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Abstract: In this study, a novel method is proposed to estimate surface-spectral reflectance from
camera responses that combine model-based and training-based approaches. An imaging system is
modeled using the spectral sensitivity functions of an RGB camera, spectral power distributions of
multiple light sources, unknown surface-spectral reflectance, additive noise, and a gain parameter.
The estimation procedure comprises two main stages: (1) selecting the local optimal reflectance dataset
from a reflectance database and (2) determining the best estimate by applying a neural network to
the local optimal dataset only. In stage (1), the camera responses are predicted for the respective
reflectances in the database, and the optimal candidates are selected in the order of lowest prediction
error. In stage (2), most reflectance training data are obtained by a convex linear combination of local
optimal data using weighting coefficients based on random numbers. A feed-forward neural network
with one hidden layer is used to map the observation space onto the spectral reflectance space. In
addition, the reflectance estimation is repeated by generating multiple sets of random numbers, and
the median of a set of estimated reflectances is determined as the final estimate of the reflectance.
Experimental results show that the estimation accuracies exceed those of other methods.

Keywords: surface-spectral reflectance; reflectance estimation; multispectral imaging; local optimal
dataset; neural network; training-based approach; model-based approach

1. Introduction

Knowledge of the surface-spectral reflectances of objects is essential in fields such
as color science, image science and technology, computer vision, and computer graphics.
Therefore, issues in estimating the surface-spectral reflectances from camera responses have
been studied alongside the development of cameras and imaging systems, leading to the
proposal of numerous methods. Methods used to estimate the surface-spectral reflectances
based on camera responses can be classified into two primary approaches: model-based
approach [1–14] and training (or learning)-based approach [15–37].

In the model-based approach, the camera responses are described using camera spec-
tral sensitivities, surface-spectral reflectance, and illuminant spectral power distributions.
This is the traditional and more commonly used approach and includes finite-dimensional
modeling methods [1,3] and Wiener estimation methods [4–12]. Wiener estimation methods
are based on a statistical approach in which noise in the imaging system and a certain spec-
tral reflectance statistic are considered. Linear minimum mean square error (LMMSE) [13] is
an improved Wiener estimation method. Recently, a method [14] was proposed to estimate
the surface-spectral reflectances from camera responses using a local optimal reflectance
dataset, in which a spectral reflectance database was utilized to locally determine the
candidates to optimally estimate the spectral reflectance. The best spectral reflectance was
effectively estimated using only the local optimal dataset without using the entire spectral
reflectance database.
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The training-based approach is typically constructed without knowledge of the camera
spectral sensitivities and illuminant spectral distributions. Rather, it uses a large training
dataset, which is a large table comprising a pair of camera responses and the corresponding
spectral reflectances. Regression methods directly establish the relationship between RGB
responses and spectral reflectances and include support vector regression [19,20], kernel
regression [21,22], and linear regression [23,24].

In recent years, neural networks have been used in reflectance estimation problems
in many areas. In fact, material reflectance or albedo was estimated based on a neural
network approach [28–31]. A neural network approach was proposed for leaf chlorophyll
and carotenoid estimation using hyperspectral reflectance [32]. Soil organic carbon was
predicted using VNIR spectroscopy employing neural network modeling [33]. Material
type recognition was considered based on IR reflectances and color images [34].

Regarding spectral reflectance estimation, the use of neural networks has been con-
sidered to construct a map between the low-dimensional color signal space and higher-
dimensional spectral space [35–37], where a neural network model optimized to predict
color reflectance for multiple coating products was demonstrated in [35], and a map be-
tween the CMYK color space and the spectral space using neural networks was proposed
in [36]. In [37], a neural network method to estimate spectral reflectance was applied to
a dual imaging system with a color projector and color camera, where mapping was con-
structed between six-dimensional color signals and the spectral space. The neural network
was then trained using numerous samples with known spectral reflectance, including the
Munsell dataset and the 24 color checker dataset.

