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Abstract: Road conditions, often degraded by insufficient maintenance or adverse weather, signifi-
cantly contribute to accidents, exacerbated by the limited human reaction time to sudden hazards like
potholes. Early detection of distant potholes is crucial for timely corrective actions, such as reducing
speed or avoiding obstacles, to mitigate vehicle damage and accidents. This paper introduces a novel
approach that utilizes perspective transformation to enhance pothole detection at different distances,
focusing particularly on distant potholes. Perspective transformation improves the visibility and
clarity of potholes by virtually bringing them closer and enlarging their features, which is particularly
beneficial given the fixed-size input requirement of object detection networks, typically significantly
smaller than the raw image resolutions captured by cameras. Our method automatically identifies
the region of interest (ROI)—the road area—and calculates the corner points to generate a perspec-
tive transformation matrix. This matrix is applied to all images and corresponding bounding box
labels, enhancing the representation of potholes in the dataset. This approach significantly boosts
detection performance when used with YOLOv5-small, achieving a 43% improvement in the average
precision (AP) metric at intersection-over-union thresholds of 0.5 to 0.95 for single class evaluation,
and notable improvements of 34%, 63%, and 194% for near, medium, and far potholes, respectively,
after categorizing them based on their distance. To the best of our knowledge, this work is the first to
employ perspective transformation specifically for enhancing the detection of distant potholes.

Keywords: autonomous vehicles; perspective transformation; deep learning; pothole detection;
computer vision; mobile robotics

1. Introduction
1.1. Pothole Detection Importance for Autonomous Vehicles

Potholes, commonly found in asphalt pavements, are caused by water weakening the
underlying soil and repeated traffic wear. Factors such as temperature fluctuations causing
expansion and contraction, poor drainage allowing water infiltration, and the use of low-
quality materials further contribute to the formation of depressions or holes in the road
surface [1–3]. These can vary in severity and pose significant hazards, such as suspension
damage, tire punctures, and even accidents, by causing loss of control or immobilization of
vehicles. The dangers of potholes extend to both vehicles and pedestrians, highlighting the
critical need for efficient detection systems.

In 2011, poor road conditions caused around 2200 deaths in India, while in the U.S.,
one-third of the 38,824 traffic deaths in 2020 were linked to substandard roads. Michi-
gan, with some of the worst potholes, spent millions annually on repairs, highlighting
the widespread impact of this issue. Effective pothole detection is crucial, particularly
for autonomous vehicles, which rely on accurate hazard detection to ensure safe oper-
ation. This need is underscored by the potential damages and safety risks associated
with potholes, emphasizing the importance of accurate and timely detection systems to
mitigate these dangers.

J. Imaging 2024, 10, 227. https://doi.org/10.3390/jimaging10090227 https://www.mdpi.com/journal/jimaging

https://doi.org/10.3390/jimaging10090227
https://doi.org/10.3390/jimaging10090227
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com
https://orcid.org/0009-0004-8323-7501
https://orcid.org/0000-0001-9518-2828
https://orcid.org/0000-0002-3473-6978
https://doi.org/10.3390/jimaging10090227
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com/article/10.3390/jimaging10090227?type=check_update&version=2


J. Imaging 2024, 10, 227 2 of 22

1.2. Human Response to Potholes

When a driver encounters a pothole, the human reaction time to apply the brakes
can vary. For simple tasks, the average human reaction time is often quoted as 0.2 s [4].
However, for more complex tasks, such as emergency braking when a pothole is de-
tected, the reaction time is typically longer. These times can be greatly affected by the
driver’s alertness and the expectation of the need to brake [5]. Hence, detecting pot-
holes from a greater distance is crucial, as it provides the driver more time to react and
navigate safely around the hazard. In addition, far pothole detection allows drivers to
prepare and adjust their driving accordingly, reducing the likelihood of sudden maneuvers
that can lead to accidents.

In contrast to human drivers, an AV equipped with pothole detection systems can
identify and respond to potholes in real time. These systems can modulate vehicle speed
and position upon detecting a potential pothole and sometimes ensure the vehicle remains
within its lane while minimizing impact. This rapid and precise response can significantly
improve road safety by allowing the vehicle to take immediate action to avoid the pothole
or minimize impact, thus reducing potential damage and improving overall vehicle control.

1.3. Pothole Detection Methods

The implementation of pothole detection systems in AV offers several advantages. Not
only does it improve road safety by reducing the risk of accidents caused by potholes, but
it can also contribute to more efficient road maintenance by providing accurate and timely
data on the locations and severity of potholes. Moreover, detecting and avoiding potholes
can reduce the fuel consumption, wear and tear, and maintenance costs of a vehicle [6]. In
addition, it can indirectly decrease the total travel time in some cases [6].

Potholes are detected and observed in different ways, including manual human
detection, vibration-based detection, sensor-based detection, and vision-based detection.
Human observation is the traditional method for detecting potholes. [7]. Drivers must look
out for potholes while driving and react quickly to avoid them, which can lead to dangerous
situations. This approach is inconsistent due to human error and is inefficient for detecting
multiple objects. In addition, vibration-based detection methods use accelerometers to
detect potholes based on the vibration information of the acceleration sensors attached to
the vehicle [8]. This method is cost-effective and suitable for real-time processing. However,
it has limitations in providing the exact shape of potholes and could provide incorrect
results, as road joints can be misidentified as potholes [9]. Moreover, this method is not
suitable for detecting potholes in order to avoid or act towards reducing their effect on
the vehicle. Sensor-based detection methods, such as light detection and ranging (LiDAR)
and radio detection and ranging (RADAR), use electromagnetic waves to detect potholes.
LiDAR uses light waves [10], providing high-resolution data and precision [11]. However,
it can be expensive, making it less feasible for widespread use in AVs. RADAR, on the
other hand, uses radio waves and is superior in terms of cost and ability to monitor large
areas [11]. Nevertheless, its lower resolution compared to LiDAR makes it difficult to
track and distinguish objects in crowded environments, a common scenario for AVs [12].
Additionally, computer vision techniques for pothole detection have gained popularity
due to the accessibility and feasibility of cameras, especially for AVs. These techniques use
images or videos as input data and apply deep learning and image processing techniques
to detect potholes. Although each method has its strengths and weaknesses, computer
vision techniques offer significant advantages in terms of cost-effectiveness, precision, and
the ability to integrate with other data sources for pothole detection. Hence, our work is
purely focused on vision-based detection techniques.

1.4. Challenges in Potholes Detection

Deep learning and vision-based approaches for pothole detection face significant
challenges, particularly related to the handling of object detection tasks involving small
and distant objects. A critical limitation stems from the requirement to resize images to
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a fixed, smaller size to ensure reasonable processing times. This resizing is necessary
because models trained on high-resolution images demand substantial computational
resources, leading to impracticalities in real-time applications. As a result, small objects,
such as potholes, especially those far away, often become indistinguishable when images
are downscaled. The reduction in size leads to a loss of crucial details, making it challenging
for the model to accurately detect and classify these objects. This issue is exacerbated by
the fact that more complex models, while potentially offering increased accuracy, do not
necessarily resolve the problem of lost detail due to image downscaling.

