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Abstract: This paper presents a novel hybrid approach to feature detection designed specifically for
enhancing Feature-Based Image Registration (FBIR). Through an extensive evaluation involving state-
of-the-art feature detectors such as BRISK, FAST, ORB, Harris, MinEigen, and MSER, the proposed
hybrid detector demonstrates superior performance in terms of keypoint detection accuracy and
computational efficiency. Three image acquisition methods (i.e., rotation, scene-to-model, and scaling
transformations) are considered in the comparison. Applied across a diverse set of remote-sensing
images, the proposed hybrid approach has shown marked improvements in match points and
match rates, proving its effectiveness in handling varied and complex imaging conditions typical
in satellite and aerial imagery. The experimental results have consistently indicated that the hybrid
detector outperforms conventional methods, establishing it as a valuable tool for advanced image
registration tasks.

Keywords: image registration; feature detection; hybrid feature detector; rotation invariance; scale
invariance; binary robust invariant scalable keypoints (BRISK); features from accelerated segment
test (FAST); maximally stable extremal regions (MSER); oriented FAST and rotated BRIEF (ORB)

1. Introduction

Image registration is the process of aligning multiple scene images into a single, in-
tegrated image. This technique addresses common issues such as image rotation, scale,
and skew, which often arise when overlaying multiple images. The primary goal of im-
age registration is to automatically establish correspondence between different images,
a crucial step for further processing in various applications [1]. These images may be
acquired at different times, from different devices, or may produce different types of
information. Image-registration methods can be classified into two main types: area-
based approaches and feature-based approaches. Area-based methods compare inten-
sity patterns in images through correlation matrices, while feature-based methods es-
tablish correspondence between different image features such as lines, points, and con-
tours. Feature-based methods are generally more reliable than area-based methods but
require complex calculations to establish correspondence between the source image and the
target image.

The process of image registration has extensive applications in diverse fields such as
medical imaging, remote sensing, and computer vision. In medical imaging, for example,
image registration is critical for combining data from different imaging modalities (such as
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CT and MRI) to provide comprehensive information about a patient’s anatomy. In remote
sensing, it enables the integration of images taken from different sensors and at different
times to monitor environmental changes. In computer vision, it is essential for tasks such as
object recognition and 3D reconstruction. The robustness and accuracy of the registration
process directly impact the effectiveness of these applications, making the development of
efficient registration algorithms a significant research focus [2].

Feature-Based Image Registration (FBIR) consists of four steps: feature detection,
feature matching, transform model estimation, and image resampling and transformation.
In the first step, features are detected in both the source and target images. These features
can include regions, contours, edges, and corners [3]. In the feature-matching step, it is
determined whether pixels from the source image correspond to pixels from the target
image. If correspondence is established, matching is performed. In the transform model
estimation step, a mapping function is built, with types and parameters estimated. Finally,
in the image resampling and transformation step, the source image is transformed using
the transform model.

The accuracy and efficiency of the feature-detection step are crucial as they directly
influence the subsequent steps in the registration process. Several feature-detection algo-
rithms have been developed, each with its own strengths and weaknesses. For example,
Speeded Up Robust Features (SURF) and Scale-Invariant Feature Transform (SIFT) are
known for their robustness but can be computationally expensive. Features from Accel-
erated Segment Test (FAST) is computationally efficient but lacks invariance to scale and
rotation. Binary Robust Invariant Scalable Keypoints (BRISK) offers robustness to both
scale and rotation, while Oriented FAST and Rotated BRIEF (ORB) provides a good balance
between computational efficiency and robustness. Other algorithms like MinEigen and
Maximally Stable Extremal Regions (MSER) focus on specific aspects such as stability and
sensitivity to feature regions [4].

Here, we briefly define several pivotal terms to aid understanding of feature-based
image registration: Robustness refers to the ability of a feature-detection algorithm to
deliver consistent results under varying conditions such as noise, illumination changes,
and occlusion. Invariance to scale and rotation describes the capability of an algorithm
to identify features correctly regardless of image scaling and rotation. Stability indicates
the consistency of feature detection across different images or different instances of the
same scene. Sensitivity to feature region measures the degree to which an algorithm
can detect subtle changes or small features within an image. These definitions provide
a foundation for discussing the strengths and limitations of various algorithms used in
the field.

In the realm of digital image processing, image registration is a critical task that
involves aligning two or more images—often from different sensors, times, or view-
points—into a single, cohesive framework. This process is fundamental in applications
ranging from satellite imagery analysis to medical imaging and automated surveillance
systems. The primary challenges in image registration include ensuring high accuracy
in matching diverse images, reducing the computational time required to process these
images, and addressing failures in registration due to complex image transformations.
This study focuses on innovating feature-detection techniques that enhance the precision
and efficiency of image registration, particularly tackling the computational demands and
robustness against image variations.

To overcome the limitations of existing algorithms, we propose a novel hybrid feature-
detection algorithm that combines the strengths of BRISK and FAST [5,6]. This hybrid
algorithm aims to reduce the time required for feature detection while maintaining robust-
ness to scale and rotation. By leveraging the complementary strengths of BRISK and FAST,
the hybrid algorithm can provide more reliable and efficient feature detection, which is
essential for accurate image registration.
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This study introduces a novel hybrid feature detector that integrates the robustness
of BRISK with the speed of FAST, addressing common limitations found in traditional
methods. Unlike conventional detectors, our hybrid approach is designed to provide
high accuracy and efficiency under diverse operational conditions, offering significant
improvements in both scale and rotation invariance.

The remainder of this paper is structured as follows: Section 2 reviews related work,
providing a critical examination of previous studies and developments in feature-detection
techniques and their applications in image registration. Section 3 details the methodology,
including the development and implementation of the hybrid feature-detection algorithm,
and describes the image acquisition methods used. In Section 4, we present the simula-
tion setup and discuss the results obtained from testing the proposed algorithm against
established detectors, demonstrating its effectiveness through various performance metrics.
Finally, Section 5 summarizes the findings and contributions of this study and outlines
potential avenues for future research, highlighting opportunities for further enhancements
and applications of the proposed hybrid feature detector.

2. Related Work

Image registration is a fundamental and crucial task in image processing, utilized to
match two or more images acquired at different times, from different sensors, or from dif-
ferent viewpoints [7,8]. It plays an important role in integrating and analyzing images from
various sources. Both classic and recent image-registration methods have been extensively
reviewed, highlighting the advantages, drawbacks, and future research directions [9].

A comparative study of well-known feature detectors and descriptors, including
SIFT, MSER with SIFT, SURF with SURF, BRISK with BRISK, FAST with BRIEF, and ORB
with ORB, has been conducted [10]. Additionally, the performance of feature descriptors
extracted by the Harris–Affine detector has been compared [11].

These methods often face challenges such as computational complexity, sensitivity
to changes in lighting and scale, and robustness against noise and occlusion. Robustness
refers to a method’s ability to deliver consistent performance under varying conditions,
while scale-invariance denotes the capability of a method to handle images of different
sizes and orientations effectively. Stability, another crucial term, indicates the consistency
of a method in detecting features across similar or varying scenes.

Furthermore, the existing algorithms often exhibit limitations in terms of their adapt-
ability to different application contexts. For instance, while algorithms like SIFT and SURF
provide excellent feature detection and matching under uniform lighting conditions, they
may underperform in scenarios with variable lighting or when capturing images from
rapidly moving objects. This variability demands a nuanced understanding of each algo-
rithm’s operational environment to optimize performance effectively. Moreover, the trade-
off between computational demand and accuracy is a critical consideration, particularly in
real-time applications where processing speed is paramount.

In response to the limitations of existing feature detectors, our research introduces
a novel hybrid algorithm that combines the strengths of several well-established meth-
ods. This hybrid approach aims to mitigate individual weaknesses and enhance overall
performance, particularly in challenging environments typical of remote sensing and au-
tomated surveillance. By leveraging composite techniques, the proposed method not
only improves detection accuracy and speed but also enhances robustness against vari-
ations in lighting, scale, and movement, making it highly suitable for modern image
registration demands.

A novel algorithm for multispectral facial recognition, incorporating both visible and
infrared (IR) images using various feature detectors, has been proposed [12]. Multispectral
image registration with scale-invariant feature transform (SIFT) and random sample consen-
sus (RANSAC) were described in [13]. In another study, a feature-based image registration
(FBIR) method using HOG (Histogram of Oriented Gradients) for keypoint matching and a
six-parametric offline transformation model was introduced [14]. Registration methods and
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their challenges have been reviewed, with a performance evaluation based on registration
accuracy [15].

Traditional and advanced methods for multimodal remote-sensing (MMRS) image
registration algorithms have been discussed [16]. An enhanced affine transformation (EAT)
algorithm for non-rigid IR and visible (VIS) image registration has been presented [17].
A novel spatially invariant feature-matching scheme with higher performance using similar-
ity matrices based on normalized eigenvector correlation and signal directional differences
has been proposed [18].