In this study, we propose a novel method that combines model- and training-based
approaches to improve the estimation accuracy of spectral reflectance from image data. The
proposed method comprises two stages. The first stage is based on the model base, where
the local optimal reflectance dataset is selected as a set of the most reliable candidates for
reflectance estimation from a standard reflectance database. The second stage employs a
training-based method, where the best estimate is determined by applying a neural network
method to the selected local optimal dataset only. Our imaging system is a multispectral
image acquisition system extended from a simple RGB system, in which an RGB camera
captures multiple images of an object scene under multiple light sources with different
illuminant spectra in the visible range.

In the following, Section 2 describes the observation model for an image-acquisition
system that uses an RGB camera and multiple light sources. We adopt a general model
in which the camera responses are described by combining camera spectral sensitivities,
illuminant spectral power distributions, unknown surface-spectral reflectance, additive
noise terms, and a gain parameter.

Section 3 describes the development of the proposed spectral estimation method.
First, we describe the selection of the local optimal reflectance dataset. The actual camera
responses for the target object are compared with the observations predicted from the
respective spectral reflectances in the reflectance database. Prediction errors are calcu-
lated for all reflectances in the database, and the local optimal candidates for reflectance
estimation are selected in the order of the lowest prediction error. Second, we determine
the best reflectance using a neural network based only on a locally optimal dataset. A
random convex linear combination of the local optimal dataset becomes the training data of
reflectance for the neural network, and the network is trained to minimize the mean square
error (MSE). An additional procedure is presented to obtain reliable reflectance estimates.

Section 4 presents the experiments performed to validate the proposed methods for
estimating the surface spectral reflectances. Various mobile phone cameras, LED light
sources, a standard spectral reflectance database, and standard test samples are used in
these experiments. The performance of the proposed method is examined in detail and
compared with that of other methods.

Section 5 discusses the relationship between the statistics of the random numbers used
and estimation accuracy.
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2. Observation Model

The observation model of our image-acquisition system is shown in Figure 1 (see [14]).
It was constructed using an RGB camera with three color channels (c = 1, 2, 3) and multiple
light sources with L different illuminant spectra (l = 1, 2,..., L). Hence, we obtained m = 3L
observations for a single target object. The observation yi of the camera outputs is expressed
as follows:

yi = g
∫ 700

400x(λ)el(λ)rc(λ)dλ + ni,
(i = 1, 2, . . . , m),

(1)

where x(λ) is the surface-spectral reflectance of the target object, el(λ) (l = 1, 2, . . ., L)
represent the spectral power distribution of the light sources, rc(λ) (c = 1, 2, 3) denote the
spectral sensitivity functions of the camera. The wavelength λ is in the visible range of
400–700 nm. The additive noise ni in the imaging system is assumed to be white noise
with zero mean and variance a and is uncorrelated with x(λ). Here, yi represent the digital
camera outputs, while x(λ), el(λ), and rc(λ) are physical quantities. The coefficient g in
Equation (1) is a gain parameter used to convert the model outputs to the practical digital
output. The parameter g is unique to the imaging system and depends on the conditions
of the imaging system, such as the locations of the camera and light sources, including
illumination intensities. How to determine the noise variance a and the gain parameter g
was shown in [13].
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The spectral functions of reflectance, illuminants, and sensitivities are sampled at n
wavelength points with equal intervals in the range of 400–700 nm and described using
n-dimensional column vectors as follows:

x =


x(λ1)
x(λ2)

...
x(λn)

, el =


el(λ1)
el(λ2)

...
el(λn)

, rc =


rc(λ1)
rc(λ2)

...
rc(λn)

, (2)

where i = 1, 2, . . ., L and c = 1, 2, 3. The discrete representation of the observation model is
expressed as

y = gAx + n, (3)

where

y =


y1
y2
...

ym

, A =


(e1.∗r1)

t∆λ

(e2.∗r2)
t∆λ

...
(eL.∗r3)

t∆λ

, n =


n1
n2
...

nm

 (4)

