimum posterior wall
thickness, indicating the degree of contraction and the extent of blood ejection from the
left ventricle [69]. Increased LVPW, especially in diastole, may indicate left ventricular
hypertrophy, which is associated with conditions such as hypertension, aortic stenosis, or
hypertrophic cardiomyopathy. Monitoring LVPW over time can aid in evaluating changes
in cardiac structural, disease progression, and treatment effectiveness [70].

How to measure IVS, LVID, and LVPW

In order to measure these three parameters, it is necessary to select the same image
as the one used for the previous parameter (Aod). This should be performed during
two phases of the cardiac cycle: when the mitral valve is open (diastole) (Figure 3A) and
when it is closed (systole) (Figure 3B). Firstly, the interventricular septum, which separates
the LV into two chambers, and the LV cavity should be identified. To measure IVS, the
cursor should be placed perpendicular to the septum, extending from the inner edge of
the endocardium to the inner edge of the opposite endocardium. For the measurement
of LVID, the cursor should be placed perpendicular to the long axis of the LV, extending
from the inner edge of the anterior wall to the inner edge of the posterior wall. Lastly, to
measure LVPW, the cursor should be placed perpendicular to the posterior wall, from the
inner edge of the endocardium to the inner edge of the epicardium.

Some infrequently used parameters in PLAX include the measurement of the right
ventricular outflow tract (RVOT) length at end diastole. This is located just proximal to
the pulmonary valve (PV) and serves as an indicator of right ventricle (RV) size, with
dilation suggesting right ventricular volume overload [71]. Another parameter, the right
ventricular outflow tract velocity–time integral (RVOT VTI), gauges blood flow through
the RVOT. To measure RVOT VTI, the area under the curve in a pulsed wave Doppler
image of PLAX should be assessed. RVOT VTI is a proxy for RV stroke volume and can be
used to determine pulmonary arterial compliance in relation to pulmonary artery systolic
pressure [72]. Pulmonary valve diameter (PV diameter) assesses the length of the PV in
millimeters and can be measured using PLAX or PSAX view, with PLAX typically offering
better visualization. PV diameter helps diagnose pulmonary valve stenosis or dilation, and
when combined with PV velocity–time integral, it allows calculation of PV stroke volume
and cardiac output [71]. The left ventricular outflow tract length (LVOT) measures the
left ventricular outflow tract, just proximal to the aortic valve, at end diastole in a PLAX
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B-mode image [71]. LVOT is valuable for mouse models of aortic stenosis as it facilitates
the calculation of aortic valve area.
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Figure 3. Interventricular septum thickness (IVS, mm), left ventricle internal dimension (LVID), and
left ventricle posterior wall thickness (LVPW) measured in 26-week-old female Wistar rats using
B-mode in diastole (A) and systole (B), obtained in PLAX view. The images were obtained using a
real-time scanner (Logic P6®; General Electric Healthcare, Milwaukee, WI, USA) with a 4–10 MHz
linear probe. Measurements were taken using MicroDicom 2023.1 viewer and software.

4.1.2. Parasternal Short-Axis (PSAX) View

To obtain the PSAX, rotate the transducer 90 degrees from the PLAX view so that
the transducer’s notch is directed to the animal’s left shoulder. This will provide a cross-
sectional image of the heart [40,47,58,59,73]. The left ventricular end-diastolic and end-
systolic dimensions, wall thickness, myocardial contractility of the left ventricle, showcas-
ing left and right ventricular outflow tracts, great vessels, aortic and pulmonary valves,
pulmonary artery branching, and the aortic arch can be assessed using it [39,40,42,59].

Heart rate (HR, bpm) is an important parameter measured through the PSAX view
in M-mode [39,47]. It can be influenced by various factors, including hormones, age,
autonomic innervation, fitness levels, and heart diseases [74]. The use of anesthesia during
echocardiography can lower HR, making it important to keep track of this parameter.
Monitoring HR during echocardiography is crucial for detecting cardiovascular system
alterations and helps ensure that the anesthetic depth is appropriate [45,75]. Rodents
normally have higher HR values than humans [39,40,47]. In rats, HR can range from 300 to
400 beats per minute, while in mice, they can range from 350 to 700 bpm [39,59,73].