Moreover, the utilization of high-resolution images in training object detection models
is hindered by the immense complexity of the search space. High-dimensional data require
more extensive computational resources and can significantly slow down the training and
inference processes. This trade-off between image resolution and processing efficiency
is particularly problematic in real-time applications such as autonomous driving, where
rapid detection and response are crucial for safety. The need to rescale high-definition
images to lower resolutions introduces a bottleneck in object detection systems. The act
of rescaling can lead to a substantial loss of fine-grained features that are essential for
accurately identifying potholes, thereby compromising the model’s performance. One
proposed solution to mitigate these challenges is the use of perspective transformation.
Unlike conventional resizing, perspective transformation selectively focuses on a region
of interest (ROI) within an image, such as the area containing a pothole. This approach
preserves critical features by altering the viewing angle, effectively enlarging the ROI and
reducing the prominence of irrelevant areas. While this method does not introduce new
features, it helps retain more of the significant details associated with the potholes, thereby
improving detection accuracy. Although theoretically training a model on full-resolution
images would be ideal, it is practically unfeasible due to computational constraints. Hence,
perspective transformation offers a practical compromise, allowing the retention of essential
features while maintaining manageable processing times, thus enhancing the robustness
and effectiveness of pothole detection in autonomous vehicle systems.

1.5. Proposed Method: Vision-Based Pothole Detection Using Perspective Transformation

To address these challenges, we present a novel approach that leverages perspective
transformation to enhance pothole features. Perspective transformation is an image pro-
cessing technique that alters the viewing angle of potholes from the perspective of the
vehicle or driver to a bird’s-eye view [13]. This transformation is based on four source
points extracted from the values of the bounding box and the location of the pothole pixels.
These points represent the ROI to be transformed. Our method proposes an automated
selection of these four points by considering all bounding box values in the dataset, thereby
reducing human intervention and creating an ROI that is optimal for all images and their
bounding boxes.

The perspective transformation modifies the image, enlarging the ROI and minimizing
the scale of irrelevant portions. This technique effectively simulates bringing the potholes
closer, thereby improving feature extraction. By applying perspective transformation, we
generate a magnified and standardized view of the pothole region within the image. This
enhanced view enables the computer vision algorithm to more effectively extract image
features such as color, edges, contours, and size, significantly improving the accuracy of
pothole detection, particularly for those located at a distance. Figure 1 shows the framework
overview of our approach compared to the naive approach.

We summarize the contributions of our work as follows:

1. We developed an automated perspective transformation algorithm that selects the
ROI—the street area containing potholes from the vehicle’s perspective—resulting in
the generation of a transformation matrix. The matrix warps the image, excluding
irrelevant areas like the sky, while enhancing pothole features by making distant ones
appear closer for easier detection.
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2. Using this matrix to transform the input data before model inference significantly
boosts the accuracy and robustness of pothole detection with limited impact on
runtime. To the best of our knowledge, this is the first study to utilize perspective
transformation in this manner to enhance pothole detection performance.

3. We propose an intuitive evaluation strategy to assess the pothole detection models’ per-
formance across potholes at three distance ranges (near, medium, and far), demonstrating
the potential of our approach in improving pothole detection at far distances.

Figure 1. Comparison between the naive approach and our proposed approach. The naive approach
involves loading the raw input image and then simply downscaling it to the required input resolution
for the object detection network, losing significant image features and resulting in undetected potholes.
Meanwhile, our approach demonstrates successful and robust pothole detection by transforming the
input image to primarily retain the region of interest and minimize irrelevant segments of the image.
Ground-truth pothole labels and predicted potholes are represented by green and red bounding
boxes, respectively. Street and rescaling icons created by Trevor Dsouza and Doodle Icons via
TheNounProject.com (accessed on 1 August 2024).

2. Related Work

Numerous studies have investigated various computer vision and image processing
techniques for automated pothole detection using visual road imagery. However, the
majority of these approaches have focused more on pothole classification rather than de-
tection. Furthermore, most of the papers have not exclusively used the same dataset as
our study, making direct comparisons between our work and these studies challenging.
Additionally, other research has highlighted the significance of utilizing perspective trans-
formation in object detection applications. The following sections review some of the
aforementioned approaches.

2.1. Vision Approaches

Basic vision approaches in pothole detection have leveraged simple image-processing
techniques to identify road defects. For example, Nienaber et al. [14] utilized road color
modeling combined with edge detection, while Pereira et al. [15] employed a basic four-
layer CNN while using images captured by a mobile phone, limiting the practicality of the
work. These methods provide cost-effective solutions without the need for complex sensors
or deep learning architectures. However, they suffer from limitations in generalizability
across diverse road conditions. Furthermore, the precision needed for real-time application
is lacking and the absence of comprehensive visual analyses and separate test sets under-
mines the reliability of their results, which could be affected by the lack of a pothole dataset
from a vehicle perspective.

TheNounProject.com
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Deep learning techniques have shown great potential in developing more powerful
models for pothole detection and classification. Chen et al. [16] focused on classification
tasks, using location-aware CNNs to identify areas likely to contain potholes. Additionally,
Dhiman et al. [17] reported promising results by employing transfer learning with Mask
R-CNN and YOLOv2. Although these models demonstrate high classification accuracy,
they are computationally expensive and struggle with precise localization. Additionally,
the two-stage nature of some pipelines, such as those of Chen et al., can introduce further
computational overhead. The performance of these models is also heavily dependent on
high-quality input data, and challenges in real-time applications due to processing latency
remain a significant drawback.

Stereo vision approaches, explored by Dhiman et al. [17,18], utilize depth information
to identify road defects by analyzing road elevation and depth variations. Although these
methods theoretically provide detailed spatial information, they are highly dependent
on the quality of stereo images and the precise camera calibration. Issues such as noise,
distortion, and the need for well-aligned image pairs can significantly affect the accuracy
of depth estimation and pothole detection. The computational intensity further hinders
the practical deployment of these techniques in real-time applications, particularly in the
context of autonomous vehicles.

Data augmentation and enhancement techniques have also been explored to improve
pothole detection performance. Maeda et al. [19] utilized Generative Adversarial Networks
(GANs) to generate synthetic training data in combination with a Single-Shot Multibox
Detection (SSD) model. The addition of synthetic data led to moderate improvements,
increasing the F-score by 5% when the synthetic data were less than 50% of the original
dataset and by 2% when they constituted about 50%. However, performance deteriorated
when the synthetic data exceeded 50% of the original data. Despite these improvements,
the approach faced challenges, including increased computational complexity, instability
during GAN training, and concerns about the generalizability of the model to real-world
conditions. Similarly, Salaudeen et al. [20] introduced a pothole detection approach that
combines an image enhancement GAN with an object detection network. The GAN,
specifically ESRGAN, enhances image quality to make potholes more distinguishable,
while the detection network identifies and localizes them. Using a combination of datasets,
their method produced notable results. EfficientDet demonstrated an improvement in
mAP when applied to super-resolution images compared to low-resolution ones. Similarly,
YOLOv5, in conjunction with ESRGAN, showed better performance in super-resolution
images compared to low-resolution counterparts, both evaluated within the same IoU range.
Despite improved detection metrics, this approach introduces significant computational
overhead and risks of overfitting, particularly since results depend mainly on the quality of
the generated data.