The symbol (.*), superscript t, and ∆λ represent element-wise multiplication, matrix
transposition, and the wavelength sampling interval, respectively. Therefore, A is an
(m × n) matrix defined by the illuminant spectra and spectral sensitivities, and n is an
n-dimensional noise vector.
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3. Reflectance Estimation Method
3.1. Selection of Local Optimal Reflectance Dataset

Figure 2 shows the standard database of surface-spectral reflectance used in this
study, which comprises Dupont spectral data, Munsell spectral data, and various object
spectral data, including manmade objects such as papers, paints, and plastics, as well as
natural objects such as rocks, leaves, skins, oranges, and apples. This database is available
at http://ohlab.kic.ac.jp/ (accessed on 1 July 2024), which is a dataset of 1776 spectral
reflectances. Let ND (1776) be the number of spectral reflectances in a database. All spectral
curves are sampled at 61 (=n) points with 5 nm intervals in the visible range of 400–700 nm
and represented by 61-dimensional column vectors xi (i = 1, 2,. . . , ND).
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Figure 2. Database of surface-spectral reflectance.

First, the observations are predicted using Equation (3) as an gAxi for each spectral
reflectance xi in the database. The prediction error for observation y is then calculated
as follows:

Li = ∥y − gAxi∥2
2 (i = 1, 2, . . . , ND), (5)

where norm ∥•∥2
2 is defined as ∥z∥2

2 = z2
1 + z2

2 + . . . + z2
m. Secondly, the prediction errors

are arranged in ascending order as L(1) ≤ L(2) ≤ · · · ≤ L(ND), and the corresponding
spectral reflectances are x(1), x(2), . . .,x(ND). Finally, the first K spectral reflectances,x(1), x(2),
. . .,x(K) are selected as local optimal candidates to estimate the spectral reflectance.

3.2. Determination of Reflectance Estimate Using Neural Network

The best estimate is determined using a neural network based only on the local optimal
dataset

(
x(1), x(2), . . . , x(K)

)
.

3.2.1. Making the Training Data

The training data are a large table comprising a pair of spectral reflectances and
corresponding observations. The training data for the spectral reflectance are composed of
the original local optimal dataset obtained in Section 3.1 and the augmented data made
by the convex linear combination of the local optimal dataset. Let NT be the number of

training data and
^
xi (i = 1,2,. . ., NT) be the spectral reflectance used for training. The spectral

reflectances are described as

^
xi = x(i), (i = 1, 2, . . . , K)
^
xi = α1x(1) + α2x(2) + · · · + αKx(K), (i = K + 1, K + 2, . . . , NT),

(6)

http://ohlab.kic.ac.jp/
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where the scalar weighting coefficients are normalized as

K
∑

i=1
αi = 1, αi ≥ 0.

(i = 1, 2, . . . , K).
(7)

In particular, we make the coefficients using random numbers as

αi = ui/(u1 + u2 + · · · + uK) (8)

where ui is the random number with a uniform distribution over [0, 1]. Each component

of the generated
^
xi in (6) lies between 0 and 1. The corresponding training data for the

observations are as follows:

^
yi = gA

^
xi + ni, (i = 1, 2, . . . , NT) (9)

where ni is the m-dimensional noise vector, whose j-th element (ni)j (j = 1, 2,. . . , m) is
assumed to be Gaussian white noise with zero mean and variance a. Therefore, we gener-
ate additive noise using the random number randn with a standard normal distribution
as follows:

(ni)j =
√

a ∗ randn (10)

3.2.2. Network Architecture and Learning Procedure

We use a simple feed-forward neural network with one hidden layer to construct
a mapping from the observation space to the spectral reflectance space. Because the
observation and reflectance spaces have m- and n-dimensions, respectively, the network is
constructed with a structure of m-N-n, as shown in Figure 3, where N indicates the number
of units in the hidden layer.
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The MATLAB machine learning functions are used to construct the network [38].
Network training is performed using the following:

net = feedforwardnet(N),

net = train(net, xdata, tdata),

where xdata and tdata indicate the training dataset and corresponding target (output)
dataset, respectively, which have the following forms:

xdata = [xdatatrain, xdataval, xdatatest],
tdata = [tdatatrain, tdataval, tdatatest]