How to measure HR

In order to accurately measure the HR, it is essential that the echocardiographic
image provides a clear and detailed visualization of the heart chambers, with a particular
focus on the left ventricle. Cardiac cycles should be identified by observing the repetitive
movements of cardiac structures, such as the mitral valve or aortic valve, throughout the
image (Figure 4). Once the image has been analyzed and captured during diastole, the
number of systoles must be counted within the three-second interval corresponding to the
x-axis/capture time displayed in the image. Following this count, the HR is calculated
using the following formula:

HR (bpm) =
(number o f systoles × 60 s)

3 s
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Figure 4. Heart rate (HR, bpm) measured in 26-week-old female Wistar rats using M-mode, obtained
in PSAX view. The arrows represent the number of systoles captured in 3 seconds. The image
was obtained using a real-time scanner (Logic P6®; General Electric Healthcare, Milwaukee, WI,
USA) with a 4–10 MHz linear probe. Measurements were taken using MicroDicom 2023.1 viewer
and software.

The measurement of the left ventricle short-axis diameter, obtained in both parallel
(D1, mm) and perpendicular (D2, mm) orientations to the septum, in PSAX view during
B-mode echocardiography at diastole [76], is crucial for a comprehensive assessment of
cardiac structure and dynamics [77]. These measurements reflect the size and geometry of
the left ventricle in cross-section [78], and changes in diameter may indicate alterations in
ventricular volume and shape [77].

How to measure D1 and D2

To measure D1 and D2, the septum, which divides the right side from the left side of
the heart, must be first located. For the D1 measurement, the cursor should be placed in a
parallel orientation with the interventricular septum and perpendicular to the ventricular
walls. Conversely, for the D2 measurement, the cursor should be adjusted to a perpendicu-
lar orientation relative to the interventricular septum, aligning it with the ventricular walls
(Figure 5).
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Figure 5. Left ventricle short-axis diameter parallel (D1) and perpendicular (D2) to the septum
measured in 26-week-old female Wistar rats using B-mode at diastole, obtained in PSAX view. The
image was obtained using a real-time scanner (Logic P6®; General Electric Healthcare, Milwaukee,
WI, USA) with a 4–10 MHz linear probe. Measurements were taken using MicroDicom 2023.1 viewer
and software.
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Pulmonary artery acceleration time (PAAT, cm/s) is a key parameter for assessing
pulmonary artery hemodynamics [79] and pressure [80]. It measures the duration of initial
blood flow acceleration from the pulmonary valve to the main pulmonary artery, commonly
used to evaluate right ventricular afterload [79–81]. A shortened PAAT is associated
with increased pulmonary artery pressure, which is 10–50 observed in conditions such
as pulmonary hypertension [82]. PAAT is obtained in PSAX view with Pulsed Doppler
mode [80].

How to measure PAAT

To accurately measure PAAT, it is essential to identify the pulmonary artery within
the echocardiographic image. Typically, the pulmonary artery is located in close proximity
to the aorta, coursing anteriorly and superiorly from the right ventricle. Doppler imaging
is essential for the identification of the flow velocity waveform within the pulmonary
artery, which corresponds to the onset of ejection from the right ventricle. The time interval
between the onset of ejection and the peak flow velocity in the pulmonary artery represents
the PAAT (Figure 6).
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Figure 6. Pulmonary artery acceleration time (PAAT, cm/s) measured in 26-week-old female Wistar
rats using Doppler mode, obtained in PSAX view. The image was obtained using a real-time
scanner (Logic P6®; General Electric Healthcare, Milwaukee, WI, USA) with a 4–10 MHz linear probe.
Measurements were taken using MicroDicom 2023.1 viewer and software.

Doppler mode also allows the evaluation of pulmonary artery diameter, which is
important for heart-to-lung blood supply [83,84]. This artery, which is thicker in rats due to
the presence of striated muscle fibres that are contiguous with those of the heart [83], de-
pends on the pulmonary valve to prevent blood backflow during diastole [84]. Pulmonary
artery diameter is obtained in the PSAX view with the pulsed wave Doppler mode [39,40].

How to measure pulmonary artery diameter

To measure this parameter, it is first necessary to visualize the pulmonary artery in a
manner similar to that employed in the measurement of PAAT. Subsequently, the site along
the pulmonary artery where the diameter appears largest and most easily measurable must
be selected. This point is often in close proximity to the level of the pulmonary valve or
main pulmonary artery. Then, the cursor should be placed perpendicular to the long axis
at the widest point of the vessel, extending from the inner edge of the anterior wall to the
inner edge of the posterior wall (Figure 7).
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Figure 7. Pulmonary artery diameter (mm) measured in 26-week-old female Wistar rats using
Doppler mode, obtained in PSAX view. The image was obtained using a real-time scanner (Logic P6®;
General Electric Healthcare, Milwaukee, WI, USA) with a 4–10 MHz linear probe. Measurements
were taken using MicroDicom 2023.1 viewer and software.