Specific YOLO variants have also been investigated. Al-Shaghouri et al. [21] investi-
gated real-time pothole detection using YOLOv3 and YOLOv4. However, the evaluation
was performed at a low IoU threshold of 25%, which is less stringent than typical object
detection standards. This low threshold, along with performance variability at different
distances, highlights some limitations of their approach despite the promising precision
results. Buko et al. [22] examined the effectiveness of YOLOv3 and Sparse R-CNN under
various challenging conditions, revealing a substantial performance degradation under low
light and adverse weather conditions, indicating limited applicability in various real-world
scenarios. Nevertheless, this project used the same dataset for training and testing, which
affects the generalizability of this approach. Rastogi et al. [23] modified YOLOv2 to address
issues such as vanishing gradients and irrelevant feature learning. However, the reliance
on close-range smartphone images limits the model’s applicability to broader contexts,
such as autonomous vehicles where variable distances and angles are encountered.

While previous research in pothole detection has largely concentrated on improving
algorithmic architectures or combining multiple techniques to enhance detection accuracy,
our contribution addresses a fundamental gap by focusing on the quality and effectiveness
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of the input dataset. By leveraging perspective transformation, our approach optimizes the
dataset, maintains the desired objects’ features, and enhances them. This method effectively
tackles the common issue of limited data without incurring additional computational
costs during training. In fact, it often reduces training time compared to using regular
or cropped images, making it a practical and efficient solution. Unlike other approaches
that are computationally intensive and dependent on high-quality data, our contribution
ensures better utilization of the current dataset, enhancing the robustness and real-world
applicability of pothole detection systems without the trade-offs associated with complex
algorithmic fusions.

2.2. Perspective Transformation Technique

Perspective transformation is a common image processing technique that adjusts an
image’s viewpoint, often enhancing object detection accuracy and data augmentation. For
instance, in [24], the authors presented a method to construct perspective transformations
for detecting 3D bounding boxes of vehicles in traffic surveillance, enhancing the accuracy
of object detection by extending traditional 2D detectors. Lee et al. [25] introduced a
multi-view approach that leverages perspective transformation for pedestrian detection,
projecting features onto a ground plane to improve localization accuracy. Additionally,
Wang et al. [26] utilized perspective transformation in data augmentation, enhancing
object detection by simulating variations in object size and viewpoint. In another study,
Hou et al. [27] proposed a feature transformation method for multiview aggregation in
3D object detection, focusing on head–foot pair detection. These studies highlight the
significance of perspective transformations in addressing challenges related to varying
viewpoints in object detection. However, our work goes a step further by directly enhancing
object detection quality through an automated application of perspective transformation,
improving object feature representation for superior model training and performance.

3. Methodology

Potholes significantly impact vehicles and road users, increasing the likelihood of
hazardous situations. Therefore, implementing an effective early detection system for
potholes is crucial to mitigate potential risks and prevent undesirable or harmful incidents.
In this section, we present a detailed breakdown of our proposed approach detailing the
techniques employed in this work.

3.1. Framework Overview

When utilizing object detection models, the typical approach is to feed the captured
raw images directly once they are rescaled to the desired size. This usually causes a signifi-
cant loss of image features that are critical for enabling robust pothole detection, especially
when using high-resolution input images. Using this naive approach, detecting far potholes,
for instance, would be a very challenging task. Instead, our approach, demonstrated in
Figure 2, enhances pothole detection from a vehicle’s perspective by making potholes
appear closer, larger, and with amplified features. Initially, we apply a perspective trans-
formation technique to convert input images from the vehicle’s view to a view closer to a
bird’s-eye view, making them virtually closer and larger. Then, these transformed images
are then fed to YOLOv5 [28], a well-known object detector, which uses those images to train
and improve the model’s ability to detect potholes, especially those at a distance, compared
to using regular images.

3.1.1. Perspective Transformation Motivation

Raw images captured by cameras are typically of a high resolution, providing a great
level of detail. However, due to design limitations and the need for real-time process-
ing, most object detection networks are trained on fixed, low-resolution images [28–30].
For example, optimized real-time variants of SSD [29] and YOLOv3 [30] are designed
for 300 × 300 and 320 × 320 resolutions, respectively. Meanwhile, the more recent
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YOLOv5 [28] has been tailored for an input spatial resolution of 640 × 640. Although
the trend demonstrates an increase in the models’ input resolutions, they are still quite
small relative to raw camera output resolutions. Further, training these models on larger
input resolution negatively impacts inference times [28,29], which is not ideal for real-time
applications. This necessitates resizing the images to a predetermined, smaller size for
effective training and generalization. However, when these images are resized, the features
of small objects, such as potholes, can become significantly less discernible. Potholes may
appear very small relative to the overall image size, resulting in insufficient features for
the model to detect and differentiate them effectively, as shown in Figure 3. Furthermore,
portions of the image that do not contain regions of interest, such as sidewalks or the
sky, are often retained, limiting the focus on the relevant areas necessary for pothole de-
tection. To improve detection accuracy, it is beneficial to adjust the image perspective to
emphasize the road—the primary ROI—while minimizing the inclusion of non-essential
parts of the image. This approach ensures that more useful features are preserved after
rescaling, enhancing the model’s ability to detect potholes without significantly increasing
computational overhead [31,32].

Figure 2. Overview of the proposed framework. Raw input images are initially transformed using the
transformation matrix generated by our proposed automated algorithm. Then, the resulting images
are rescaled to the required input resolution and fed to the object detection network (e.g., YOLOv5).
Ground truth pothole labels and predicted potholes are represented by the green and red bounding boxes,
respectively. Neural network icon by Lucas Rathgeb via TheNounProject.com (accessed on 1 August 2024).

(a) Naive Approach

(b) Automated Perspective Transformation Approach

Figure 3. Comparison of the resulting preprocessed input images between (a) the naive approach and
(b) the automated perspective transformation approach. The naive approach involves reading the
image as is and then downscaling to a fixed input resolution (800 × 800 in this example). A 50 × 50
image crop demonstrates very low resolution for the potholes in the scene. Instead, our proposed
approach transforms the image to mainly focus on the ROI (i.e., the street) where, after rescaling
to the same input resolution, the resulting spatial resolutions of the potholes are much larger with
clearer image features as depicted by the 50 × 50 image crops.

TheNounProject.com
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3.1.2. YOLOv5: Key Features and Functionality

In the field of computer vision, deep learning has become the preferred approach
for object detection, particularly for complex and variable tasks like pothole detection.
Traditional handcrafted image processing methods often struggle with the variability in
pothole shapes and sizes and the diverse lighting conditions found in real-world environ-
ments. Deep learning-based detectors, such as the YOLO series, provide a more robust
and dynamic solution that can generalize well across different scenarios. Among these,
YOLOv5 stands out for its balance of speed and accuracy, making it ideal for applica-
tions requiring real-time performance. This study employs YOLOv5, implemented in
PyTorch [33], for its efficiency, speed, and relatively low computational demands, with
versions available in nano, small, medium, large, and extra-large configurations [28].