The entire training data of spectral reflectances
^
xi (i = 1, 2, . . . , NT) are segmented

randomly into xdatatrain for the network training and xdataval for validation. In the same

way, the entire training data of the corresponding observations
^
yi (i = 1, 2, . . . , NT) are

segmented into tdatatrain and tdataval. The training algorithm is based on the Levenberg–
Marquardt method, and the training is iterated to reduce the MSE to an acceptable level.
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The spectral reflectance corresponding to the test observation data tdatatest is predicted
using the trained network, as follows:

xest = sim(net, tdatatest).

3.2.3. Determining the Optimal Reflectance Estimate

Because the augmented training data are generated using random numbers, the
reflectance estimates predicted above for spectral reflectance may include outliers that
differ significantly from the predictions. To improve the reliability of the reflectance
estimation, the reflectance estimation is repeated, and then the median in a set of the
estimated reflectances is determined as the final spectral reflectance.

^
xfin = median({xest})

Suppose we repeat the estimation process R times. Let xj,(k) be the estimate of the j-th
element of the n-dimensional vector xest in the k-th trial, arranged in ascending order as
xj,(1) ≤ xj,(2) ≤ · · · ≤ xj,(R). The final estimate after taking the median is then described for
odd and even numbers of iterations R as follows:

x̂j, fin =

{
xj,( R+1

2 ) R : odd
1
2

(
xj,( R

2 )
+ xj,( R

2 +1)

)
R : even

(j = 1, 2, . . . , n) (11)

Figure 4 depicts the overall flow of the proposed method for estimating spectral
reflectance in three steps.
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4. Experimental Results
4.1. Experimental Setup

We performed experiments to validate the superiority of the proposed method for
estimating surface-spectral reflectance from image data. We used a mobile phone camera,
LED light sources, a standard spectral reflectance database, and standard test samples. The
mobile phone camera was an Apple iPhone 6s with iOS; to further confirm the validity
of the different cameras, we additionally used an Apple iPhone 8 with iOS and a Huawei
P10 lite with Android OS. Figure 5 shows the relative RGB spectral sensitivity functions
of the Apple iPhone 6s. The numerical data for the spectral sensitivities are available
at http://ohlab.kic.ac.jp/ (accessed on 1 July 2024). Camera images were captured in a
lossless raw image format in an Adobe digital negative format. The dark response was
measured under dark conditions and was discarded from the camera output. The camera
depth was 12 bits.

http://ohlab.kic.ac.jp/
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Figure 5. Relative RGB spectral sensitivity functions of the Apple iPhone 6s [14].

The illumination light sources were seven (L = 7) LED light sources, the spectral power
distributions of which are shown in Figure 6. The standard spectral reflectance database
used in the experiments is shown in Figure 2. An X-Rite Color Checker Passport Photo
was used as the standard test target to validate the reflectance estimation. This target
comprised 24 color checkers whose spectral reflectance values were measured using a
spectral colorimeter.
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Spectralon was used as a white reference standard to investigate the statistical proper-
ties of this imaging system, which was placed near the target samples. The positions are
similar to those in the previous paper [13]. The parameters g and a of the gain and noise
variance in the observation model, respectively, were determined using the calibration
method in [13] based on the Spectralon data.

Since neural network processing takes a lot of time, we used a PC equipped with an
NVIDIA GeForce RTX Graphics Processing Unit (GPU).

4.2. Bacic Performance of Proposed Method

In a previous study [14], we investigated the number K of local optimal reflectance
candidates using different reflectance estimation methods and found that the appropriate
K value was in the range of 5–50. Therefore, we set K = 25 in the current experiments
and generated the training data based on the local optimal dataset

(
x(1), x(2), . . . , x(25)

)
.

The 600 augmented reflectance data were obtained by linear combinations of the 25 local
optimal reflectances according to Equations (6)–(8). Overall, we had 625 (NT) spectral
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reflectances as training data. Matrix A was created using the spectral sensitivity functions
shown in Figure 5 and the spectral distributions of the light sources shown in Figure 6.