The pulmonary artery velocity–time integral (PA VTI, cm), obtained in PSAX view
using Doppler mode [39,58,59,62,85], provides information on blood flow velocity in the
pulmonary artery [39,59,62]. It assesses right ventricular systolic function and pulmonary
hemodynamics [39] and offers insights into stroke volume, reflecting the amount of blood
ejected into the pulmonary circulation during each cardiac cycle [86]. A reduction in PA VTI
may suggest a worse prognosis, especially in patients with pulmonary hypertension [59].

4.1.3. Apical View

The apical view is obtained by positioning the transducer at the fifth intercostal space
in the left hemithorax [47]. This view allows for the assessment of cardiac wall motion and
blood flow [45]. In this mode, the operator commonly uses B-mode to locate the structure
and then switches to other modes.

Apical Four-Chamber View

The apical four-chamber view is useful for assessing chamber dimensions and wall
motion, as it displays all four heart chambers, allowing for simultaneous visualization of
both atria and ventricles [45,58]. To obtain this view, the transducer should be placed at the
cardiac apex and oriented toward the animal’s right scapula. Ensure that the transducer’s
notch faces the animal’s left axilla to obtain a 2D apical four-chamber view. When properly
adjusted, this image displays the four chambers, both atrioventricular valves, and the
interventricular and interatrial septa.

Tricuspid annular plane systolic excursion (TAPSE, cm) is an indicator of right ven-
tricle longitudinal contractile function and reflects global cardiac function [16,58,59]. To
measure TAPSE, the transducer should be positioned along the right ventricle free wall
perpendicular to the apex, and the annulus displacement between end diastole and end
systole during a cardiac cycle should be recorded [58,59]. TAPSE has strong reproducibility,
minimal inter-operator variability, and exhibits minor variation across sex and body surface
area [21,54]. Therefore, it is relevant in conditions such as pulmonary hypertension and
right ventricular myocardial infarction, where reduced TAPSE indicates right ventricular
dysfunction [54]. This measurement is obtained in an apical 4-chamber view using M-mode
during systole [52,58,59].
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How to measure TAPSE

To measure TAPSE, it is essential to obtain an echocardiographic image that allows
for the clear visualization of both the tricuspid valve and the right ventricle. In this image,
the tricuspid valve should be positioned in the center, with the right ventricle adjacent
to it. The M-mode imaging modality should be used, and the cursor should be placed
and activated perpendicular to the septal tricuspid annulus, ensuring that it intersects the
annulus and the right ventricle free wall to obtain a single-line tracing of the motion over
time. The distance from the baseline (end-diastolic position) to the peak systolic position of
the right ventricle free wall motion represents TAPSE (Figure 8).
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Figure 8. Tricuspid annular plane systolic excursion (TAPSE, cm) measured in 26-week-old female
Wistar rats using M-mode at systole, obtained in apical 4-chamber view. The image was obtained
using a real-time scanner (Logic P6®; General Electric Healthcare, Milwaukee, WI, USA) with a
4–10 MHz linear probe. Measurements were taken using MicroDicom 2023.1 viewer and software.

The peak early diastolic transmitral flow, known as E-wave, represents the velocity of
blood flow velocity when the left ventricle relaxes during early diastole [43]. This measure-
ment provides important information about left ventricular diastolic function [14,45] and
can detect changes in diastolic filling dynamics related to various cardiac conditions [65,87].
Conversely, the peak late diastolic transmitral flow, known as A-wave, is the peak blood
flow velocity at end diastole caused by atrial contraction [43]. The A-wave contributes to
the assessment of left ventricular diastolic function [26,88], following the E-wave during
early diastole [16,26]. Changes in A-wave velocity indicate alterations in atrial function and
conditions affecting diastolic filling dynamics [6,58]. Both measurements can be obtained in
apical 4-chamber view using Doppler mode during the early phase of diastole by accurately
positioning the sample volume at the mitral valve leaflets’ apex [6,89,90].

How to measure E and A peaks

To measure the peak early and late diastolic transmitral flow velocities (cm/s), it is
necessary to obtain an echocardiographic image with a clear view of the mitral valve. The
mitral valve is usually visualized between the left atrium and the left ventricle, with the
anterior and posterior leaflets clearly visible. The ultrasound cursor must be positioned
within the right cardiac chamber of the image, and the velocities of the two peaks are then
measured. The larger peak corresponds to the E-wave, and the smaller one represents the
A-wave (Figure 9).
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Figure 9. Peak early diastolic transmitral flow (E, cm/s) and peak late diastolic transmitral flow
(A, cm/s) measured in 26-week-old female Wistar rats using Doppler mode at early phase diastole,
obtained in apical 4-chamber view. The image was obtained using a real-time scanner (Logic P6®;
General Electric Healthcare, Milwaukee, WI, USA) with a 4–10 MHz linear probe. Measurements
were taken using MicroDicom 2023.1 viewer and software.