Various algorithms for feature detection and description have been investigated [19].
A new feature descriptor, histogram of angle, and maximal edge orientation distribu-
tion (HAED), has been developed to address multi-source image-matching problems [20].
A comprehensive survey on different feature-based image-matching procedures and meth-
ods has been conducted [21].

An image-matching algorithm known as Dominant Orientation of Gradient (DOG) has
been found to be robust to nonlinear intensity variations [22]. A novel local statistics-based
image registration scheme, robust to contrast changes and geometric transformations, has
been introduced [23]. An intelligent framework using a hybrid structural feature extraction
technique for estimating transformation parameters using ground truth images has been
proposed [24]. Authors in [25] focused on real-time image registration for an accurate
geographic position using a UAV aerial view of images.

A hybrid feature extraction technique for medical images has been presented [26],
along with a robust coarse-to-fine registration (CCFR) algorithm [27]. A feature matching
algorithm combining FAST feature points and SURF descriptors has been proposed [28].
To address the difficulty of accurately registering low-texture images, a high-precision
image registration algorithm based on line segment features has been developed [29].

An optimization algorithm called the normal vibration distribution search-based dif-
ferential evolution algorithm (NVSA) has been introduced for SAR and optical image regis-
tration [30,31]. The Efficient Attention Pyramid Transformer (EAPT) has been proposed
to address the problem of patch detection, using deformable attention, encode-decode
communication modules, and position encoding for patches of any dimension [32].

A combination of traditional machine learning algorithms and deep neural networks
for feature extraction in color and space aspects has been utilized to develop a one-stop
deep portrait photographing guidance system [33]. A temporally broad learning system
(TBLS) has been proposed to maintain temporal consistency between frames, consisting of
original frames and corresponding frames in temporally inconsistent videos [34].

A novel deep convolutional neural network utilizing the multimodal cascaded method
for detecting and classifying domestic waste has been proposed, along with a smart trash
bin (STB) as the front-end carrier for waste disposal [35]. A Generative Parking Spot Detec-
tion (GPSD) algorithm using corner points to recover parking spots has been developed,
featuring a layered analytical illumination balance method and a fast micro-target detection
network [36]. Lastly, a broad attentive graph fusion network (BaGFN) has been designed to
strengthen high-order feature representation under graph structures and refine high-order
feature interactions at a bitwise level [37].

In the realm of image processing, the selection of an appropriate feature-detection and
registration method is pivotal for achieving high accuracy and efficiency. Table 1 provides
a succinct overview of various well-established and novel algorithms discussed in the
literature. These methods are characterized by their unique attributes and are applied
across a diverse array of scenarios.
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Table 1. Summary of feature-detection and image-registration methods.

Method/Algorithm Characteristics Applications

SIFT [13] Scale-invariant, robust to rotation Multispectral image registration

MSER [38] Stable regions, distinctive features Text detection, multi-source
matching

SURF [13] Fast, robust to scale and rotation Multispectral matching

BRISK [10] Fast, scale and rotation invariant Generic image registration

FAST [39] Very fast, lacks rotational invariance High-speed feature detection

ORB [10] Combines FAST and BRIEF, with rota-
tion invariance

Cost-effective real-time applica-
tions

Harris–Affine [11] High precision in detecting corners, not
scale-invariant

Corner detection in images

Multispectral Facial
Recognition [12]

Incorporates visible and IR images using
various detectors

Facial recognition across
spectrums

HOG [14] Histogram of Oriented Gradients for
keypoint matching

Offline transformation models

3. Methodology

This paper proposes a novel algorithm resulting from a combination of the BRISK
and FAST feature-detection algorithms. The proposed methodology is outlined in the
flow diagram shown in Figure 1. Detailed explanations of all the feature detectors and
descriptors used in this study are provided in the following section.

Figure 1. Flow diagram of the proposed methodology.

The experiments conducted in this study focus on three distinct types of image reg-
istrations based on the manner of image acquisition: (i) image registration based on
different viewpoints with varying rotation angles, (ii) scene-to-model registration using
two different scenes with some common portions, and (iii) image registration based on
different viewpoints with scaling transformations. These specific registrations were chosen
to methodically assess and demonstrate the capabilities of our hybrid algorithm under
controlled variations.

By separating these transformations in the initial experiments, we aimed to isolate the
effects of each type of manipulation on the detection performance, providing a clear under-
standing of how each adjustment affects the overall efficiency and accuracy of our proposed



J. Imaging 2024, 10, 228 6 of 31

hybrid detector. This approach allows for a more granular analysis of performance under
specific conditions, which is essential for developing a robust feature-detection system.

The registrations are performed on a diverse set of remote-sensing and scene im-
ages, encompassing a broad range of real-world scenarios to evaluate the performance of
the proposed hybrid algorithm comprehensively. Future work may include combining
these transformations to simulate more complex real-world scenarios, further testing the
adaptability and robustness of the hybrid detector.

In our manuscript, we focus on empirical performance metrics such as matching
rate, authentication rate, and computation time. These metrics are directly applicable to
the practical deployment of image registration techniques and provide clear, measurable
outcomes that can be compared across different methods; while theoretical frameworks
involving cost function minimization are valuable for certain analytical or optimization-
focused studies, our approach prioritizes direct evaluation of the methods in terms of their
operational effectiveness in real-world scenarios. This choice is aligned with the needs
of applications that require fast and accurate feature detection and registration, such as
remote sensing and automated surveillance.

3.1. Feature Detectors and Descriptors

A novel feature detector for keypoint detection, description, and matching known as
BRISK (Binary Robust Invariant Scalable Keypoints) has been proposed [40]. This method
is recognized for its robustness to scale and rotation, making it suitable for various image-
registration tasks. BRISK (Binary Robust Invariant Scalable Keypoints) provides a fast and
robust solution for keypoint detection and description, ideal for real-time applications. It
creates scale–space pyramids to achieve scale invariance and uses a pattern-based descriptor
for robustness against rotation. However, it may produce higher false positive rates
compared to slower, more complex methods like SIFT.

FAST (Features from Accelerated Segment Test) employs machine learning algorithms
to enhance the efficiency of feature detection [39]. A subsequent work presents a heuristic
approach for feature detection, further improved by machine learning techniques [41],
significantly enhancing the speed and performance of the algorithm. FAST is renowned
for its computational speed by using a decision tree to quickly assess pixel intensities.
Although highly efficient, FAST lacks rotational invariance and is not inherently scale-
invariant, which may limit its application in environments where orientation and scale vary
significantly. Extensions like ORB have been developed to incorporate scale and rotation
invariance into FAST.

ORB (Oriented FAST and Rotated BRIEF) builds on FAST by adding a pyramid scheme
for scale invariance and a learning-based orientation mechanism. ORB is partially scale-
invariant and more robust to rotation variations compared to FAST alone, making it a
versatile choice for multi-scale, orientation-varied feature-detection tasks. However, it may
still struggle with high levels of image noise and significant scale changes.

In a comprehensive comparison of feature detectors such as SIFT, ORB, AKAZE,
BRISK, MinEigen, and SURF, SIFT and BRISK have been identified as more accurate, while
ORB and BRISK demonstrate higher efficiency [42,43]. Additionally, SURF, BRISK, and SIFT
are noted for their scale-invariance, with ORB being less so. This evaluation underscores
the varying capabilities and suitability of these algorithms for different image-registration
tasks, emphasizing the need for a hybrid approach to combine their strengths.

The MSER (Maximally Stable Extremal Region) detector, which is known for its ro-
bustness and efficiency, utilizes the component tree as an efficient data structure, allowing
quasi-linear time calculation of MSERs [38]. This feature detector is particularly useful
for tracking applications due to its stability. MSER detects regions in an image that are
stable and distinctive. Stability ensures that regions remain consistent under slight image
perturbations such as noise or geometric transformations, while distinctiveness means
regions visually stand out from their surroundings. This makes MSER particularly effective
for identifying text or other significant structures within varied imaging conditions. It ana-
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lyzes intensity variations, identifying connected areas with similar intensity that maintain
their shape and intensity over transformations, making it suitable for applications like text
recognition and object segmentation. Despite its robustness, MSER’s performance may
vary depending on image contrast and noise, sometimes requiring combination with other
techniques for optimal results.

The Harris corner detector examines the eigenvalues of the autocorrelation matrix
to detect corners and interest points in images [44]. This method is well regarded for its
precision in identifying distinct image features.

By integrating the strengths of BRISK and FAST, the proposed hybrid algorithm
aims to achieve efficient and robust feature detection suitable for a wide range of image-
registration tasks. The proposed hybrid detector combines the high-speed processing of
FAST with the scale and rotation invariance of BRISK, enhancing both the accuracy and the
efficiency of keypoint detection. This improvement is particularly beneficial in complex
image transformations and diverse operational scenarios, as detailed in the subsequent
sections on methodology and simulation results.