The architecture of YOLOv5 follows a similar structure to previous YOLO versions,
with a backbone network and detection heads. The backbone, based on the efficient CSP-
Darknet53 architecture, extracts features from the input image using 53 convolutional
layers. The detection heads then predict bounding boxes and class probabilities. YOLOv5
employs a modified YOLO head, consisting of convolutional layers that vary depending on
the model configuration (e.g., YOLOv5-small, YOLOv5-medium, YOLOv5-large, YOLOv5-
extra-large). Unlike earlier methods, YOLOv5 performs object detection in a single forward
pass, ensuring high speed and efficiency which are crucial for real-time applications like
surveillance and autonomous driving. With different variants representing varying model
scales and complexities, YOLOv5 offers options like YOLOv5-small, which has 7.2 M pa-
rameters and 16.5 GFLOPs, and YOLOv5-large, with 46.5 M parameters and 109.1 GFLOPs.
Notably, YOLOv5-small performs better when applied to our approach compared to larger
models with a naive approach, highlighting that a more complicated model is not always
necessary for good results. We focus on using YOLOv5-small for its balanced real-time
performance and accuracy, while also evaluating other YOLOv5 variants to assess the
impact of our methods on their performance.

YOLOv5 offers several key advantages, including enhanced speed and accuracy due
to its lightweight architecture and efficient training through focus modules and data aug-
mentation. Its flexibility and usability are boosted by its user-friendly and customizable
PyTorch framework, along with a modular design that allows easy customization for vari-
ous hardware platforms. Additional benefits include improved anchor box prediction for
more accurate bounding box localization and strong community support for collaboration,
quick bug fixes, and feature development. Although newer versions such as YOLOv7 [34]
and YOLOv8 [35] offer advancements, the speed, efficiency, and strong community support
of YOLOv5 make it the preferred choice for this study. While this work is applicable to
other detection networks, we chose YOLOv5 for these reasons.

3.2. Automated Perspective Transformation Algorithm

Perspective transformation is a fundamental tool in computer vision that allows for
the alteration of an image’s viewpoint, simulating a change in the observer’s position. This
is performed using a 3 × 3 transformation matrix that maps points from the original image
plane to a new plane. The matrix is calculated by identifying four points in the original
image and their corresponding locations in the transformed image. By solving a set of linear
equations, the matrix adjusts the coordinates of these points, allowing the image to appear
as though it is viewed from a different angle. This method preserves the straightness of
lines and their intersections, making it useful for applications like image rectification [36],
object tracking [37], and traffic surveillance [38].

For pothole detection, this technique concentrates on the region of interest (ROI),
specifically the street, while reducing the prominence of irrelevant areas such as the road-
side and sky. By employing perspective transformation, objects that are distant are virtually
brought closer, thereby making potholes appear significantly larger in the processed im-
age. This enhancement is accomplished by detecting and matching features, estimating
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homography, and warping the image using a 3 × 3 homography matrix M. This process
emphasizes relevant features, thereby enhancing detection accuracy, as follows:

t′ = M · t , (1)

where t′ and t are the coordinates of the ROI in the transformed and source images, respectively.
The homography matrix M is calculated using the corresponding points as explained earlier,
aiding in feature extraction and pothole bounding-box regression by mimicking a bird’s
eye view for more robust pothole detection in AVs. Moreover, it holds the transformation
parameters that map points from the source image to the target image [39].

The homography matrix M can be represented as follows:

M =

m11 m12 m13
m21 m22 m23
m31 m32 m33

 (2)

Each element (mij) within the matrix contributes to the transformation:

• m11, m12, m13: Affect the x-coordinate of the transformed point.
• m21, m22, m23: Affect the y-coordinate of the transformed point.
• m31, m32, m33: Homogenization factors (usually, m33 is set to 1).

Applying perspective transformation to a set of images requires manually selecting
the boundary points of the ROI. In our application, this ROI would primarily be the road
as viewed from the perspective of the vehicle itself. However, the boundaries of the
road change significantly from one scene to another depending on many factors, such as
the type of road, curvature, number of lanes, etc. Therefore, an ideal application of this
technique would be to select the corners of the road for each given image. However, this
approach is not feasible for object detection applications due to its time-consuming and
error-prone nature, especially when dealing with different scenes that include not only
straight streets but street curvatures, u-turns, etc. Manually specifying four points for each
image based on the shape of the road is labor-intensive and introduces significant variability
and inaccuracies, making it unsuitable for large-scale datasets. Furthermore, due to its
infeasibility, a new transformation matrix is required to be generated for each image, which
would add run-time overhead. Therefore, automating this process is essential to ensure a
usable workflow and to generalize the technique to most, if not all, datasets with similar
structures. To address this challenge, we propose an algorithm that automatically finds a set
of ROI corner points that enables the generation of the perspective transformation matrix
M. Using this matrix, a set of images from the same source can be similarly transformed to
better represent the ROI. Consequently, this approach ensures consistency and precise ROI
selection in any given dataset of the same source.

To achieve an optimal transformation, it is crucial to accurately identify the best
ROI that encompasses all bounding boxes of potholes within an image, ensuring that no
potholes are excluded. The automatic transformation process involves determining the
ROI by calculating the coordinates of all bounding boxes to establish four defining points.
Specifically, the boundary coordinates of the ROI are determined as follows: the top-left
point is defined by the minimum x and y coordinates among all bounding boxes, the
top-right point by the maximum x and minimum y coordinates, the bottom-left point by
the minimum x and maximum y coordinates, and the bottom-right point by the maximum
x and y coordinates. An offset value α is added to each of these points to ensure that the
ROI extends slightly beyond the boundaries of the bounding boxes. This offset allows for
full coverage of the image or ROI boundaries, depending on how much extension the user
desires. This approach guarantees that the ROI fully covers the outermost boundaries of the
bounding boxes, thereby ensuring comprehensive inclusion of all potholes. Additionally,
the alpha value was tested at 0.2, 0.1, and 0 to control the inclusion of background features,
particularly near the top of the image. A higher alpha value (e.g., 0.2) allows more back-
ground context, helping the model better differentiate between objects and background,
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especially when bounding boxes are close to the image edge or not perfectly accurate. The
optimal alpha value was chosen to balance the inclusion of background features with the
model’s ability to handle imperfect bounding box annotations.

To implement automatic perspective transformation, it is expected that we have a
labeled object detection dataset. The algorithm could then be applied to the selected images
and their corresponding labels, following the subsequent steps outlined in the algorithm
structure below Algorithm 1. The transformed images and label files were then saved to
their designated output directories.

Algorithm 1 Automatic perspective transformation for images and bounding boxes.