The right atrium (RA) and the left atrium (LA) area can be measured in the apical four-
chamber view using B-mode during end systole by tracing its inner border and capturing
the maximal atrial size. Enlargement is often associated with conditions such as mitral
valve disease, atrial fibrillation, or left ventricle dysfunction [89,91]. Similarly, the RA area
can be measured in the same apical view using B-mode during end systole by tracing its
inner border. Changes in the RA area may indicate conditions like pulmonary hypertension
or tricuspid valve disease.

How to measure RA and LA

To measure RA and LA (mm2), it is necessary to obtain an echocardiographic image
that provides a clear visualization of the atria. The RA is located anterior and slightly
superior to the RV, while the LA is located posterior and slightly superior to the LV. The
cursor should be used to delineate the atrial borders of the RA and LA, thereby allowing
the software to calculate the enclosed area (Figure 10).
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Figure 10. Right atrium (RA, mm2) and left atrium (LA, mm2) area measured in 26-week-old female
Wistar rats using B-mode, obtained in apical 4-chamber view. The image was obtained using a
real-time scanner (Logic P6®; General Electric Healthcare, Milwaukee, WI, USA) with a 4–10 MHz
linear probe. Measurements were taken using MicroDicom 2023.1 viewer and software.



J. Imaging 2024, 10, 219 15 of 31

Apical Five-Chamber View

The apical five-chamber view is similar to the four-chamber view but includes the
visualization of the aortic root [45]. To simultaneously visualize the LVOT, aortic valve, and
aortic root, the transducer should be titled into a shallower angle relative to the chest wall
from the apical four-chamber view.

The left ventricular ejection time (LVET, s) is a parameter measurable in this view
using Doppler mode. LVET reflects the duration from aortic valve opening to closing
during systole [19,45] and indicates left ventricular contraction efficiency [40]. Abnormal
LVET suggests various cardiovascular conditions, such as systolic and diastolic dysfunction,
aortic valve disorders, or altered preload and afterload conditions [12,40].

How to measure LVET

To measure LVET, it is necessary to obtain an echocardiographic image that provides a
detailed visualization of the LV. The beginning of LV ejection on the Doppler waveform is
indicative of the opening of the aortic valve and the onset of systole. The end of LV ejection
corresponds to the closure of the aortic valve, marking the end of systole. LVET represents
the time integral from the beginning to the end of LV ejection on the Doppler waveform.
The program’s cursor is used to measure the wavelength, as illustrated in Figure 11 by the
yellow lines.
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Figure 11. Left ventricle ejection time (LVET, s) duplicate measured in 26-week-old female Wistar
rats using Doppler mode, obtained in 5-chamber view. The image was obtained using a real-time
scanner (Logic P6®; General Electric Healthcare, Milwaukee, WI, USA) with a 4–10 MHz linear probe.
Measurements were taken using MicroDicom 2023.1 viewer and software.

The aortic velocity–time integral (Ao VTI, cm), also obtained in a 5-chamber view with
Doppler mode, is a measurement that provides information about blood flow in the aorta
over a complete cardiac cycle [92]. It is the area under the velocity–time curve of blood flow
in the aorta during a single cardiac cycle. It represents the total distance traveled by blood
per unit of time [65]. The transducer should be placed in the ascending aorta to measure
the velocity of blood flow [59].

In sum, these echocardiographic measurements are essential for guiding treatment
strategies, monitoring disease progression, and providing valuable insights that inform
clinical decision-making. Table 2 summarizes the mode, view, specific measurements, and
recommendations pertaining to preclinical rodent models of various diseases or lifestyles
where these measurements are pertinent.

Echocardiography is not only important for the evaluation of heart disease but also
for assessing heart function in preclinical models of diseases such as diabetes and can-
cer [17,93]. Additionally, it contributes to our understanding of the impact of aging on
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cardiovascular health in preclinical research [94]. Echocardiography plays a crucial role
in cancer research by investigating cancer-associated cardiotoxicity induced by anticancer
drugs [95]. It enables early detection and monitoring of chemotherapy-induced heart
failure [96]. Inflammation and inflammatory diseases also highlight the importance of
studying cardiotoxicity [96]. Another example is the study of lifestyle factors, like ex-
ercise or obesity, for which monitoring cardiac function is crucial to understanding the
heart’s adaptation to physical activity or the pathophysiological changes associated with
obesity, respectively [97,98]. Echocardiography is also a crucial tool in studying cardiac
complications associated with diabetes in animal models. It allows for early detection
and monitoring of diabetic cardiomyopathy [17], providing insights into structural and
functional changes in the heart. Echocardiography facilitates the assessment of therapeutic
interventions aimed at mitigating cardiovascular risks in diabetes research [99].