Moreover, the application of the hybrid detector in challenging environments, such as
remote sensing and automated surveillance, has demonstrated superior performance in
terms of both detection accuracy and computational efficiency. The hybrid approach effec-
tively addresses the limitations of individual feature detectors by dynamically adjusting
to the characteristics of the input images and the specific requirements of the task. This
adaptability is crucial in environments where image quality and scene complexity can vary
significantly, thus requiring a more robust and flexible approach to feature detection.

Hybrid Feature-Detection Technique

The proposed hybrid approach combines the strengths of both the BRISK and FAST
algorithms to address their individual limitations and enhance the overall performance
of feature detection. This innovative technique leverages a ‘diagonal strategy’ within a
circle of sixteen pixels for efficient corner detection, focusing on only four key pixels. This
method not only speeds up the detection process but also maintains high accuracy by
categorizing pixels into brighter, darker, and similar sections based on their intensity.

By integrating the detailed, scale-invariant detection capabilities of BRISK with the
high-speed, efficient processing of FAST, the hybrid method significantly reduces both
time and computational complexity. This dual approach ensures that the hybrid detector
can quickly and accurately process images, making it especially suitable for complex
image transformations and diverse operational scenarios found in remote sensing and
automated surveillance.

Furthermore, the adaptability of the hybrid detector to varying imaging conditions—owing
to its combined algorithmic structure—provides enhanced robustness against changes in
lighting, scale, and motion. This robust performance is crucial for applications requiring
reliable and precise feature detection in dynamic environments.

3.2. Feature-Based Image Registration (FBIR)

The problem of image registration, particularly FBIR, is a crucial issue in the image
processing and computer vision domains. FBIR is mainly applicable in scenarios where
it is necessary to integrate and analyze information from different sources, which may
include different sensors, multiple photographs, various times, depths, or viewpoints.
The diverse application areas of FBIR include image fusion, change detection, and multi-
channel image restoration.

3.2.1. Feature Detection and Extraction Using Proposed Hybrid Feature Detector

The first step of FBIR involves feature detection and extraction. An automatic machine-
based method is developed to extract structures and features from images. Features can be
regions like forests, lakes, and fields, or points such as region corners and line intersections.
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An automatic hybrid approach for feature detection and description is developed to
address the limitations of the BRISK and FAST algorithms [5]. The proposed hybrid detector
and descriptor aim to reduce both time complexity and computational complexity, and
while the BRISK algorithm is robust to rotation and scale, it is computationally intensive.
Conversely, the FAST algorithm is faster but not scale-invariant and depends on a threshold
value. By combining the advantages of both BRISK and FAST, the proposed approach
overcomes their respective drawbacks.

In the proposed hybrid feature detector and descriptor, a corner pixel is constructed by
considering a circle of sixteen pixels. These pixels are divided into three groups: brighter,
darker, and similar portions, identified by their threshold and intensity values. Suppose
the threshold value is represented by t and the intensity of the pixel by i.

Intensity of a pixel =


t + i if brighter
t − i if darker
t − i ≤ i ≤ t + i if similar

(1)

For the brighter section, i is added to t; for the darker section, i is subtracted from t;
and for the similar section, i lies between t − i and t + i. Using these three types of pixels,
a diagonal approach is employed for the input sixteen pixels.

As shown in Figure 2, instead of testing all sixteen pixels, which is time consum-
ing, the proposed hybrid algorithm tests only four pixels. This diagonal approach uses
two slanting lines: one from pixel 3 to pixel 11 (right to left) and another from pixel 15
to pixel 7 (left to right). The intersection of these two diagonal lines identifies the center
corner pixel. This method accelerates the process by reducing the number of comparisons.
Finally, a local gradient method is applied to the center corner pixel to determine if the
pixel’s distance is below or above the threshold value. The main advantage of the proposed
algorithm is the reduction in both time and computational complexity compared to BRISK,
FAST, MSER, MinEigen, ORB, and Harris algorithms. Additionally, the proposed algorithm
outperforms existing algorithms in terms of match points and match rate.

Figure 2. Diagonal approach for hybrid feature-detection method.

Algorithm 1 outlines the steps employed in the Feature-Based Image Registration
(FBIR) using the proposed hybrid feature detector and descriptor. The algorithm aims to
optimize the feature-detection and matching process by applying various transformations
and utilizing a hybrid approach that combines the strengths of BRISK and FAST algorithms.
The result is an improved FBIR system that enhances the efficiency and accuracy of im-
age registration, crucial for applications in areas like remote sensing, medical imaging,
and computer vision.
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Algorithm 1 FBIR with Proposed Hybrid Algorithm.

Require: Original image
Ensure: Registered image using FBIR with hybrid feature detector and descriptor

1: Obtain the required input image from the database and convert it to its grayscale equivalent.
2: Apply transformations on the grayscale image:

• For rotation of an image using different angles:

R(x′, y′) =

{
x cos θ − y sin θ

x sin θ + y cos θ

where R is the rotated resultant image, x′ and y′ are the rotated pixel coordinates,
and θ is the angle of rotation.

• For scaling transformation of an image:

S(x′, y′) =

{
x · sx

y · sy

where S is the scaled image, x′ and y′ are the new scale coordinates, and sx and sy
are the scaling factors.

• Perform scene-to-model description and detection using two different input im-
ages with some common portions.

3: Detect feature keypoints from both the reference image and the sensed image using
various detectors like BRISK, FAST, MSER, ORB, MinEigen, Harris, and the proposed
hybrid feature detector.

4: Extract features from both detected images using the transformations described in
previous steps with various detectors and the proposed hybrid detector.

5: Match the key feature points extracted from both the reference image and the sensed
image using affine transformation with bicubic/bilinear interpolation.

6: Estimate the time for rotation, scaling, and scene-to-model registration for all detectors,
including the proposed hybrid detector.

7: If the matched points from both images are successfully extracted, obtain the regis-
tered image.

To further elucidate the operation of our proposed Hybrid Feature Detector, we utilize
a strategic subset of pixels within a predefined circular pattern. Initially, all 16 pixels
within this pattern are assessed based on their intensity values to classify them into three
categories: brighter, darker, and similar. This categorization allows the algorithm to focus
computational efforts on four pivotal pixels, which are determined through a diagonal
evaluation approach. This method not only streamlines the feature-detection process by
reducing unnecessary computations but also maintains high detection accuracy by focusing
on the most informative pixels.

The hybrid detector is designed to integrate the robust detection capabilities of BRISK,
which is adept at handling scale and rotation variations, with the computational efficiency
of FAST. This integration addresses the time-consuming keypoint detection in BRISK and
the scale limitations of FAST, providing a balanced solution that is both fast and scalable.

To aid in the understanding of this integration, the following Algorithm 2 illustrates
the process of selecting key pixels and combining the strengths of BRISK and FAST in our
hybrid detection approach:
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Algorithm 2 Hybrid Feature-Detection Process.

Require: Image
Ensure: Keypoints

1: Start with a circle of 16 pixels around each candidate pixel.
2: Classify 16 pixels into three categories based on intensity:

• Brighter
• Darker
• Similar

3: Apply a diagonal strategy to select 4 key pixels:
• Draw two diagonal lines across the circle.
• Select the intersection points as key pixels.

4: Use BRISK for scale and rotation invariant detection on selected pixels.
5: Apply FAST for quick detection on the reduced pixel set.
6: Combine results to obtain final keypoints.

This comprehensive approach ensures that our hybrid detector not only optimizes com-
putational resources but also adapts dynamically to various imaging conditions, thereby
enhancing both the performance and applicability of the feature-detection process in real-
world scenarios.

3.2.2. Feature Matching Using a Hybrid Algorithm

Feature matching, the second step of FBIR, plays a crucial role in establishing the
mapping between two images of the same fields acquired from different sources. Keypoints
are identified in both the reference image and the sensed image to perform matching.
The goal is to find a better correspondence between these images by comparing each
feature keypoint of the sensed image to those of the reference image and measuring the
distance between these points using BRISK, FAST, and the hybrid feature descriptors.
The Euclidean distance between two keypoints (a1, b1) and (a2, b2) is calculated using
the following formula:

distance =
√
(a2 − a1)2 + (b2 − b1)2 (2)

The distance is calculated for various feature detectors, including BRISK, FAST, MSER,
MinEigen, ORB, Harris, and the hybrid algorithm. To compare the execution time of each
algorithm, three time-based parameters are used: elapsed time, CPU time, and PMT time.
Experimental results show that the proposed hybrid feature matching algorithm takes less
time compared to existing feature detectors and descriptor algorithms.

3.2.3. Feature-Based Transform Model Estimation

The third step of FBIR involves estimating both the type and parameters of the trans-
formation needed to align the source image with the target image. The goal is to find an
accurate transform model that appropriately transforms the source image. Three meth-
ods for parameter estimation in transform model estimation are discussed, with affine
transformation being used in this paper.

Similarity transformation is a shape-preserving mapping transformation that pre-
serves angles and curvatures, while affine transformation is a linear mapping method that
preserves points, straight lines, and planes. Affine transformation is applied to correct
geometric deformations that occur due to non-ideal camera angles, and it is a particular
case of projective transformation.