Input: Images, ground truth labels, ROI offset α
Output: Transformed images and bounding boxes, perspective transformation matrix M

Initialize lists
1: Initialize lists: all_x_min, all_y_min, all_x_max, all_y_max, all_w, all_h

▷ x_min, y_min: top-left corner coordinates
▷ w, h: width and height of bounding boxes
▷ x_max, y_max: bottom-right corner coordinates

Read bounding boxes
2: for each image and labels do
3: Read bounding box (x_min, y_min, w, h) per labeled object in the image
4: (x_max, y_max)← (x_min + w, y_min + h)
5: Append to respective lists
6: end for

Calculate ROI offsets
7: (xo f f set, yo f f set)← (α×max(all_w), α×max(all_h))

Determine ROI corners then define source points
8: top_le f t← (min(all_x_min)− xo f f set, min(all_y_min)− yo f f set)
9: top_right← (max(all_x_max) + xo f f set, min(all_y_min)− yo f f set)

10: bottom_le f t← (min(all_x_min)− xo f f set, max(all_y_max) + yo f f set)
11: bottom_right← (max(all_x_max) + xo f f set, max(all_y_max) + yo f f set)
12: Source points src_pts← [top_le f t, top_right, bottom_le f t, bottom_right]

Clip ROI corners to be within image boundaries
13: for each point in src_pts do
14: if pointx < 0 then
15: pointx ← 0
16: else if pointx > imagew then
17: pointx ← imagew
18: end if
19: if pointy < 0 then
20: pointy ← 0
21: else if pointy > imageh then
22: pointy ← imageh
23: end if
24: end for

Define target points based on image dimensions
25: Target points trg_pts← [(0, 0), (imagew, 0), (0, imageh), (imagew, imageh)]

Calculate perspective transformation matrix
26: M = getPerspectiveTransform(src_pts, trg_pts)

Transform images and bounding boxes
27: for each image and labels do
28: Transform image using M
29: Transform labels’ bounding box coordinates using M
30: Save the transformed images and bounding boxes
31: end for

32: return M
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Algorithm 1 automates the process of determining the ROI and generating the per-
spective transformation matrix M. The main steps of the algorithm are as follows:

1. Initialize lists: Store coordinates and dimensions of bounding boxes for all images,
including minimum and maximum x and y coordinates, width, and height for each
bounding box.

2. Read bounding boxes: Extract bounding box data from each image’s corresponding
label file, calculate all ROI boundary points, and update the respective lists.

3. Calculate offsets: Determine the ROI offsets using a specific α value and the max
width and height of all bounding boxes to define a slightly larger ROI.

4. Determine ROI corners: Use the minimum and maximum coordinates from the lists,
along with the calculated offsets, to determine the corners of the ROI. These corners
are the source points (src_pts) for the perspective transformation.

5. Clip ROI corners: Ensure ROI corners stay within image boundaries.
6. Define target points: Set target points (trg_pts) based on the image dimensions,

representing the transformed image corners.
7. Calculate transformation matrix: Compute the perspective transformation matrix M

using the source and target points. This matrix is used to transform the coordinates of
the ROI to the new perspective.

8. Transform images and bounding boxes: Apply the transformation matrix M to each
image and its bounding boxes. This involves transforming the image and adjusting
the bounding box coordinates accordingly. The transformed images and bounding
boxes are then saved.

The algorithm detailed in Algorithm 1 was initially applied to the training dataset to
compute the perspective transformation matrix M. Subsequently, this matrix was utilized
to transform the images and bounding boxes in the testing dataset. The proposed algorithm
automates the perspective transformation process, ensuring consistent and precise selection
of the region of interest (ROI) across extensive datasets. This automation minimizes
manual intervention and the associated variability in selecting ROI corners for each image,
making it an effective and scalable solution for applications like pothole detection in
autonomous vehicles.

4. Experiment Design
4.1. Evaluation Dataset

To evaluate our proposed method, we utilized the dataset introduced by Nienaber et al.
in [14,40]. This dataset, one of the few publicly available labeled pothole datasets, comprises
4405 images extracted from video footage captured with a GoPro camera mounted on a
vehicle’s windshield. Unlike most of the other pothole datasets collected using mobile
phones or drones, this dataset provides a realistic representation of South African road
conditions from a driver’s perspective, making it particularly relevant for applications
involving AVs and ground mobile robots. The dataset is split into two positive and
negative directories. Positive samples are samples that include at least one instance of a
pothole and comprise a total of 1119 images, while negative samples are samples without
any potholes and comprise a total of 2658 images. Each image is provided with a label
file with a bounding box’s format (class label, bounding box coordinates, width, and
height). Moreover, the dataset is divided into training and testing subsets, with 628 images
designated for testing. All images are provided in JPEG format with a resolution of
3680 × 2760 pixels. Figure 4 showcases six representative samples from the dataset,
illustrating the challenges posed by varying illumination levels and pothole appearances,
which are critical for developing robust and accurate pothole detection systems.
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Figure 4. Demonstration of different samples of the dataset used in this work. These samples are
some examples of the variance in lighting intensity and road conditions observed in this dataset.

The dataset presents several significant challenges, particularly given the nature of the
objects it aims to detect—potholes. Potholes vary widely in size, shape, and appearance,
making them inherently difficult to detect. These variations are further exacerbated by the
fact that potholes at greater distances appear smaller, complicating the task of accurately
identifying them. Moreover, the color of potholes can differ depending on the surrounding
environment, such as sandy areas, pavement, or other types of ground surfaces. This
variation in appearance makes it challenging for a model to generalize across different
scenarios, as the model must learn to recognize potholes in various contexts and lighting
conditions. The difficulty of this task is amplified by the relatively small size of the dataset.
Detecting small objects like potholes typically requires a large dataset to effectively learn
the complex features necessary for accurate detection. To overcome this challenge, we use
various augmentation techniques to enlarge the size of the training samples and enhance
the robustness and accuracy of the pothole detection model. Furthermore, we used several
augmentation techniques including affine scaling, rotation, and shearing to adjust the image
size, orientation, and viewpoint to help the model recognize potholes of different sizes and
angles. Horizontal flipping provides different perspectives, whereas Gaussian blur mimics
motion blur to handle imperfect image captures. Adjustments to gamma contrast, bright-
ness, and contrast normalization manage varying lighting conditions, ensuring that the
model performs well under different environments. Additionally, additive Gaussian noise
is added to make the model resilient to grainy images, and crop and pad transformations
simulate occlusions and varying distances from the camera. As a result, the number of
training images increased from 1119 images to 2658 images. These augmentations simulate
real-world conditions, helping the model generalize better and improve pothole detection
performance under diverse scenarios encountered by autonomous vehicles. By creating a
diverse and representative training dataset, the model becomes more robust and capable of
accurately detecting potholes in various challenging conditions.
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4.2. Comparison Methods

Given the critical role of data quality and quantity in model performance, we explored
several preprocessing methods to maximize the utility of the dataset in comparison to our
proposed approach, auto transformation. The methods evaluated include “Image As Is”,
”Bottom Cropped”, and “Double Cropped”. The “Image As Is” method involves using
the images without any alterations, while “Bottom Cropped” entails cropping the bottom
portion of the images to exclude the dashboard, and “Double Cropped” involves cropping
both the top and bottom parts of the images to remove the sky and dashboard. These
preprocessing techniques were employed to eliminate extraneous elements, such as the
dashboard and sky, which can lead to misclassifications and increased computational load.
This step was crucial in optimizing the model’s efficiency and ensuring that the dataset
provided the best possible training conditions for pothole detection.

To determine optimal cropping locations and minimize the loss of bounding boxes,
we analyzed their distribution and found that 99% fell within the range of 1200–1800 pixels
of their y-coordinates. Values above this range typically corresponded to the dashboard,
while values below included sky regions.