The corresponding training data for the observation
^
yi were made for the respective

reflectance
^
xi (i = 1,2,. . ., 625). The locally optimal reflectance dataset and training data

were determined for each test target sample.
Our feedforward network had a structure of 21-80-61 in Figure 3, which was con-

structed with 21 inputs, 1 hidden layer of 80 units, and 61 outputs. The total number of
reflectance and observation pairs in our dataset for each sample was 625. Of these, 550 were
randomly selected for training the network, and the remaining 75 were used as validation
data to investigate the proposed network method. Each pair of training data constituted the
network input and output. One period in which the entire training dataset was presented
was defined as an epoch. The training was iterated for as many epochs as necessary to
reduce the MSE to an acceptable level. After eight epochs, the error in the validation data
was sufficiently small.

The observation data for each test sample were input into the learned neural network
to obtain an estimate of the spectral reflectance xest. Furthermore, to improve the estimation
accuracy, we repeated the learning and testing process 10 times and finally adopted the

median in the estimated reflectance set {xest} as the final spectral reflectance estimate
^
xfin.

Figure 7 shows the estimation results of the above procedure for the 24 spectral
reflectance of the X-Rite Color Checker. In the figure, two types of curves are compared:
bold curves indicate the estimated spectral reflectances for the 24 color checkers, and broken
curves indicate the directly measured spectral reflectances. The average root-mean-square
error (RMSE) was calculated as the root of the average of the squared norm of the estimation
error per wavelength over the 24 color checkers:

Ê[RMSE] =

{(
24

∑
i=1

∥∥∥∥xi −
^
xfin,i

∥∥∥∥2
/61

)
/24

}1/2

(12)
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Figure 7. Estimation results of the spectral reflectances for the 24 color checkers when applying the
proposed method to the observations using the iPhone 6s. The bold and broken curves indicate,
respectively, the estimated and directly measured spectral reflectances for the 24 color checkers.

The average RMSE was 0.0173. The estimated spectral curves in Figure 7 were smoothed
using moving-average processing. However, this process hardly changed the errors.

Furthermore, the performance of the proposed method was compared with those of
other well-known state-of-the-art methods for estimating spectral reflectance. The estima-
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tion accuracies of the six methods were investigated using the same reflectance database,
camera data, and test samples described above. Figure 8 compares the average RMSEs be-
tween the proposed method and the other methods, where the symbols of Wiener, LMMSE,
L_Wiener, L_LMMSE, Lp, and Qp represent the six estimation methods of (1) original
Wiener, (2) original LMMSE [13], (3) local Wiener, (4) local LMMSE, (5) linear programming,
and (6) quadratic programming [14], respectively. The local optimal dataset was used in
Methods (3)–(6). The estimation accuracy of the proposed method is significantly superior,
although the RMSEs of (3)–(6) vary slightly depending on the number of local optimal
reflectance candidates K.
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The symbols of Wiener, LMMSE, L_Wiener, L_LMMSE, Lp, and Qp represent the six estimation meth-
ods of (1) original Wiener [13], (2) original LMMSE [13], (3) local Wiener [14], (4) local LMMSE [14],
(5) linear programming [14], and (6) quadratic programming [14], respectively.

4.3. Effectiveness of Local Optimal Reflectance Dataset

To confirm the effectiveness of the local optimal reflectance dataset in estimating
spectral reflectance, we examined several reflectance estimation methods without using the
local optimal dataset and with only a neural network. All the data in the standard spectral
reflectance database were used without selection.

First, by making the network structure multilayered and large-scale, complex mapping
becomes possible to ensure that the estimation accuracy can be improved, even if learning
takes a long time. Based on this idea, we constructed networks with three hidden layers
with two types of structures: (1) 21-30-30-30-61 and (2) 21-30-40-50-61. The total number of
training datasets was 1776; of these, 1576 reflectances were used for network training, and
200 reflectances were used for validation. The average RMSE after 10 epochs was 0.033003
and 0.0300666 for (1) and (2), respectively. Figure 9 shows the results estimated by network
method (2) for the 24 spectral reflectances of the color checker. The estimation accuracy is
significantly worse than the results in Section 4.2.