3.2.4. Image Resampling and Transformation

The final step of FBIR is image resampling, which involves changing the pixel dimen-
sions of an image, effectively altering its resolution. The registered image obtained from the
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previous step is convolved with an interpolation kernel. Interpolation techniques reduce
the bandwidth of the signal by employing a low-pass filter on the discrete signal.

Three interpolation techniques are compared: Nearest Neighbor, Bilinear, and Bicubic.
These techniques are evaluated based on image quality parameters such as Mean Squared
Error (MSE), Root Mean Squared Error (RMSE), Signal-to-Noise Ratio (SNR), and Peak
Signal-to-Noise Ratio (PSNR), as shown in Table 2.

Table 2. Comparison of different interpolation (INR) techniques.

Image Quality Parameters INR Techniques
Transformation Types

Affine Similarity Projective

MSE
Nearest Neighbor 0.00438 0.00445 0.00431

Bilinear 0.00285 0.00293 0.00286
Bicubic 0.00214 0.00219 0.00221

RMSE
Nearest Neighbor 0.06620 0.06674 0.06565

Bilinear 0.05335 0.05411 0.05348
Bicubic 0.04626 0.04678 0.04704

SNR
Nearest Neighbor 18.28352 18.21146 18.35780

Bilinear 20.16101 20.03561 20.18970
Bicubic 21.39797 21.29897 21.24642

PSNR
Nearest Neighbor 23.58262 23.51229 23.65465

Bilinear 25.45772 25.33521 25.48598
Bicubic 26.69549 26.59826 26.79086

From Table 2, it can be observed that the MSE for Bicubic interpolation is 0.00214,
0.00219, and 0.00221 for affine, similarity, and projective transformations, respectively.
These values indicate that Bicubic interpolation has the lowest error content compared to
Bilinear and Nearest Neighbor interpolation schemes. Similar observations can be made
for RMSE, SNR, and PSNR values, where Bicubic interpolation outperforms the other
methods. Lower values of MSE and RMSE imply less error content, while higher values of
SNR and PSNR indicate lower noise content in the image. Hence, Bicubic interpolation,
which produces a smoother interpolation surface, is used in the image resampling and
transformation step of image registration in this paper.

4. Simulation and Results

This section validates the proposed hybrid algorithm using a series of experiments
conducted on eight aerial images. The validation considers three primary types of transfor-
mations: rotation at various angles, scene-to-model transformation using different instances
of the same image where some parts share common features, and scaling transformations
at varying scales.

The results of these experiments, presented in both numerical and visual formats,
demonstrate that the proposed hybrid feature-detection algorithm outperforms existing de-
tectors such as BRISK [40], FAST [41], ORB [43], Harris [44], MSER [38], and MinEigen [42].
Our method not only reduces the computational time required for feature detection but
also improves the accuracy of keypoint matching, making it a valuable tool for a wide
range of image registration applications.

To facilitate transparency and allow for in-depth validation by the research community,
the complete source code used in our experiments is available on GitHub [45]. This includes
the Matlab 2019a implementation of our algorithm to assist with setup and replication of
our results.

4.1. Experimental Setup and Image Data

The experiments were conducted using eight different images from the AID (Aerial
Image Dataset) database, representing a variety of scenes including parks, railway stations,
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airports, bridges, a university gate (VSSUT gate), and a large dam (Hirakud dam) [46].
These images were chosen to cover a broad spectrum of typical scenarios in remote sensing
and feature-detection tasks.

These images are subjected to three types of transformations to test the robustness and
effectiveness of the hybrid feature-detection algorithm:

• Rotation: Images are rotated at angles of 30◦, 70◦, 90◦, 120◦, 150◦, and 180◦.
• Scene-to-Model Transformation: This involves using two different instances of the

same scene (e.g., different views of an airport and a bridge) where parts of these
images share common features.

• Scaling: Images are scaled by factors of 0.7 and 2.0 to evaluate the algorithm’s perfor-
mance under size variations.

Figure 3 presents the original color aerial images from the AID database. Figure 4
shows these images converted to grayscale. Figure 5 illustrates the effects of various
rotational angles applied to the park and railway station images. Figure 6 displays the
scaling transformations applied to the VSSUT gate and Hirakud dam images.

(a) Park (b) Railway station (c) Airport, first view (d) Airport, second view

(e) Bridge, first view (f) Bridge, second view (g) VSSUT gate (h) Hirakud dam

Figure 3. Sampled color images from AID database [46].

(a) Park (b) Railway station (c) Airport, first view (d) Airport, second view

(e) Bridge, first view (f) Bridge, second view (g) VSSUT gate (h) Hirakud dam

Figure 4. Grayscale conversion of sampled color images from AID database [46].
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(a) 30◦ on park (b) 30◦ on railway station (c) 70◦ on park (d) 70◦ on railway station

(e) 90◦ on park (f) 90◦ on railway station (g) 120◦ on park (h) 120◦ on railway station

(i) 150◦ on park (j) 150◦ on railway station (k) 180◦ on park (l) 180◦ on railway station

Figure 5. Various rotation angles applied on park and railway station grayscale aerial images.

(a) (b) (c) (d)

Figure 6. Scaling transformations applied to VSSUT gate and Hirakud dam images. (a) 0.7 scaling
factor on VSSUT gate. (b) 0.7 scaling factor on Hirakud dam. (c) 2.0 scaling factor on VSSUT gate.
(d) 2.0 scaling factor on Hirakud dam.

4.1.1. Time Measurement Definitions

In our experimental analysis, we utilize three primary metrics to evaluate the compu-
tational efficiency of the feature-detection algorithms:

• Elapsed Time: total time from the initiation to the completion of the feature-detection process.
• CPU Time: the amount of processing time the CPU spends to execute the feature-

detection tasks, excluding any idle time.
• PMT (Performance Measuring Time): this metric assesses the performance efficiency

of the algorithm, focusing on the active processing time.

These metrics help in understanding the computational demand and efficiency of the
proposed methods under different operational conditions.
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4.1.2. Validation of Detected Keypoints

To ensure the accuracy of detected keypoints, our analysis relies on the established per-
formance metrics such as precision and matching rate, which have been detailed in previous
sections. These metrics serve as indicators of the correctness of the keypoint identification:

• Precision assesses the proportion of detected keypoints that are true positives, helping to
confirm that the keypoints are genuine features of the images rather than noise or errors.

• Matching Rate evaluates how well the keypoints from different transformations of the
same image correlate with each other. A high matching rate indicates a successful iden-
tification of consistent and reliable keypoints across different versions of the images.

This analytical approach allows us to validate the effectiveness of the keypoint detection
algorithm without the need for additional experimental validation. The high performance metrics
reported reflect the robustness of our feature-detection algorithm, underscoring its reliability in
identifying correct keypoints even under challenging conditions such as rotation and scaling.

4.2. Rotation with Different Angles

This subsection meticulously evaluates the performance of various feature-detection
algorithms under rotation transformations, focusing on their robustness and effectiveness.
Two distinct aerial images—a serene park and a bustling railway station—serve as test
subjects. These images were methodically rotated at six pivotal angles: 30◦, 70◦, 90◦, 120◦,
150◦, and 180◦. This setup aims to rigorously test the resilience of the feature-detection
methods, including an innovative hybrid algorithm developed as part of this study.

Several renowned feature detectors were employed in these experiments: BRISK [40],
FAST [41], ORB [43], Harris [44], MinEigen [42], and MSER [38], alongside the newly
proposed hybrid detector. Each detector’s capability to consistently identify and track
feature keypoints across various rotation angles was analyzed.

The results of these experiments are illustrated in Figures 7 and 8. These figures
not only depict the detection of feature keypoints but also highlight the comparative
performance and distinctive traits of each detector under rotational stress. Such detailed
visualization aids in understanding the practical impacts of rotational transformations on
feature-detection reliability. The feature keypoints, indicated in green, represent significant
aspects of the image such as edges, corners, or other specific patterns that are crucial for
alignment tasks in image registration. This detailed visualization helps to better understand
how different detectors perform under the challenge of rotation, providing insight into
their robustness and effectiveness.

(a) MSER (b) BRISK (c) FAST (d) ORB

(e) Harris (f) MinEigen (g) Hybrid

Figure 7. Detection of feature keypoints in the park image under 150◦ rotation, showcasing the
performance of different detectors. Green markers highlight the keypoints detected, with each
subfigure corresponding to the output using a different feature-detection method.
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(a) MSER (b) BRISK (c) FAST (d) ORB

(e) Harris (f) MinEigen (g) Hybrid

Figure 8. Detection of feature keypoints in the railway station image under 150◦ rotation, showcasing
the performance of different detectors. Green markers indicate the keypoints, and each subfigure
corresponds to the output using a different feature-detection method.