Table 2. Mode, view, and echocardiographic measurements and their application for diseases/
lifestyle models.

Mode View Measurement Disease/Lifestyle
Models Reference

PLAX B-mode

Aod (mm)

Aging [100,101]
Cancer [102]

Cardiac diseases [103]
Diabetes [104]

IVS (mm)

Aging [101]
Cardiac diseases [71,105]
Cardiotoxicity [106–109]

Diabetes [104]
Exercise [110]
Obesity [111]

LV (mm)
Aging [101]

Cardiac diseases [103,112]

LVID (mm)

Aging [101,113]
Cancer [102]

Cardiac diseases [105,114]
Cardiotoxicity [106,107,109,115–117]

Diabetes [99,118]
Exercise [110,119–122]
Obesity [123]

LVOT (cm)
Aging [101]

Cardiac diseases [71,124]

LVPW (mm)

Aging [101,113]
Cancer [102]

Cardiac diseases [43,103,105,112]
Cardiotoxicity [106–108,115]

Diabetes [104,125]
Exercise [110,119,120,122,126]
Obesity [111,123,127]
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Table 2. Cont.

Mode View Measurement Disease/Lifestyle
Models Reference

PSAX

B-mode

D1 (mm)
Aging [128]

Cardiac diseases [129]
Cancer [130]

D2 (mm)
Aging [128]

Cardiac diseases [129]
Cancer [130]

M-mode HR (bpm)

Aging [113]
Arthritis [131]
Cancer [102]

Cardiac diseases [43,105,114]
Cardiotoxicity [106,108,116]

Diabetes [104]
Exercise [120,121]
Obesity [123,127]

Pulsed
Doppler

PA diameter (mm) Cardiac diseases [103]
PA VTI (cm) Cardiac diseases [71]
PAAT (cm/s) Cardiac diseases [109,132]

4-chamber

B-mode
LA (mm2)

Aging [100,101]
Cardiac diseases [124,133]
Cardiotoxicity [109]

RA (mm2)
Aging [100]

Cardiac diseases [124,133]

M-mode TAPSE (cm)
Cardiac diseases [132]
Cardiotoxicity [109]

Pulsed
Doppler

A-wave (cm/s)

Aging [113]
Cardiac diseases [43]
Cardiotoxicity [109]

Diabetes [99,104,125]
Exercise [119]

E-wave (cm/s)

Aging [113]
Cardiac diseases [43]
Cardiotoxicity [109]

Diabetes [99,104,125]
Exercise [119]

5-chamber
Pulsed

Doppler
Ao VTI (cm)

Cardiac diseases [109]
Diabetes [104]

LVET (cm) Diabetes [104]
Ao VTI, aortic velocity–time integral; Aod, aorta diameter; D1, left ventricle short-axis diameter parallel; D2,
left ventricle short-axis diameter perpendicular; HR, heart rate; IVS, intraventricular septum thickness; LA, left
atrium; LV, left ventricle; LV ET, left ventricle ejection time; LVID, left ventricle internal diameter; LVOT, left
ventricular outflow tract; LVPW, left ventricle posterior wall thickness; PAAT, pulmonary artery acceleration
time; PA, pulmonary artery; PA VTI, pulmonary artery velocity–time integral; PLAX, parasternal long axis; PSAX,
parasternal short axis; RA, right atrium; TAPSE, tricuspid annular plane systolic excursion.
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4.2. Calculable Parameters in Rodent Echocardiography

Echocardiographic parameters are commonly normalized using total body surface area
(BSA, cm2) as the metric for body size indexation. This accounts for individual differences
in body size [134] and provides a more accurate assessment of cardiac dimensions and
function compared to absolute measurements [135]. The formula for BSA indexation
includes a species-specific constant (k), where k is 9.8 for mice [136], 9.1 for rats [137], and
8.37 for guinea pigs [138]:

BSA
(

cm2
)
= k × (Body Weight)2/3

Key calculable parameters in echocardiography include the E/A ratio, which rep-
resents blood flow velocities during atrial contraction [139]. The E/A ratio is calculated
by dividing the peak E-wave velocity by the peak A-wave velocity. A decreased E/A
ratio indicates significantly impaired relaxation, but it may rise again with the progres-
sion of diastolic dysfunction as left atrial pressure increases, a phenomenon known as
“pseudo-normalization” [140].