Figure 5 visually compares the original image with two different cropping cases, in
addition to the proposed method, demonstrating the impact of image composition on compu-
tational efficiency and model performance. This highlights the importance of preprocessing
techniques in optimizing the detection pipeline. In Image As Is Figure 5a, the dashboard
and sky occupy significant portions, introducing irrelevant information and increasing com-
putational load. This results in unnecessary overhead and prolonged training times, nega-
tively affecting model performance. To address this, Figure 5b, representing the Dashboard
Cropping method, was cropped from the bottom to remove the dashboard, reducing false
detections. However, this still left a substantial portion of the sky, contributing minimal
information. Consequently, the Dashboard and Sky Cropping in Figure 5c was cropped
to focus solely on the road surface, eliminating both the sky and the dashboard. Finally,
Figure 5d shows our approach focusing only on the street where potholes are present.

4.3. Evaluation Metrics

In object detection, key evaluation metrics include intersection over union, precision,
recall, average precision, and average recall. These metrics are crucial for assessing the
performance of detection models.

Intersection over union (IoU) is a fundamental metric that measures the overlap
between the predicted bounding box and the ground truth bounding box. It is calculated
as the ratio of the area of intersection to the area of union of the two boxes, as shown in
Equation (3). IoU is a threshold-based measure, typically used to determine whether a
detection is considered a true positive (TP) or a false positive (FP).

IoU =
Area of Intersection

Area of Union
(3)

Precision is the ratio of TPs to the sum of TPs and FPs, indicating the accuracy of the
positive predictions made by the model. It is defined as shown in Equation (4).

Precision =
TP

TP + FP
(4)

Recall measures the proportion of actual positives correctly identified by the model,
calculated as the ratio of TPs to the sum of TPs and false negatives (FNs). This is expressed
in Equation (5).

Recall =
TP

TP + FN
(5)

Average precision (AP), derived from the precision–recall curve, is calculated by
integrating the area under this curve. AP at a specific IoU threshold (e.g., AP50 for
IoU ≥ 0.5) represents the precision averaged across different recall levels at that threshold.
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AP50:95 refers to the average precision computed at multiple IoU thresholds ranging from
0.5 to 0.95 with a step size of 0.05. This metric provides a comprehensive evaluation of
model performance across various IoU thresholds. AP50 and AP75 specifically denote AP
at IoU thresholds of 0.5 and 0.75, respectively, offering insights into model precision at
different levels of overlap criteria.

Average recall (AR) reflects the average recall over different numbers of detections
per image, providing an aggregate measure of the model’s ability to identify relevant
instances among all actual positives. ARmax=1 and ARmax=10 denote the average recall
when considering a maximum of one detection per image and ten detections per image,
respectively, across IoU thresholds of 0.5 to 0.95. These metrics help to evaluate the model’s
recall capability, considering different levels of detection strictness.

These metrics collectively offer a detailed assessment of the detection model’s perfor-
mance, highlighting its strengths and weaknesses across various detection thresholds and
conditions.

(a) Image as is (b) Bottom cropped

(c) Double cropped

(d) Auto-transformation

Figure 5. Visualization of the different comparison methods employed in our experiments:
(a) Naive approach (image as is); (b) Fixed Cropping–Dashboard (bottom cropped); (c) Fixed
Cropping–Dashboard and Sky Cropping (double-cropped); (d) Automated perspective transfor-
mation approach. The presented methods are demonstrated using the same input image.

4.4. Evaluation Strategy

To assess the effectiveness of our proposed method for detecting potholes at varying
distances, we employed two evaluation strategies. Initially, we evaluated the perfor-
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mance using a single class (pothole). Subsequently, we expanded the analysis to include
three classes (near, medium, and far) by categorizing the bounding boxes based on the
y-coordinates of their top-left corners, with each region representing a different class. This
classification aimed to measure the effectiveness of our approach in enhancing the detec-
tion of potholes at different distances. We conducted a comparative analysis against other
dataset processing techniques, applying these evaluation strategies to each dataset using
predefined thresholds as follows:

For the Image As Is and the cropping methods:

• Far: y ≤ 1350
• Medium: 1351 ≤ y ≤ 1500
• Near: 1501 ≤ y

For the Automatic Transformation approach:

• Far: y ≤ 670
• Medium: 671 ≤ y ≤ 1099
• Near: 1100 ≤ y

4.5. Implementation Settings

Throughout all of our experiments, we trained the object detection models using the
following hyperparameters: 100 epochs, a stochastic gradient descent (SGD) optimizer, a batch
size of 16, and a learning rate of 0.01. The learning rate determines the step size, which is the
amount the model’s parameters are adjusted with respect to the gradient during optimization.
This rate was chosen to balance the speed of convergence with stability, ensuring the step
size is neither too large, causing overshooting; nor too small, leading to slow convergence.
The SGD optimizer was selected based on its superior performance compared to the ADAM
optimizer in our tests. Additionally, after data augmentation, the dataset, consisting of 2658 im-
ages, was divided into 80% for training and 20% for validation. For the experiments, we
utilized the small, medium, and large variants of YOLOv5 to assess the model’s performance
across different scales and complexities. The best-performing model on the validation set,
determined based on the results from each epoch, was selected as the final model. During the
evaluation, we used a confidence threshold of 0.5 to filter out low-confidence detections and
a non-maximum suppression (NMS) threshold of 0.45 to eliminate redundant overlapping
detections. These thresholds were chosen to optimize the balance between precision and recall,
contributing to the robustness of the final detection results.

The hardware setup for our experiments consisted of a GTX 1080 GPU with 11 GB of
memory, an Intel i7-8700K CPU, and 64 GB of RAM. All experiments utilized images that were
downscaled to a resolution of 800 × 800 pixels, from the original 3680 × 2760 resolution
captured by a high-resolution camera, while maintaining their aspect ratio [28]. We chose
an input resolution of 800 × 800, which is marginally larger than the default YOLOv5 base
resolution of 640 × 640. This choice was justified based on our empirical findings, where the
larger input size allowed for better feature representation, especially for detecting smaller and
more distant potholes. The increased resolution facilitated the model’s ability to capture finer
details, thus enhancing detection accuracy without significantly compromising computational
efficiency or overwhelming the available hardware resources.

To start the training process, we fine-tuned the YOLOv5 model on our dataset, leverag-
ing the pre-trained weights and further training them specifically on our data. The default
training augmentations provided by the YOLOv5 framework were employed throughout
the experiments, alongside the default hyperparameters, which we kept unchanged for
consistency and standardization purposes except for the ones we mentioned earlier. The
training process exclusively utilized positive images, applying the preprocessing augmen-
tations as detailed in Section 4.1. This methodological choice, including the exclusion of
negative images, is further substantiated by an ablation study presented in the following
section, which validates the effectiveness of these decisions in optimizing the model’s
performance. Additionally, based on our experiments and achieving optimal transforma-
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tion outcomes, we selected an α value of 0.2 for the automatic transformation algorithm
presented in Algorithm 1.

5. Results and Discussion
5.1. Experiment 1: Naive vs. Fixed Cropping vs. Automated Transformation Approach

In this experiment, we systematically trained one variant of YOLOv5 (small) on all
possible dataset configurations. These configurations were evaluated for both single-class
(pothole) and multi-class (near, medium, and far distance) detection tasks. As detailed in
Table 1. Each method was assessed for overall pothole detection as one class, and for each
distance-based class separately.