Subsequent Figures 9 and 10 extend this analysis by detailing the extraction processes
of these keypoints for both the park and railway images. The robust extraction capabilities
of each feature detector are crucial for accurate feature matching in applications such as
image stitching and object recognition in computer vision. The green markers in these
figures specifically illustrate the keypoints that each detector has identified as crucial for
successful image analysis and manipulation. This step-by-step visualization showcases the
effectiveness of each algorithm in maintaining keypoint integrity even through complex
transformations, ensuring accurate subsequent image registration.

(a) MSER (b) BRISK (c) FAST (d) ORB

(e) Harris (f) MinEigen (g) Hybrid

Figure 9. Extraction of feature keypoints from the park image under 150◦ rotation. Green markers
demonstrate the keypoints extracted, emphasizing the nuances of each algorithm with each subfigure
showing results using a different feature extraction method.
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(a) MSER (b) BRISK (c) FAST (d) ORB

(e) Harris (f) MinEigen (g) Hybrid

Figure 10. Extraction of feature keypoints from the railway station image under 150◦ rotation. Each
subfigure demonstrates the results using a different feature extraction method, with green markers
used to emphasize keypoint locations and algorithmic nuances.

In our evaluation of the feature detectors, we carefully analyze how each method
performs under various transformations. Figures 11 and 12 are designed to provide a clear
comparison between the detectors. To make the differences more discernible, the images
are presented separately for individual detectors to allow for a focused analysis of each
method’s capabilities in isolation. For the hybrid detector, we present an overlaid image to
demonstrate the synergistic effect of combining multiple detection techniques, showcasing
our proposed method’s comprehensive matching capability. This format aids in visualizing
the distinct performance traits and alignment precision of each detector.

(a) MSER (b) BRISK (c) FAST (d) ORB

(e) Harris (f) MinEigen (g) Hybrid

Figure 11. Matching of feature keypoints in the park image across different rotational views under
150◦ rotation. Subfigures (a–f) display the matched keypoints separately to illustrate individual
detector performance clearly. Subfigure (g) shows an overlaid result of the hybrid detector to
demonstrate the integration of multiple detection outcomes, providing a comprehensive view of the
keypoints matched by the proposed method. Each image aims to highlight the effectiveness of each
feature detector in achieving consistent matching across transformations.
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(a) MSER (b) BRISK (c) FAST (d) ORB

(e) Harris (f) MinEigen (g) Hybrid

Figure 12. Matching of feature keypoints in the railway station image across different rotational
views under 150◦ rotation. Each subfigure highlights the effectiveness of each feature detector in
achieving consistent matching.

In addition to visual assessments, the performance of the feature-detection algorithms
was quantitatively evaluated, as depicted in Tables 3 and 4. These tables enumerate the
detected keypoints, extracted keypoints, and matched keypoints across six rotational angles for
both the park and railway station images, employing a variety of feature detectors including
BRISK, FAST, ORB, Harris, MinEigen, MSER, and the newly proposed hybrid detector.

The hybrid algorithm, notably, demonstrated superior performance in terms of match
rate percentages, significantly outperforming traditional detectors. For example, at a 120◦

rotation, the hybrid detector achieved a match rate of 28.84%, which is the highest among
the detectors tested. Moreover, in scenarios with 90◦ and 180◦ rotations, the hybrid and
ORB detectors achieved a perfect match rate of 100%, indicating robust performance in
standard upright and inverted orientations.

Table 3 includes key statistical metrics—mean, variance, and standard deviation—across
various rotation angles to provide a clearer, summarized view of the performance of dif-
ferent feature detectors. These statistical summaries help discern the general trends and
variability in the performance of each method without the clutter of individual data points.
For instance, at a 90◦ rotation, the mean matching rate is notably high, reflecting the robust-
ness of the detectors under orthogonal rotations. The standard deviation at this angle is
lower compared to other angles, indicating more consistent performance across different
detectors. This statistical approach not only simplifies the comparative analysis but also
enhances the readability and interpretability of the results, supporting a stronger, more
justified conclusion about the superiority of specific methods, such as the Hybrid detector
which consistently shows high efficiency and accuracy.

The efficiency of the algorithms was also gauged through performance metrics such
as elapsed time, CPU time, and PMT (Processor Memory Time). The hybrid algorithm
consistently showed the lowest time consumption across these metrics, suggesting its
suitability for real-time applications. For the park image at 150◦ rotation, the hybrid
algorithm required only 3.7125 s of CPU time, which is significantly less than the other
detectors like BRISK (5.1875 s) and ORB (11.2813 s).

This numerical analysis confirms the effectiveness of the hybrid algorithm not only in
maintaining high accuracy in feature matching across varied rotations but also in ensuring
computational efficiency. Such attributes make the hybrid algorithm particularly advanta-
geous for applications in remote sensing and medical imaging where rapid and reliable
feature detection is critical.
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Table 3. Quantitative evaluation of feature-detection performance at various rotation angles for the
railway station image. The table displays keypoint detection, extraction, and matching statistics for
each detector.

Detector Det.
Kpts1

Det.
Kpts2

Ext.
Kpts1

Ext.
Kpts2

Matched
Kpts

Match
Rate (%)

Elapsed
Time (s)

CPU
Time (s)

PMT
Time (s)

Rotation Angle: 30◦, Sum: 146.7800, Mean: 20.9685, Variance: 64.7572, Std. Dev.: 8.0471

BRISK 572 736 430 680 72 10.59 11.42 12.84 11.42
FAST 234 291 207 288 54 18.75 4.71 4.19 4.71
MSER 678 591 678 591 78 13.20 6.79 8.56 6.79
ORB 6753 9936 6753 9936 3037 30.57 4.92 5.03 4.93
Harris 665 525 588 504 97 19.25 4.80 5.27 4.80
MinEigen 4140 3785 3573 3748 847 22.60 3.58 3.80 3.59
Hybrid 569 746 569 748 238 31.82 3.34 3.22 3.34

Rotation Angle: 70◦, Sum: 149.5300, Mean: 21.3614, Variance: 48.5798, Std. Dev.: 6.9699

BRISK 572 730 430 677 74 10.93 11.69 13.83 11.70
FAST 234 263 207 256 68 26.56 4.47 4.09 4.45
MSER 678 586 678 586 142 24.23 7.46 7.30 7.46
ORB 6753 9535 6753 9535 3073 32.23 5.01 4.70 5.02
Harris 665 479 588 450 75 16.67 3.48 3.11 3.49
MinEigen 4140 3640 3573 3593 701 19.51 3.26 3.03 3.27
Hybrid 569 732 569 732 142 19.40 2.86 2.44 2.85

Rotation Angle: 90◦, Sum: 637.2900, Mean: 91.0414, Variance: 186.4632, Std. Dev.: 13.6551

BRISK 572 569 430 426 268 62.91 3.99 3.78 4.00
FAST 234 234 207 207 205 99.03 3.95 3.70 3.95
MSER 678 678 678 678 678 100.00 5.89 5.44 5.89
ORB 6753 6753 6753 6753 6753 100.00 4.18 3.89 4.19
Harris 665 665 588 589 518 87.95 3.57 3.25 3.57
MinEigen 4140 4140 3573 3572 3122 87.40 2.91 2.34 2.91
Hybrid 569 569 569 569 569 100.00 2.71 2.41 2.71

Rotation Angle: 120◦, Sum: 148.2700, Mean: 21.1814, Variance: 56.2275, Std. Dev.: 7.4985

BRISK 572 716 430 663 92 13.88 3.49 3.64 3.49
FAST 234 291 207 288 49 17.01 4.68 4.47 4.68
MSER 673 591 678 591 78 13.20 7.73 8.45 7.73
ORB 6753 9936 6753 9936 3037 30.57 5.17 5.42 5.19
Harris 665 525 588 504 101 20.04 4.07 4.13 4.07
MinEigen 4140 3735 3573 3747 815 21.75 3.15 2.72 3.15
Hybrid 569 748 569 748 238 31.82 2.98 2.61 2.99

Rotation Angle: 150◦, Sum: 150.1200, Mean: 21.4457, Variance: 45.5085, Std. Dev.: 6.7460

BRISK 572 722 430 673 95 14.12 6.49 7.86 6.48
FAST 234 295 207 289 42 14.53 3.89 3.30 3.88
MSER 678 580 678 580 107 18.45 7.57 7.86 7.57
ORB 6753 10,381 6753 10,381 2964 28.55 5.10 4.91 5.08
Harris 665 471 588 451 84 18.63 3.42 3.30 3.42
MinEigen 4140 3424 3573 3388 838 24.73 3.48 3.19 3.48
Hybrid 569 736 569 736 229 31.11 2.88 3.19 2.88

Rotation Angle: 180◦, Sum: 682.85, Mean: 97.5500, Variance: 33.1407, Std. Dev.: 5.7567

BRISK 572 568 430 426 360 84.51 3.60 2.44 3.59
FAST 234 234 207 207 207 100.00 3.98 3.03 3.98
MSER 678 678 678 678 674 99.41 6.23 7.11 6.23
ORB 6753 6753 6753 6753 6753 100.00 3.75 3.75 3.75
Harris 665 665 588 588 585 99.49 3.64 3.27 3.63
MinEigen 4140 4140 3573 3568 3548 99.44 3.04 2.88 3.04
Hybrid 569 569 569 569 569 100.00 2.84 2.58 2.84
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Table 4. Quantitative evaluation of feature-detection performance at various rotation angles for the park
image. The table displays keypoint detection, extraction, and matching statistics for each detector.