E/A ratio =
Peak early diastolic transmitral flow (E)

Peak late transmitral flow (A)

The measurement of left ventricle mass (LV mass, mg) is a critical parameter for
assessing the size and thickness of the left ventricle of the heart. The left ventricle is
responsible for pumping oxygenated blood to the rest of the body, and changes in its
mass can indicate various cardiac conditions [64]. This parameter is usually measured
using M-mode or 2D echocardiography [141]. LV mass is used to diagnose left ventricular
hypertrophy and assess the impact of various medical treatments and interactions on
cardiac structure [142]. LV mass can be calculated by using Devereux’s formula corrected
for rodents [143]:

LV mass (mg) = 1.04 ×
(
(LVID + LVPW + IVS)3 − (LVID)3

)
× 0.8 + 0.6

where 1.04 is the specific gravity of myocardium, LVID is the left ventricle internal dimen-
sion, LVPWd is the left ventricle posterior wall thickness, and IVS is the intraventricular
septum thickness. The area–length method is another alternative for determining LV
mass. However, while seeming more accurate, it lacks validation for its correlation with
3D-echocardiography-assessed LV weight or mass [144].

Fractional shortening of the left ventricle (FS, %) is a parameter used in echocardiogra-
phy to assess the contractility and systolic function of the left ventricle of the heart. It is one
of several measurements that provide insight into the heart’s ability to pump blood effec-
tively [62]. This parameter is usually measured using M-mode [145]. A normal fractional
shortening value typically falls within the range of 25–45% of its diastolic diameter [146].
Lower fractional shortening values suggest reduced systolic function and may be indicative
of conditions like heart failure, cardiomyopathy, or myocardial infarction [19]. FS is often
used in combination with other echocardiographic measurements, such as ejection fraction
(EF), to provide a comprehensive assessment of cardiac function [146]. It is valuable in
diagnosing various heart conditions and monitoring changes in ventricular function over
time. The formula for calculating FS [12,19,59,62,145] is as follows:

FS (%) =
LVIDd − LVIDs

LVIDd
× 100

where LVIDd is the left ventricle internal dimension in diastole and LVIDs is the left
ventricle internal dimension in systole.

LVESV (mL/m2) represents the volume of blood in the left ventricle at the end of
systole, indicating the minimum volume of blood remaining after contraction. LVEDV
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(mL/m2) is the volume of blood in the left ventricle at the end of diastole, representing the
maximum amount of blood the ventricle can hold before contraction [147]. This parameter
can be calculated using the following formula [148]:

LVESV
(

mL/m2
)
=

(
7

2.4 + LVIDs

)
× LVIDs3

LVEDV
(

mL/m2
)
=

(
7

2.4 + LVIDd

)
× LVIDd3

where LVESV is the left ventricle internal dimension in systole and LVIDd is the left
ventricle internal dimension in diastole.

Ejection fraction (EF, %) is obtained by LV measurements in systole and diastole. It is
the percentage of blood that the left ventricle ejects into the aorta during systole [12]. EF
is important in managing heart failure, as it helps identify individuals who are likely to
respond to heart failure medication with lower EF, as well as those who will benefit from
device therapy, such as either implanted defibrillators or cardiac resynchronization. EF can
be calculated using the following formula:

EF (%) =
(LVEDV)3 − (LVESV)3

(LVEDV)3 × 100

Geometric assumption can be a limitation of this technique, but it can be avoided by
3D imaging [26].

Stroke volume (SV, µL) is the amount of blood ejected from the left ventricle of the
heart with each systolic cardiac contraction [65]. Some blood that enters the heart near the
end of diastole cannot be expelled during systole. The end-systolic volume is the amount
of blood that remains in the heart at the end of systole [88]. Stroke volume is influenced by
various factors, including fitness levels, sex, heart size, contractility, duration of contraction,
preload, and afterload (resistance) [74]. This parameter can be used to evaluate cardiac
pump function and organ perfusion [64].

SV (µL) = Aod × AoVTI

where Aod is the aorta diastole and Ao VTI is the aorta velocity–time integral.
By computing SV, it is also possible to calculate cardiac output (CO, mL/min), another

essential parameter in echocardiography and cardiology, which measures the volume of
blood the heart pumps per unit of time, typically expressed in liters per minute (L/min). It
serves as an indicator of heart function and can be used to monitor conditions like heart
failure, aortic stenosis, and mitral regurgitation. Normal CO values vary based on factors
such as age, body size, and overall health. CO can be calculated using the following formula
using the values of stroke volume (SV) and heart rate (HR) [149]:

CO (mL/min) = SV × HR

The eccentricity index is a quantitative measure of the spherical shape during the
cardiac cycle, which can be quantified by the ratio of the diameter parallel (D1) and
perpendicular (D2) to the septum at diastole [150]. This measurement is particularly
relevant in the assessment of cardiac remodeling and function [77] and could be useful
in diagnosing variables for patients with suspected pulmonary hypertension [90]. An
eccentricity index that significantly differs from one indicates an alteration in the shape of
the left ventricle. Increased values may suggest a more elongated or distorted left ventricle,
which can be associated with various cardiac conditions [151].