Next, we considered improving the estimation accuracy by increasing the amount of
training data. Additional spectral reflectances were obtained by augmentation with a con-
vex linear combination of the original reflectance data. We randomly selected 10 reflectances
from the original dataset and augmented the data using a convex linear combination of
these, where the weighting coefficients were normalized to satisfy Equation (7). Among
the data, 4000 reflectances were used for network training, and 200 reflectances were used
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for validation. The network structure was 21-30-30-30-61. In this third case (3), the average
RMSE after 10 epochs was 0.031144.

Thus, we see that the local optimal reflectance dataset is crucial for estimating the
spectral reflectance.
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Figure 9. Estimation results of the spectral reflectances for the 24 color checkers when applying the
network method (2) to the observations using the iPhone 6s without using the local optimal dataset.
The bold and broken curves indicate, respectively, the estimated and directly measured spectral
reflectances for the 24 color checkers.

4.4. Validity to Different Cameras

The performance evaluation described above was based on a single mobile phone
camera, iPhone 6s. To further confirm the validity of the different cameras, we used an
Apple iPhone 8 with iOS and Huawei P10 lite with Android OS. The spectral sensitivity
function data for these cameras are available at http://ohlab.kic.ac.jp/ (accessed on 1 July
2024). The LED light sources, spectral reflectance database, and test samples of the 24 color
checkers were the same as those shown in Section 4.1. Parameters g and a in the observation
model were determined using the same calibration method.

The 24 spectral reflectances of the X-Rite Color Checker were estimated based on
the proposed method using observations from each camera, and the estimation accuracy
was validated through comparison with other methods. The average RMSEs were 0.0144
and 0.0281 for Phone 8 and Huawei P10 lite, respectively. The estimation error increased
when a Huawei camera was used. Figures 10 and 11 compare the average RMSEs between
the proposed method and the six other methods for the iPhone 8 and Huawei P10 lite,
respectively. The estimation accuracies of the proposed method are overwhelmingly
superior for both cameras, as demonstrated in the iPhone 6s.

http://ohlab.kic.ac.jp/
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5. Discussion
5.1. Relationship between the Statistics of Random Numbers and Estimation Accuracy

Most training data for spectral reflectance are augmented data generated by a linear
combination of local optimal datasets. The weighting coefficients are calculated using
random numbers. Therefore, the final spectral reflectance estimates are affected by the
statistics of the random numbers used.

The augmented spectral reflectances defined in Equations (6)–(8) are rewritten as follows:

^
x =

K

∑
i=1

ui
u1 + u2 + · · · + uK

x(i), (i = 1, 2, . . . , K) (13)

where x(i) are the local optimal reflectances and ui are independent and identically dis-
tributed random numbers with ui > 0. Let σ and u be the standard deviation and mean of
ui, respectively. The coefficient of variation Cv is then defined as the standard deviation
divided by the mean as

Cv =
σ

u
. (14)

This measure is a statistical index showing the relative variation of the random numbers.
Let us calculate Cv for specific distributions of random numbers.
(a) When ui following a uniform distribution over [0, 1], Cv = 1√

3
.
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(b) When ui following a chi-square (χ2) distribution with one degree of freedom,
Cv =

√
2.

In case (b), the variation is
√

6 times larger than that in case (a).
Because the coefficient of variation differs depending on the distribution of the random

numbers, it is likely to affect the final estimation accuracy of the spectral reflectance.
Therefore, in addition to the above experiments using uniform random numbers, we
conducted experiments on spectral reflectance estimation using random numbers with
a chi-square distribution and compared the estimation accuracies in both cases. Table 1
compares the average RMSEs of the reflectance estimation using random numbers with
two different distributions and three different cameras. The training data for spectral
reflectance based on uniform random numbers with smaller Cv are superior in terms of
estimation accuracy.