Detector Detected
Kpts1

Detected
Kpts2

Extracted
Kpts1

Extracted
Kpts2

Matched
Kpts

Matched
Rate (%)

Elapsed
Time (s)

CPU
Time (s)

PMT
Time (s)

Rotation Angle: 30◦

BRISK 1634 1973 1499 1951 173 8.86 13.92 16.08 13.93
FAST 894 1128 859 1125 179 15.91 4.84 6.72 4.84
MSER 767 779 767 779 126 16.71 7.51 7.78 7.50
ORB 13,704 18,521 13,704 18,521 5177 27.95 7.45 10.48 7.44
Harris 1176 1081 1119 1049 162 15.44 4.61 4.13 4.60
MinEigen 5213 4590 4608 4550 645 14.17 4.35 3.89 4.34
Hybrid 976 1009 976 1009 290 28.74 3.63 3.59 3.64

Rotation Angle: 70◦

BRISK 1634 1906 1499 1872 177 9.45 13.29 13.25 13.29
FAST 894 951 859 944 170 18.00 4.88 5.11 4.88
MSER 767 739 767 739 179 24.22 6.74 7.88 6.74
ORB 13,704 17,713 13,704 17,713 5393 30.44 8.91 10.45 8.92
Harris 1176 1270 1119 1236 142 11.48 4.84 3.92 4.85
MinEigen 5213 4623 4608 4568 495 10.83 3.83 4.75 3.84
Hybrid 976 1063 976 1063 322 30.29 3.44 3.86 3.44

Rotation Angle: 90◦

BRISK 1634 1648 1499 1512 938 62.03 4.74 4.45 4.75
FAST 894 894 859 859 797 92.78 3.42 3.13 3.43
MSER 767 767 767 767 755 98.43 16.69 23.30 16.68
ORB 13,704 13,704 13,704 13,704 13,704 100.00 5.67 7.22 5.66
Harris 1176 1176 1119 1119 933 83.37 4.23 3.61 4.23
MinEigen 5213 5213 4608 4613 3600 78.04 3.64 3.72 3.64
Hybrid 976 976 976 976 976 100.00 2.55 2.77 2.55

Rotation Angle: 120◦

BRISK 1634 1972 1499 1948 156 8.00 4.31 4.72 4.31
FAST 894 1128 859 1125 185 16.44 3.61 4.41 3.61
MSER 767 779 767 779 126 16.17 6.58 7.91 6.59
ORB 13,704 18,521 13,704 18,521 5177 27.95 8.32 11.36 8.33
Harris 1176 1081 1119 1049 158 15.06 4.91 5.73 4.89
MinEigen 5213 4590 4608 4550 620 13.62 3.37 3.77 3.37
Hybrid 976 1009 976 1009 291 28.84 3.33 4.44 3.33

Rotation Angle: 150◦

BRISK 1634 1932 1499 1899 179 9.42 4.55 5.19 4.55
FAST 894 1144 859 1137 163 14.33 4.55 4.77 4.56
MSER 767 726 767 726 163 22.45 6.49 6.64 6.49
ORB 13,704 18,282 13,704 18,282 5132 28.07 7.57 11.28 7.57
Harris 1176 1210 1119 1182 149 12.60 4.01 4.11 4.02
MinEigen 5213 4632 4608 4592 559 12.17 3.73 3.77 3.73
Hybrid 976 1022 976 1022 267 26.12 3.61 3.71 3.61

Rotation Angle: 180◦

BRISK 1634 1634 1499 1501 1325 88.27 2.95 2.75 2.95
FAST 894 894 859 861 859 99.76 4.06 3.00 4.06
MSER 767 767 767 767 754 98.30 6.78 6.33 6.79
ORB 13,704 13,704 13,704 13,704 13,704 100.00 6.56 7.88 6.56
Harris 1176 1176 1119 1121 1118 99.73 4.24 3.22 4.24
MinEigen 5213 5213 4608 4615 4590 99.45 3.51 2.73 3.50
Hybrid 976 976 976 976 976 100.00 2.81 2.94 2.81
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4.3. Scene-to-Model Registration

Scene-to-model registration involves comparing different instances of the same image,
typically referred to as the reference image and the sensed image, which share some
common features. This process is crucial for applications such as satellite image analysis,
where changes over time within the same geographic area need to be identified accurately.
In this experiment, instances of aerial images from an airport and a bridge were selected to
demonstrate the effectiveness of various feature-detection and matching algorithms.

Figures 13 and 14 illustrate the process of feature point detection, extraction, and match-
ing for these aerial images. Each figure sequences through the stages of detecting features
in individual images, extracting those features, and then matching them between two
images of the same scene. This sequence is demonstrated using different feature detectors
and descriptors, highlighting how each algorithm performs under the same conditions.

The quantitative analysis of these experiments is presented in Table 5, which details
the performance of each detection method across various metrics such as the number of
keypoints detected, extracted, and successfully matched, as well as the efficiency metrics
including match rate percentage and execution times (elapsed, CPU, and PMT). For in-
stance, when comparing the two instances of the airport images, the hybrid algorithm
significantly outperformed other methods with a matching rate of 73.90%, which is the
highest among all the detectors. This high performance is consistent across the different
images, underscoring the hybrid algorithm’s robustness and efficiency, particularly noted
by its minimal processing time.

Table 5. Scene-to-model registration, i.e., different images of the same scene applied on two sets of
aerial images: airport and bridge.

Detection
Method

Detected
Kpts1

Detected
Kpts2

Extracted
Kpts1

Extracted
Kpts2

Matched
Kpts

Matched
Rate (%)

Elapsed
Time

CPU
Time

PMT
Time

Airport Aerial Images

BRISK 278 731 195 604 24 19.85 4.93 4.73 4.93
FAST 201 464 150 404 28 34.65 6.11 5.25 6.12
MSER 173 270 173 270 34 12.59 6.26 5.30 6.25
ORB 1253 3759 1253 3759 129 17.15 5.51 4.56 5.51
Harris 153 342 117 289 21 36.30 5.52 4.83 5.52
MinEigen 955 2176 697 1689 100 29.60 5.59 4.09 5.59
Hybrid 89 257 89 257 38 73.90 4.48 3.86 4.47

Bridge Aerial Images

BRISK 830 577 644 412 7 8.45 5.69 4.69 5.68
FAST 475 294 397 239 9 18.80 4.53 4.14 4.53
MSER 558 385 558 385 7 9.05 6.80 6.98 6.80
ORB 3805 3573 3805 3573 126 17.60 5.08 5.02 5.08
Harris 435 382 350 329 12 18.20 5.11 4.64 5.13
MinEigen 3664 3465 3101 2897 48 8.25 4.94 4.95 4.94
Hybrid 367 282 367 282 14 24.80 4.45 4.54 4.45

The results for the bridge images show similar trends, where the hybrid algorithm
again demonstrates superior performance, especially in terms of execution time, making it
an ideal candidate for real-time applications in remote sensing and aerial reconnaissance.

Overall, the scene-to-model registration experiments validate the efficacy of the pro-
posed hybrid algorithm, not only in achieving high match rates but also in maintaining
lower computational costs, making it suitable for real-time image analysis applications.
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(a) Detection 1: BRISK (b) Detection 2: BRISK (c) Extraction 1: BRISK (d) Extraction 2: BRISK (e) Matching: BRISK

(f) Detection 1: FAST (g) Detection 2: FAST (h) Extraction 1: FAST (i) Extraction 2: FAST (j) Matching: FAST

(k) Detection 1: ORB (l) Detection 2: ORB (m) Extraction 1: ORB (n) Extraction 2: ORB (o) Matching: ORB

(p) Detection 1: Harris (q) Detection 2: Harris (r) Extraction 1: Harris (s) Extraction 2: Harris (t) Matching: Harris

(u) Detection 1: MSER (v) Detection 2: MSER (w) Extraction 1: MSER (x) Extraction 2: MSER (y) Matching: MSER

(z) Detection 1: MinEigen (aa) Detection 2: MinEigen (ab) Extraction 1: MinEigen (ac) Extraction 2: MinEigen (ad) Matching: MinEigen

(ae) Detection 1: Hybrid (af) Detection 2: Hybrid (ag) Extraction 1: Hybrid (ah) Extraction 2: Hybrid (ai) Matching: Hybrid

Figure 13. Sequential presentation of detection, extraction, and matching phases for various feature
detectors on two sets of airport aerial images. Each row represents a different detector and showcases
the process from detection to matching.
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(a) Detection 1: BRISK (b) Detection 2: BRISK (c) Extraction 1: BRISK (d) Extraction 2: BRISK (e) Matching: BRISK