Eccentricity index =
Left ventricle diameter parallel to the septum

Left ventricle diameter perpendicular to the septum
(1)
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Table 3 outlines the calculable echocardiographic parameters and their applicability to
disease and lifestyle models. We recommend that both tables (Tables 2 and 3) be used as
reference points by researchers to determine the most appropriate ultrasound parameters
for a given preclinical model and disease under study.

Table 3. Calculable echocardiographic parameters and their application for diseases/lifestyle models.

Calculable Parameters Disease/Lifestyle Model Reference

CO (mL/min)

Aging [101,109]
Cancer [95]

Cardiac diseases [109]
Cardiotoxicity [116]

Diabetes [11]
Exercise [110]
Obesity [111]

E/A ratio

Arthritis [119]
Cardiac diseases [109]

Exercise [106]
Obesity [111,123,127]

Eccentricity index
Aging [128]

Cardiac diseases [129]
Cancer [130]

EF (%)

Aging [101,113]
Arthritis [152]
Cancer [95,102,106]

Cardiac diseases [109,112,133,153]
Cardiotoxicity [107–109,113,115–117]

Diabetes [43,104,118]
Exercise [110,122]
Obesity [111,123,127,154]

FS (%)

Aging [101,113,155]
Arthritis [119,152]
Cancer [95,102,106]

Cardia diseases [109,112,153]
Cardiotoxicity [107,108,113,116]

Diabetes [43,104,118,125,156]
Exercise [110,119,120,122,126,152]
Obesity [111,127]

LV mass (mg)

Aging [109,113]
Cardiac diseases [109,112]
Cardiotoxicity [117]

Diabetes [43,104]
Obesity [111,123]

LVEDV (mL/m2)

Aging [113,157]
Arthritis [119,158]
Cancer [159]

Cardiac diseases [112,153,160,161]
Cardiotoxicity [113,162]

Diabetes [43,163]
Exercise [119,164,165]
Obesity [166]
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Table 3. Cont.

Calculable Parameters Disease/Lifestyle Model Reference

LVESV (mL/m2)

Aging [113,157]
Arthritis [119,158,167]
Cancer [159]

Cardiac diseases [112,153,161]
Cardiotoxicity [113,162]

Diabetes [43,163]
Exercise [119,164,165]
Obesity [166]

SV (µL)

Aging [101,109]
Cardiac diseases [109,153]
Cardiotoxicity [117]

Diabetes [43,104]
Exercise [110]
Obesity [111,123]

CO, cardiac output; EF, ejection fraction; FS, fractional shortening; LV, left ventricle; LVESV, left ventricular
end-systolic volume; LVEDV, left ventricular end-diastolic volume; SV, stroke volume.

5. Practical Protocol

In this section, we provide a comprehensive protocol for conducting echocardiographic
examinations in studies using rats (Table 4). This protocol delineates the sequential stages
involved in the procedure, from the preparation of the animals to the completion of the
examination. Each stage is systematically organized to guarantee the accurate and efficient
acquisition of cardiac imaging data. Following this protocol ensures the maintenance
of consistency and standardization in echocardiographic studies, thereby enhancing the
reliability and reproducibility of research findings.

Table 4. Recommended protocol for echocardiographic examination in rats: from animal preparation
to echocardiographic procedure and final considerations in the examination process.

Stages Recommendations

Stage 1: Animal preparation

1. Turn on all the necessary equipment
2. Record the animal’s weight accurately
3. Administer the anesthesia of preference to the animal in an induction

chamber (optional)
4. Ensure continuous sedation by placing a nose cone over the animal (optional)
5. Prepare the animal for the procedure by shaving or applying depilatory cream to

the area
6. Position the animal on a heating pad to maintain body temperature

Stage 2: Echocardiographic examination

7. Apply the echo gel to the area and start the examination, adjusting equipment
settings as necessary

8. To obtain the PLAX view, position the transducer over the left third of the animals’
chest wall with the notch oriented toward the right shoulder

9. To obtain the PSAX view, rotate the transducer 90 degrees from the PLAX view,
aligning the transducer’s notch toward the left shoulder

10. To obtain the apical view, position the transducer at the fifth intercostal space in
the left hemithorax. For the four-chamber view, position the transducer at the
cardiac apex and direct it toward the right scapula. For the five-chamber view, tilt
the transducer into a shallower angle relative to the chest wall from the apical
four-chamber view
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Table 4. Cont.