As illustrated in Table 1, our novel approach demonstrates superior performance
across all metrics, surpassing all other methods. Notably, we observed a substantial increase
in AP50:95, with a 43% improvement in the single class using our proposed approach
compared to the Image As Is method. Furthermore, there were increases of 34%, 63%,
and 194% for the near, medium, and far classes, respectively, at the same IoU threshold.
Additionally, our approach resulted in an improvement in AP50 of 30%, and in AP75 of 73%.
Improvements were also observed in AR, with ARmax=1 increasing by 26% and ARmax=10
by 36%. These results underscore the effectiveness of our method in enhancing pothole
detection accuracy compared to traditional approaches.

Table 1. Experiment 1 results. This experiment compares the different approaches presented in this
work by fine-tuning YOLOv5-small under each configuration and then evaluating their performance
on the test set using various object detection metrics. Our proposed approach demonstrates superior
performance across all metrics and pothole distance categories.

Approach Pothole Distance
Metric (%)

AP50:95 AP50 AP75 ARmax=1 ARmax=10

Image as Is

All 19.8 47.7 12.8 17.1 25.8

Near 23.6 55.0 15.1 20.7 29.9
Medium 19.5 48.4 13.5 21.6 26.6

Far 6.8 18.8 3.1 10.0 11.5

Bottom Cropped

All 18.2 46.1 10.2 15.9 23.7

Near 21.4 51.7 12.2 19.3 27.3
Medium 18.0 46.1 11.1 20.6 25.4

Far 5.5 18.2 1.5 7.3 9.0

Double Cropped

All 17.5 46.8 9.3 15.6 23.0

Near 21.7 58.6 11.0 19.4 27.6
Medium 17.5 47.9 10.5 20.0 23.9

Far 11.2 27.9 5.1 11.7 14.2

Auto Transformation

All 28.4 61.9 22.1 21.6 35.2

Near 31.7 64.5 26.5 26.2 38.5
Medium 31.7 68.8 26.0 31.9 38.8

Far 20.0 50.0 12.0 18.8 27.4
The best result per metric and pothole distance category is highlighted in bold.

The significant improvements observed in our results are due to the effectiveness
of the automatic perspective transformation approach, which virtually brings potholes
closer to the vehicle, amplifying their features and making them more discernible to the
detection model, as Figure 3 shows. This perspective adjustment enhances the model’s
ability to learn and recognize pothole patterns, resulting in more accurate detections.
The amplification of pothole features simplifies the learning process for the YOLOv5
model, leading to significant improvements in average precision across various classes and
IoU thresholds.
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The proposed approach not only improved the overall pothole detection performance
but also excelled in detecting the more challenging cases, particularly medium- and far-
distance potholes, which are the most critical for safety. Our method significantly improved
the detection accuracy for far potholes, an area where other methods have notably un-
derperformed. The consistent performance gains across different IoU thresholds validate
the robustness of our approach. Traditional detection methods struggle with varying per-
spectives and angles, while our method standardizes these perspectives, offering a more
uniform dataset for the model to train on, which is crucial for real-world applications. The
success of our approach in enhancing pothole detection accuracy has broader implications
for other object detection tasks, potentially leading to advancements in multiple areas of
computer vision.

5.2. Experiment 2: Effects of Network Complexity/Scale on Performance

As demonstrated in Table 2, we performed an extensive evaluation of our proposed
approach compared to the baseline method, where the image remains unchanged. The
evaluation was performed using three variants of YOLOv5 (small, medium, and large).
Furthermore, we tested these models on three distinct classes (near, medium, and far), as
well as on the entire pothole dataset treated as a single class (pothole).

Table 2. Experiment 2 results. This experiment compares the naive (i.e., Image As Is) approach with
our proposed approach on three YOLOv5 variants. In each configuration, a YOLOv5 variant is fine-
tuned on the corresponding approach’s training set and then evaluated on the test set using various
object detection metrics. Results show that our proposed approach always surpasses the performance
of the naive approach regardless of the utilized variant. Additionally, combining YOLOv5-small with
our proposed approach significantly outperforms the naive approach even when compared to the
YOLOv5-large configuration, for which the model is over six times larger in terms of the number of
parameters, across all metrics and pothole distance categories.

Approach Object Detection Model Parameters
(M) FLOPs (G) Pothole Distance

Metric (%)

AP50:95 AP50 AP75 ARmax=1 ARmax=10

Image As Is

YOLOv5-small 7.2 16.5

All 19.8 47.7 12.8 17.1 25.8

Near 23.6 55.0 15.1 20.7 29.9
Medium 19.5 48.4 13.5 21.6 26.6

Far 6.8 18.8 3.1 10.0 11.5

YOLOv5-medium 21.2 49.0

All 21.7 50.3 14.6 17.7 27.4

Near 25.0 55.1 18.1 21.1 31.1
Medium 21.9 51.8 15.1 22.9 29.3

Far 7.4 25.0 1.7 9.6 12.3

YOLOv5-large 46.5 109.1

All 21.7 50.5 14.2 17.5 27.7

Near 25.4 55.7 18.4 21.2 31.6
Medium 21.6 54.9 11.6 22.9 29.9

Far 6.7 20.5 2.8 9.8 12.0

Auto Transformation

YOLOv5-small 7.2 16.5

All 28.4 61.9 22.1 21.6 35.2

Near 31.7 64.5 26.5 26.2 38.5
Medium 31.7 68.8 26.0 31.9 38.8

Far 20.0 50.0 12.0 18.8 27.4

YOLOv5-medium 21.2 49.0

All 28.0 61.6 22.4 21.5 34.5

Near 31.1 62.9 28.3 25.9 38.6
Medium 30.7 67.9 24.5 30.1 37.6

Far 19.3 47.9 12.2 18.8 25.9

YOLOv5-large 46.5 109.1

All 28.6 60.2 24.5 22.0 35.3

Near 32.0 63.8 29.6 25.9 38.5
Medium 30.9 65.0 27.7 29.7 37.3

Far 20.8 47.6 13.8 21.0 29.1

The best result per metric and pothole distance is highlighted in bold.

The results demonstrate a significant improvement in detection accuracy when com-
paring the two approaches across all YOLOv5 variants for all classes. Notably, the YOLOv5-
small variant, when applied to our approach, outperformed the YOLOv5-large variant
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applied to the baseline approach, knowing that YOLOv5-large has almost six times the
number of parameters of YOLOv5-small, as explained in Section 3.1.2. This highlights the
effectiveness of our method in detecting potholes across various distances while requiring
lower computational resources compared to the traditional approach.

The results in Table 2 reveal that our proposed approach significantly enhances detec-
tion accuracy across all YOLOv5 variants for every class compared to the baseline method.
The better performance of the YOLOv5-small variant under the AP50 metric is particularly
noteworthy, which outperformed both the medium and large variants when using our
method. We hypothesize that this counterintuitive result stems from the larger and medium
YOLOv5 models being more susceptible to the poor quality of some labels, potentially
learning and incorporating these inaccuracies into their detection processes more than the
smaller variant under the lower IoU threshold. Consequently, the small version’s relatively
simpler architecture may have enabled it to generalize better and avoid overfitting to the
noisy data, resulting in enhanced detection accuracy [41]. This finding underscores the
effectiveness of our automatic perspective transformation approach and suggests that
smaller, less complex models can be more robust in scenarios where data quality is variable,
offering valuable insights for similar projects in object detection.