Table 1. Comparison of the average RMSEs in reflectance estimation when using random numbers
with two different distributions and using three different cameras.

iPhone 6s iPhone 8 Huawei P10 Lite

Uniform distribution 0.0173 0.0144 0.0281

Chi-square
distribution 0.0195 0.0158 0.0296

5.2. Evaluation by Color Difference

In this study, RMSE is mainly used for evaluating the accuracy of reflectance estimation.
To make clear to what extent the deviation in the estimated reflectances is visible to the
human eye, color difference rather than the RMSE of spectral difference may be useful.
Therefore, we calculated CIEDE2000 values between the estimated reflectances and directly
measured spectral reflectances for the 24 color checkers.

Table 2 compares the average RMSEs and the (average, median, 90% percentile)
CIEDE2000 values between the three different methods of the original LMMSE [13], the
quadratic programming using local optimal reflectance dataset [14], and the proposed
method. The RMSEs were computed based on the spectral differences between estimated
reflectances and directly measured spectral reflectances for the 24 color checkers, and the
CIE DE2000s were calculated based on the color differences under CIE D65 light between
estimated reflectances and directly measured spectral reflectances for the 24 color checkers.

Table 2. Comparison of the average RMSE and the (average, median, 90% percentile) CIEDE2000
values between the three different methods of the original LMMSE, the quadratic programming, and
the proposed method.

RMSE
Average

CIEDE2000
Average

CIEDE2000
Median

CIEDE2000
90% Percentile

Original LMMSE [13] 0.0347 2.756 3.090 3.726

Quadratic programming [14] 0.0272 1.576 1.060 3.653

Proposed method 0.0173 1.087 0.0677 2.790

6. Conclusions

In this study, we have proposed a novel method that combines model-based and
training-based approaches to improve the estimation accuracy of surface-spectral re-
flectance from the camera response to an object surface. A multispectral image acquisition
system was modeled in the visible wavelength range using three spectral functions: the
spectral sensitivities of an RGB camera, spectral power distributions of multiple LED light
sources, and unknown surface-spectral reflectance. Camera response was described as a
generalized linear model that includes additive noise and a gain parameter.

The proposed method comprised two main stages: the first stage was based on the
model base, where the local optimal reflectance dataset was selected as the most reliable



J. Imaging 2024, 10, 222 13 of 15

candidate set from a standard reflectance database, and the second stage was based on
the training-based method, where the best estimate was determined by applying a neural
network method to the selected local optimal dataset only.

In the first stage, the camera response observations were predicted for the respective
reflectances in the database, and the local optimal candidates were selected in the order
of the lowest error between the real observation and prediction. In the second stage, the
training data for spectral reflectances consisted of the original locally optimal dataset and
augmented data generated by a convex linear combination of this dataset, with weighting
coefficients derived from random numbers. A simple feedforward neural network with
one hidden layer was used to construct the mapping from the low-dimensional observation
space using the camera response to the high-dimensional spectral reflectance space.

The neural network was trained to minimize MSE. To further improve the reliability of
the estimate, the reflectance estimation was repeated, and the median in a set of estimated
reflectances was determined as the final spectral reflectance.

Experiments were conducted using 3 mobile phone cameras, 7 LED light sources, a
standard spectral reflectance database with 1776 reflectances, and 24 color checkers. The
performance of the proposed method was examined in detail. We investigated estima-
tion methods based on a neural network using the entire database without selection and
confirmed the effectiveness of the local optimal reflectance dataset. We demonstrated
that the estimation accuracies of the proposed method exceed those of the other methods.
Furthermore, we discussed the statistics of the random numbers used, which affects the
estimation accuracy.

The strength of the proposed method is its outstanding estimation accuracy. However,
the computation time for the current approach is long. When using a laptop computer
equipped with an NVIDIA GeForce RTX GPU, it took about 25 h to obtain the estimation re-
sults for 24 color checkers after repetition of the learning and testing process 10 times. A key
challenge for the future is reducing the computation time required for obtaining estimation
results, which is heavily dependent on the processing speed of the computer used.
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