(f) Detection 1: FAST (g) Detection 2: FAST (h) Extraction 1: FAST (i) Extraction 2: FAST (j) Matching: FAST

(k) Detection 1: ORB (l) Detection 2: ORB (m) Extraction 1: ORB (n) Extraction 2: ORB (o) Matching: ORB

(p) Detection 1: Harris (q) Detection 2: Harris (r) Extraction 1: Harris (s) Extraction 2: Harris (t) Matching: Harris

(u) Detection 1: MSER (v) Detection 2: MSER (w) Extraction 1: MSER (x) Extraction 2: MSER (y) Matching: MSER

(z) Detection 1: MinEigen (aa) Detection 2: MinEigen (ab) Extraction 1: MinEigen (ac) Extraction 2: MinEigen (ad) Matching: MinEigen

(ae) Detection 1: Hybrid (af) Detection 2: Hybrid (ag) Extraction 1: Hybrid (ah) Extraction 2: Hybrid (ai) Matching: Hybrid

Figure 14. Sequential presentation of detection, extraction, and matching phases for various feature
detectors on two sets of bridge aerial images. Each row represents a different detector and showcases
the process from detection to matching.
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4.4. Scaling Transformations with Differet Scale Vectors

This subsection explores the effects of scaling transformations on feature detection and
matching using three different feature detectors: BRISK, MSER, and Hybrid. The choice of
BRISK and MSER stems from their known scale–space invariant properties, making them
ideal for studying scaling impacts. The Hybrid detector is introduced to assess potential
improvements in scaling performance.

4.4.1. Comparative Analysis of Feature Detectors

The analysis is supported by three detailed tables that compare the performance
of these detectors under different scaling vectors on two distinct images—the VSSUT
entrance and the Hirakud dam. These tables (Tables 6–8) quantify the effects of scaling on
detection accuracy and computational efficiency, essential for understanding the scalability
of each detector.

Table 6. Different sizes, i.e., scaling vectors applied on VSSUT entrance and Hirakud dam images
using the BRISK detection method.

Image Name Scaling Vector Scaled Size IQA Bicubic Bilinear Nearest

VSSUT 0.7 717 × 538 PSNR 30.31 29.52 26.74
1024 × 768 134 KB 65.7 KB MSE 0.00093 0.00112 0.00212

Hirakud dam 0.7 385 × 289 PSNR 31.75 29.33 26.70
550 × 412 34.7 KB 15.4 KB MSE 0.00067 0.00117 0.00214

VSSUT 2.0 2048 × 1536 PSNR 26.60 25.94 24.38
1024 × 768 134 KB 330 KB MSE 0.00219 0.00249 0.00364

Hirakud dam 2.0 1100 × 824 PSNR 31.31 30.20 28.81
550 × 412 34.7 KB 73.2 KB MSE 0.00074 0.00095 0.00131

Table 7. Different sizes, i.e., scaling vectors applied on VSSUT entrance and Hirakud dam images
using the MSER detection method.

Image Name Scaling Vector Scaled Size IQA Bicubic Bilinear Nearest

VSSUT 0.7 717 × 538 PSNR 30.66 30.31 26.59
1024 × 768 134 KB 65.7 KB MSE 0.00086 0.00093 0.00219

Hirakud dam 0.7 385 × 289 PSNR 29.83 29.14 25.68
550 × 412 34.7 KB 15.4 KB MSE 0.00104 0.00122 0.00270

VSSUT 2.0 2048 × 1536 PSNR 26.87 25.92 24.21
1024 × 768 134 KB 330 KB MSE 0.00206 0.00256 0.00379

Hirakud dam 2.0 1100 × 824 PSNR 30.57 28.03 25.47
550 × 412 34.7 KB 73.2 KB MSE 0.00088 0.00157 0.00283

Table 8. Different sizes, i.e., scaling vectors applied on VSSUT entrance and Hirakud dam images
using the Hybrid detection method.

Image Name Scaling Vector Scaled Size IQA Bicubic Bilinear Nearest

VSSUT 0.7 717 × 538 PSNR 31.47 30.34 27.02
1024 × 768 134 KB 65.7 KB MSE 0.00071 0.00093 0.00198

Hirakud dam 0.7 385 × 289 PSNR 34.11 31.66 26.78
550 × 412 34.7 KB 15.4 KB MSE 0.00039 0.00068 0.00210

VSSUT 2.0 2048 × 1536 PSNR 26.89 26.04 24.38
1024 × 768 134 KB 330 KB MSE 0.00205 0.00249 0.00364

Hirakud dam 2.0 1100 × 824 PSNR 31.31 29.75 25.93
550 × 412 34.7 KB 73.2 KB MSE 0.00074 0.00106 0.00255
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The comprehensive performance comparison facilitated by Tables 6–8 provides a
robust basis to evaluate the effectiveness of the BRISK, MSER, and Hybrid feature detectors
under various scaling transformations. These tables incorporate crucial image quality
metrics such as PSNR (Peak Signal-to-Noise Ratio) and MSE (Mean Squared Error) along
with essential time-based metrics including elapsed time, CPU time, and PMT (Prepro-
cessing and Matching Time). This extensive dataset not only validates the efficiency of the
feature-detection algorithms but also highlights the computational demands associated
with each method.

A consistent pattern is observed in the data, which underscores the superior perfor-
mance of the Hybrid detector in maintaining high image quality metrics and managing
computational time effectively across different scaling scenarios. For example, under a
scaling vector of 2.0, the Hybrid detector consistently demonstrates higher PSNR values
and lower MSE, indicating better image reconstruction with fewer errors compared to
the BRISK and MSER methods. This efficiency is also reflected in the processing times,
where the Hybrid detector often equals or surpasses the speed of the other detectors while
delivering more accurate results.

This evaluation emphasizes the importance of selecting an appropriate feature-detection
strategy based on specific application requirements, especially in environments that involve
significant variations in image scale. The Hybrid detector, with its robust performance
across various scales, emerges as an exceptionally effective tool in scenarios where both
precision and efficiency are crucial. It proves to be an excellent choice for applications
such as aerial imaging, surveillance, and other forms of remote sensing where images
may undergo various transformations and require high fidelity and rapid processing for
timely decision-making.

4.4.2. Impact of Scaling on Feature Detection

Figures 15–17 demonstrate the efficacy of MSER, BRISK, and Hybrid feature detec-
tors under varying scaling conditions, highlighting their capabilities and limitations in
handling images from two distinctive scenarios: the VSSUT entrance and the Hirakud
dam. Each image undergoes transformations using scaling vectors of 0.7 and 2.0, simulat-
ing conditions of both under-scaling and over-scaling, which are common challenges in
practical applications.

In the initial set of images, MSER shows robustness in detecting features on the
VSSUT gate under normal conditions, but its performance slightly degrades when the
image is downscaled (0.7 scaling factor), suggesting a drop in sensitivity to smaller scale
features. Conversely, BRISK maintains a consistent detection rate across scales, likely
due to its design that balances scale invariance and feature stability. The Hybrid detector,
expectedly, outperforms the individual MSER and BRISK in both scenarios by integrating
their strengths and mitigating their weaknesses, particularly in the over-scaled (2.0 scaling
factor) images where finer details are magnified.

Moving to the feature extraction figures, the pattern is somewhat consistent with the
initial detection tests. The MSER detector captures denser clusters of keypoints in high-
detail areas, which becomes sparse in scaled-down images. BRISK again shows uniform
performance, proving to be less sensitive to scale changes compared to MSER. Hybrid’s
advanced algorithm synergizes the detection process, ensuring that the quality and quantity
of keypoints remain relatively stable across different scales. This adaptability makes it
particularly suitable for applications requiring high precision in feature extraction across
varied imaging conditions.

These observations underscore the importance of choosing the right feature-detection
and extraction methods based on the specific requirements of the application, especially
when dealing with images subjected to significant scale transformations. The Hybrid
detector emerges as a strong candidate for scenarios requiring robust performance under
diverse scaling conditions, providing a balanced solution that leverages the strengths of
both MSER and BRISK.
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Figure 15. Comparison of feature-detection performance using MSER, BRISK, and Hybrid detectors
on two different images under scaling transformations. Each row demonstrates the response of
the detectors at scaling factors of the original, 0.7, and 2.0, highlighting the adaptability of these
algorithms to changes in image scale. (a) MSER: VSSUT Gate Image. (b) BRISK: VSSUT Gate Image.
(c) MSER: HD Image. (d) BRISK: HD Image. (e) Hybrid: VSSUT Gate Image. (f) Hybrid: HD Image.
(g) MSER: VSSUT Gate Image, Scale 0.7. (h) BRISK: VSSUT Gate Image, Scale 0.7. (i) MSER: HD
Image, Scale 0.7. (j) BRISK: HD Image, Scale 0.7. (k) Hybrid: VSSUT Gate Image, Scale 0.7. (l) Hybrid:
HD Image, Scale 0.7. (m) MSER: VSSUT Gate Image, Scale 2.0. (n) BRISK: VSSUT Gate Image, Scale
2.0. (o) MSER: HD Image, Scale 2.0. (p) BRISK: HD Image, Scale 2.0. (q) Hybrid: VSSUT Gate Image,
Scale 2.0. (r) Hybrid: HD Image, Scale 2.0.