5.3. Experiment 3: Ablation Study

Given that our dataset contains negative images and the augmentation capabilities
inherent in the YOLOv5 framework, we conducted a comprehensive series of experiments
to identify the optimal configuration for training our model. The goal was to quantitatively
validate the chosen configuration throughout our experiments. We integrated the negative
images with the positive images and explored various augmentation strategies, testing the
effectiveness of relying exclusively on the YOLOv5 framework’s default augmentations
versus supplementing them with additional manual augmentations that were introduced
in Section 4.1. This methodological investigation aimed to rigorously assess the impact of
these different approaches on the model’s performance.

To identify the optimal configuration, we created and evaluated four distinct setups
using our automatic perspective transformation approach. The results of these experi-
ments are detailed in Table 3. The chosen configuration was then utilized for subsequent
experiments presented in Tables 1 and 2.

The four configurations tested were as follows:

1. YOLOv5’s augmentations only without negative images: This setup utilized only
YOLOv5’s augmentation step without negative images, as illustrated in the first row
of Table 3.

2. YOLOv5’s augmentations with negative images: This setup included negative images
alongside YOLOv5’s augmentation step, shown in the second row of Table 3.

3. Manual preprocessing and YOLOv5’s augmentations without negative images: This
configuration combined manual preprocessing augmentations with YOLOv5’s aug-
mentations, using only positive images. It achieved the best results among all setups.

4. Manual preprocessing and YOLOv5’s augmentation with negative images: This setup
used both manual and YOLOv5’s augmentations, incorporating negative images into
the positive dataset. It resulted in the lowest performance metrics.

As illustrated in Table 3, the configuration that utilizes manual pre-processing with
only the positive dataset during training consistently achieved the best results in all met-
rics. This approach was subsequently applied to all experiments conducted in this study,
confirming its superiority as the optimal method for improving the accuracy of pothole
detection.
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Table 3. Ablation study results comparing the different preprocessing configurations. These results
are based on the automated transformation approach on all test set potholes using YOLOv5-small.
Including the preprocessing augmentations while excluding the negative samples (training images
without potholes) produced the best performance across all metrics.

Configuration Metric (%)

Preproc. Augs. Neg. Images AP50:95 AP50 AP75 ARmax=1 ARmax=10

27.1 59.7 20.1 19.6 34.6
✓ 26.2 57.3 18.9 20.5 32.1

✓ 28.4 61.9 22.1 21.6 35.2
✓ ✓ 25.8 55.1 19.0 19.8 31.3

The best result per metric is highlighted in bold.

Moreover, the results show that our approach that combined manual preprocessing
with only the positive dataset consistently outperformed all other configurations to improve
the accuracy of the pothole detection. This setup, which excluded negative images and
relied on extensive augmentations, proved superior across all metrics. We hypothesize that
the inclusion of negative images introduced noise into the training process, as these images
lack bounding boxes or pothole features, which are critical for improving the model’s
robustness and pattern recognition capabilities. Additionally, the extensive use of manual
preprocessing augmentations exposed the model to a wider variety of pothole shapes,
colors, and orientations, enhancing its ability to generalize across different scenarios. In
contrast, relying solely on YOLOv5’s framework augmentation step limited the model’s
exposure to diverse cases, thereby restricting its generalization potential.

5.4. Computational Latency Analysis

To validate the real-world feasibility of our approach, we perform a computational
latency analysis of the main components in our pothole detection pipeline. We measure
the average latency of the fine-tuned models’ inference times during evaluation, as well
as the latencies of pre-processing, perspective transformation, and post-processing stages.
The pre-processing stage primarily comprises image normalization and rescaling pro-
cesses, while the post-processing step includes filtering the resulting detections using
NMS. For model inference times, we evaluate the three fine-tuned YOLOv5 variants (i.e.,
small, medium, large) produced by our auto-transformation approach, as presented in
Table 2. Notably, the inference times of the other methods should be the same, given that
the generated model architectures are identical except for their training weights.

For model inference times, we evaluate the three fine-tuned YOLOv5 variants (i.e.,
small, medium, large) produced by our auto-transformation approach, as presented in
Table 2. Notably, the inference times of the other methods should be the same, given that
the generated model architectures are identical except for their training weights.

As demonstrated in Table 4, our proposed perspective transformation approach adds a
small computational latency overhead relative to the inference times of the object detection
models, with an average processing time of 14.4 ms. This latency arises primarily be-
cause we directly apply the perspective transformation on the raw high-resolution images
(3860 × 2760 pixels) using bilinear interpolation. Through further experimentation, we
observed that the perspective transformation time is directly proportional to the input
image resolution. Notably, this latency can be reduced to 4 ms by downscaling the image by
half across each dimension (i.e., height/2 and width/2) before applying the transformation,
which should have a negligible effect on the object detection performance due to this
additional rescaling step. We recommend that the developers adjust the input resolution
based on their timing requirements. Finally, we note that our implementation utilized
OpenCV’s warpPerspective() function in Python 3.9. Using a C++ implementation of
this function can significantly improve performance and minimize the resulting latency.
However, we leave further optimization to future work.
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Table 4. Computational latency analysis of different components within the pothole detection pipeline
across various YOLOv5 model variants. Specifically, we measure the average latency of each of the
pre-processing, perspective transformation, inference, and post-processing stages.

Object Detection Model Pre-Processing (ms) Perspective Transformation (ms) Inference (ms) Post-Processing (ms) Total Time (ms)

YOLOv5-small 0.6 14.4 7.2 1.2 23.4
YOLOv5-medium 0.6 14.4 14.3 1.4 30.7
YOLOv5-large 0.6 14.4 25.5 1.3 41.8

The best result is highlighted in bold.

Despite the small overhead, this technique significantly enhances pothole detection
performance, as evidenced by our experimental results. This demonstrates the efficiency
and effectiveness of incorporating perspective transformation in our detection pipeline.

6. Conclusions

In this paper, we introduced a novel method for improving pothole detection by
leveraging perspective transformation to automatically extract ROI from images and their
corresponding labels. The transformed dataset was then fed into the YOLOv5-small
object detection model. Our approach resulted in a notable improvement in detection
accuracy using YOLOv5-small, achieving a 43% increase in AP for a single class at IoU
thresholds of 0.5 to 0.95 (AP50:95), compared to the naive use of unchanged images. Similarly,
improvements of 29% and 32% in the same metric for YOLOv5-medium and YOLOv5-large
have been achieved, respectively. In addition, the method significantly improved the
detection of potholes at various distances, addressing a crucial aspect of road safety, where
it has achieved significant increases of 34%, 63%, and 194% in the same metric (AP50:95)
for near, medium, and far, respectively. Moreover, Table 2 shows further improvement
using both YOLOv5-medium and YOLOv5-large. The findings underscore the critical
role of preprocessing techniques, such as perspective transformation, in enhancing the
performance of object detection tasks.

For future work, we propose developing a deep-learning model capable of dynamically
regressing the four corner points of the street in each image to generate a perspective
transformation matrix. This approach would necessitate labeled data, potentially obtainable
from semantic segmentation datasets, to further automate and refine the pre-processing
pipeline.
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