Stages Recommendations

Stage 3: Final steps in the examination

11. Clean off the echo gel from the animal’s body
12. If applicable, allow the animal to recover from anesthesia on the heating pad; once

awake, return the animal to its cage or proceed directly to necropsy
13. Save the collected data and clean and turn off all equipment to conclude

the procedure

6. Applicability of Echocardiography in Preclinical Research

Echocardiography has demonstrated considerable potential as an indispensable tool in
preclinical research, particularly in the context of rodent models. The non-invasive nature of
echocardiography, coupled with its capacity to provide real-time imaging and a functional
assessment of the heart, renders it an optimal technique for a multitude of applications,
including disease modeling, assessment of therapeutic efficacy, and toxicology studies.

Echocardiography is a widely employed technique in the development and validation
of rodent models of cardiovascular diseases [71]. The visualization and quantification
of cardiac structures and functions afforded by this assessment facilitate the study of
disease progression and pathophysiology [168]. The evaluation of systolic and diastolic
function may be conducted through the measurement of parameters such as EF, FS, and
CO [109]. For instance, in rodent models of heart failure induced by methods such as
transverse aortic constriction or myocardial infarction, echocardiography is a valuable
tool for monitoring disease progression and severity [169]. Similarly, in models of cardiac
hypertrophy and cardiomyopathy, as observed in a mouse line that overexpresses the ErbB2
receptor (ErbB2tg) in cardiomyocytes, echocardiography provides insights into changes in
LV mass, concentric LV hypertrophy, and papillary muscle hypertrophy [170]. Furthermore,
echocardiography is employed to examine congenital heart defects in genetically modified
rodent models, enabling the visualization of structural abnormalities and the assessment of
hemodynamic consequences. This facilitated a deeper comprehension of the development
of cardiac anomalies [171].

Echocardiography is also a valuable tool for assessing the efficacy and side effects of
novel therapeutic interventions in rodent models [172]. The capacity of echocardiography
to furnish quantitative data on cardiac function and structure is pivotal for determining the
impact of prospective treatments. As echocardiography is a non-invasive technique, it is
regarded as a significant improvement over the invasive methods typically employed to
assess cardiovascular function in laboratory animals. It allows for longitudinal assessment
of cardiac function, thus enabling the detection of delayed cardiotoxic effects that may
not be apparent in short-term studies [172]. For instance, in a rat model of early type 2
diabetes, echocardiography was used to evaluate cardiac structure and function parameters
following a diet comprising functional bread enriched with resveratrol. This revealed that
maladaptive cardiac remodeling was prevented [104]. Furthermore, echocardiography
can also identify changes in cardiac function that may indicate cardiotoxicity, such as a
reduced ejection fraction or altered myocardial strain. This is of particular importance in
the development of cancer therapeutics, where cardiotoxicity is a common side effect. As
an example, the impact of dantrolene (a postsynaptic muscle relaxant) on the cardiotoxicity
of doxorubicin in a rat model of breast cancer (female F344 rats with implanted MAT B III
breast cancer cells) was assessed using echocardiography. The findings demonstrated that
dantrolene reduced doxorubicin-induced alterations in the echocardiographic parameters
by 50% [173]. Additionally, this technique is valuable for evaluating the influence of aerobic
exercise training on the cardiac remodeling and dysfunction associated with cancer cachexia.
This was demonstrated in a study involving CT26 (colon adenocarcinoma cells 26) tumor-
bearing Balb/c mice, where aerobic exercise training partially reversed the LV ejection
fraction decline [174]. Finally, by monitoring cardiac function at varying doses through
echocardiography, researchers can ascertain dose–response relationships and determine
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the safe therapeutic window for novel compounds, thereby aiding in the determination of
the initial human doses [175].

7. Conclusions

In sum, echocardiography is a powerful tool in preclinical research for exploring car-
diac structure and function non-invasively in rodents. Accurate and reliable data on cardiac
morphology, contractility, and hemodynamics can be obtained by considering factors such
as anesthesia and positioning to ensure the acquisition. In preclinical research, echocardio-
graphy allows the acquisition of valuable pharmacodynamic and safety information that
can be translated into clinical practice. Moreover, standardizing echocardiography in pre-
clinical models may also facilitate the early detection of disease characteristics, potentially
enhancing diagnosis at earlier stages in humans. This is particularly important as patients
are typically diagnosed at later disease stages.

As technology advances, researchers are integrating artificial intelligence, such as
Echo2Pheno, to efficiently and accurately analyze conscious mice echocardiograms [176].
This approach promises to save time and resources compared to manual methods of obtain-
ing image-derived phenotypic measurements, but it addresses sampling bias and provides
a rapid automated solution. Additionally, the integration of echocardiography with other
imaging modalities and omics data could lead to a more comprehensive understanding of
cardiac diseases or treatment-related cardiotoxicity. This would allow for the development
of more precise therapeutic strategies and accelerate the translation of preclinical findings
into clinical applications.
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