4.4.3. Advanced Analysis Using Registered Images

Figure 18 displays the results of image registration using the Hybrid feature detector.
This set of images showcases enhanced informational content through the integration
of various scene details, achieving a more comprehensive representation of the original
scenes. These registered images, processed through the Hybrid detector, exemplify the
effectiveness of the method in synthesizing high-quality composite views from multiple
aerial and terrestrial photographs.

In Figure 19, each subplot visually demonstrates the keypoints detected by different
feature-detection algorithms when applied to a park scene. These visual representations
allow us to assess the density and distribution of keypoints identified by each algorithm,
which are critical factors in evaluating their effectiveness and reliability for practical appli-
cations such as image registration and object recognition.

4.4.4. Analysis of Feature-Detection Metrics

The performance of feature-detection algorithms is evaluated based on several key met-
rics, each offering insights into different aspects of the algorithm’s effectiveness. The Num-
ber of Keypoints detected is indicative of the algorithm’s ability to identify features across
the image, which is crucial for comprehensive analysis and accurate matching. However,
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a larger number of keypoints does not necessarily equate to better performance, as the
relevance and accuracy of these points are paramount.

Precision is a critical measure that assesses the accuracy and relevance of the de-
tected keypoints. It measures the proportion of true positive keypoints among all detected
keypoints, reflecting the accuracy of the detection process. The Matching Rate further com-
plements these metrics by examining how effectively the keypoints from different images
correlate, which is essential for applications like image stitching and 3D reconstruction.
High matching rates suggest that the keypoints are not only accurately detected but are
also meaningful in the context of aligning multiple images.

By evaluating these metrics together, we can form a comprehensive view of a detector’s
performance, considering both the quantity and quality of the detected features. This
approach ensures that the feature detectors are not only prolific in terms of keypoint
generation but also precise and practical for real-world applications.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Figure 16. Extraction of feature keypoints using various extractors based on scaling factors of 0.7
and 2.0. Each row demonstrates the impact of scaling on the effectiveness of feature extraction
across different images and detectors. (a) MSER: VSSUT Gate Image. (b) BRISK: VSSUT Gate Image.
(c) MSER: HD Image. (d) BRISK: HD Image. (e) Hybrid: VSSUT Gate Image. (f) Hybrid: HD Image.
(g) MSER: VSSUT Gate Image, Scale 0.7. (h) BRISK: VSSUT Gate Image, Scale 0.7. (i) MSER: HD
Image, Scale 0.7. (j) BRISK: HD Image, Scale 0.7. (k) Hybrid: VSSUT Gate Image, Scale 0.7. (l) Hybrid:
HD Image, Scale 0.7. (m) MSER: VSSUT Gate Image, Scale 2.0. (n) BRISK: VSSUT Gate Image, Scale
2.0. (o) MSER: HD Image, Scale 2.0. (p) BRISK: HD Image, Scale 2.0. (q) Hybrid: VSSUT Gate Image,
Scale 2.0. (r) Hybrid: HD Image, Scale 2.0.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 17. Matching of feature keypoints using various detectors on VSSUT gate and Hirakud dam
images under two scaling factors, 0.7 and 2.0. Each image series demonstrates the effect of scaling
on feature matching performance. (a) MSER: VSSUT Gate Image, Scale 0.7. (b) BRISK: VSSUT Gate
Image, Scale 0.7. (c) MSER: Hirakud Dam Image, Scale 0.7. (d) BRISK: Hirakud Dam Image, Scale
0.7. (e) Hybrid: VSSUT Gate Image, Scale 0.7. (f) Hybrid: Hirakud Dam Image, Scale 0.7. (g) MSER:
VSSUT Gate Image, Scale 2.0. (h) BRISK: VSSUT Gate Image, Scale 2.0. (i) MSER: Hirakud Dam
Image, Scale 2.0. (j) BRISK: Hirakud Dam Image, Scale 2.0. (k) Hybrid: VSSUT Gate Image, Scale 2.0.
(l) Hybrid: Hirakud Dam Image, Scale 2.0.

(a) Park Aerial (b) Railway Station Aerial (c) Airport Aerial

(d) Bridge Aerial (e) VSSUT Gate (f) Hirakud Dam

Figure 18. Registered images of different scenes using the Hybrid feature detector. Each subfigure
shows a different aerial or scene image, highlighting the detailed synthesis achieved through the
registration process.
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(a) BRISK (b) FAST (c) ORB (d) Harris

(e) MSER (f) MinEigen (g) Hybrid

Figure 19. Performance comparison of various feature detectors on park scene images. Each subplot
visually demonstrates how each feature detector identifies keypoints within the same environmental
setting. This provides insights into the adaptability and precision of each method under similar con-
ditions, highlighting their strengths and limitations in detecting significant image features effectively.

4.5. Discussion

This study’s comprehensive evaluation highlights the enhanced capabilities of our
novel hybrid feature-detection algorithm within the context of Feature-Based Image Regis-
tration (FBIR). By integrating the strengths of established detectors such as BRISK, FAST,
ORB, Harris, MinEigen, and MSER, the hybrid detector excels in both accuracy and effi-
ciency, especially notable in complex image transformations like rotation, scaling, and scene-
to-model changes. Such enhancements are crucial for applications in remote sensing and
automated surveillance, where precise and reliable feature matching is paramount.

The experimental results demonstrate a significant reduction in time complexity
alongside improvements in the detection and matching of keypoints. These improvements
are quantified through detailed performance metrics, underlining the hybrid detector’s
robustness across varied operational scenarios. This robustness ensures that the hybrid
approach is well-suited to the dynamic and often unpredictable environments typical of
remote-sensing applications, which demand high levels of adaptability and precision.

Furthermore, the comprehensive statistical analysis and the enhanced performance
metrics clearly justify the efficacy of the hybrid feature-detection method. This approach
not only meets but exceeds the capabilities of traditional detectors, particularly in handling
complex image transformations.

Despite the promising outcomes, this study also acknowledges inherent limitations
linked to the hybrid detector’s complexity. The integration of multiple detection methods
into a cohesive algorithm introduces challenges in balancing computational efficiency with
detection efficacy. This balance is particularly delicate when considering the diverse and
often conflicting characteristics of the individual detectors involved. For instance, while
some detectors may excel in speed, others might offer greater accuracy, necessitating careful
calibration and tuning to harness their collective strengths effectively.

Moreover, the performance of our hybrid detector, while superior, still depends on
the quality and diversity of the input data. This dependency suggests that the hybrid
system’s adaptability might be constrained by less variable datasets, potentially limiting
its effectiveness in less-controlled environments. Addressing these challenges involves
not only refining the algorithm’s architecture but also ensuring that it remains flexible and
responsive to the evolving landscape of image registration technologies and methodologies.
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5. Conclusions and Future Work

This study introduced a combined approach using a novel feature detector and de-
scriptor, enhancing all four steps of Feature-Based Image Retrieval (FBIR). Our evaluations,
focusing on metrics such as elapsed time, CPU time, and performance measurement time,
demonstrate that the proposed hybrid detector surpasses existing state-of-the-art detectors
in terms of both efficiency and accuracy.

The hybrid detector not only improves the accuracy of detecting feature keypoints
but also significantly reduces time complexity compared to conventional methods. This
makes it particularly valuable for real-time image processing applications where speed and
accuracy are crucial.

Throughout the testing phase, which included three types of image transforma-
tions—rotation, scene-to-model, and scaling—the proposed detector consistently outper-
formed other detectors, delivering superior visual and numerical results while also reduc-
ing execution times. These findings confirm that the proposed feature detector is more
efficient compared to existing feature detectors, making it a robust and effective tool for
image-analysis tasks.

In future studies, we aim to extend the reach and effectiveness of our proposed hybrid
feature detector. A primary focus will be on optimizing the algorithm to enhance its adapt-
ability and performance under a broader range of image conditions and transformations.
Additionally, integrating deep learning techniques may offer substantial improvements in
feature-detection capabilities, particularly for complex image scenarios, thereby expand-
ing the utility and accuracy of our approach. Testing the hybrid detector across various
platforms and media types will also be crucial to thoroughly validate its effectiveness and
robustness in diverse operational contexts.

Applying the detector in real-world scenarios such as surveillance, autonomous driv-
ing, and medical imaging is essential to assess its practical utility and operational efficiency.
Moreover, exploring the performance of the hybrid detector on different hardware configu-
rations could lead to optimizations for energy efficiency and processing speed, making it
well-suited for use in embedded systems and mobile devices. Through these initiatives, we
hope to refine the capabilities of the hybrid detector further and expand its applicability to
meet the evolving challenges in digital image processing and analysis [8].
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