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Abstract: In the computer-aided diagnosis of lung cancer, the automatic segmentation of pulmonary
nodules and the classification of benign and malignant tumors are two fundamental tasks. However,
deep learning models often overlook the potential benefits of task correlations in improving their
respective performances, as they are typically designed for a single task only. Therefore, we propose
a multi-task network (MT-Net) that integrates shared backbone architecture and a prediction distil-
lation structure for the simultaneous segmentation and classification of pulmonary nodules. The
model comprises a coarse segmentation subnetwork (Coarse Seg-net), a cooperative classification
subnetwork (Class-net), and a cooperative segmentation subnetwork (Fine Seg-net). Coarse Seg-net
and Fine Seg-net share identical structure, where Coarse Seg-net provides prior location information
for the subsequent Fine Seg-net and Class-net, thereby boosting pulmonary nodule segmentation
and classification performance. We quantitatively and qualitatively analyzed the performance of
the model by using the public dataset LIDC-IDRI. Our results show that the model achieves a Dice
similarity coefficient (DI) index of 83.2% for pulmonary nodule segmentation, as well as an accuracy
(ACC) of 91.9% for benign and malignant pulmonary nodule classification, which is competitive
with other state-of-the-art methods. The experimental results demonstrate that the performance of
pulmonary nodule segmentation and classification can be improved by a unified model that leverages
the potential correlation between tasks.

Keywords: lung nodule segmentation; lung nodule classification; multi-task network; prediction
distillation; task correlation

1. Introduction

Lung cancer is the most lethal cancer globally, and computed tomography (CT) has
become one of the important means in reducing the mortality rates of advanced lung cancer
due to its high resolution, high contrast and non-invasiveness. Radiologists observe and
locate nodules in lung CT scans for lung cancer early screening and tracking lung tumor
development, which not only requires significant professional skill, but also takes a long
time and is prone to personal bias due to clinical experience. Therefore, computer-aided
diagnosis (CAD) is urgently needed to help clinicians improve the accuracy and objectivity
of diagnosis.

In recent years, more and more deep learning-based algorithms have been applied
to the segmentation of pulmonary nodules and the classification of benign and malig-
nant nodules. However, they are usually single-task studies that overlook the correlation
between the segmentation of pulmonary nodules and the classification of benign and ma-
lignant nodules. The segmentation can provide certain location information for subsequent
classification, which is beneficial for improving the accuracy of the benign and malignant
classification of pulmonary nodules. Inspired by this, Yu et al. [1] utilized the segmentation
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results of pulmonary nodules to improve the classification accuracy. However, the classi-
fication results are too dependent on the segmentation performance, which increases the
instability of the classification performance.

To address the above critical issues, we attempt to explore a novel multi-task network
(MT-Net) for simultaneous lung tumor segmentation and classification of benign and
malignant pulmonary nodules. Our network includes a coarse segmentation subnetwork
(Coarse Seg-net), a cooperative segmentation subnetwork (Fine Seg-net) and a cooperative
classification subnetwork (Class-net). The nodule masks generated by Coarse Seg-net are
used to enhance the nodule discrimination ability of Class-net while providing additional
location information for the accurate segmentation of pulmonary nodules by Fine Seg-net.
As such, our MT-Net can improve both segmentation and classification performance. In
addition, the application of rank loss in the segmentation subnetwork imposes additional
constraints on the boundary pixels, which is conducive for solving the problem posed by
fuzzy nodule boundaries. The competitive segmentation and classification performance of
our method is verified by comparing it with other state-of-the-art deep learning algorithms
on the publicly available dataset LIDC-IDRI [2]. In addition, the effectiveness of the idea
of inter-task assistance in MT-Net is also validated by visualized ablation experiments.
Overall, our contributions can be summarized as follows:

(1) We propose a multi-task network, MT-Net, for lung nodule segmentation and clas-
sification based on the inherent correlation between segmentation and classification tasks.
MT-Net first generates coarse segmentation masks by Coarse Seg-net. Then, Fine Seg-net
concatenates the coarse location information by the proposed Fine-layer for segmentation,
and Class-net concatenates the coarse location information as its input for classification.
The incorporation of prior location information facilitates the performance improvement of
lung nodule segmentation and classification.

(2) A new hybrid loss is proposed in the segmentation subnetwork, which includes
Dice loss and rank loss. In the segmentation task, in addition to considering the extreme
imbalance of positive and negative samples in the CT patch, the importance of edge
pixels for segmentation optimization is also considered. Rank loss poses extra constraints
on the hard-to-recognize edge pixels, which effectively improves the accuracy of lung
nodule segmentation.

(3) Experiments show that our method achieves a DI of 83.2% while achieving an ACC
of 91.9%, which indicates that the overall performance of MT-Net is the most balanced and
comprehensive and our method has competitive performance for lung nodule segmentation
and benign–malignant classification compared to other state-of-the-art methods.

2. Related Works

With the development of deep learning technology, convolutional neural networks
(CNNs) have been widely used in medical image analysis. There are many lung nodule
segmentation methods based on deep learning [3–8]. UUnet first utilized the standard U-
Net for coarse segmentation, and then applied attention U-Net with an attention gate (AG)
as the subsequent fine segmentation model [3]. Based on the encoder–decoder structure,
Wang et al. [5] added extra global attention units and edge losses to difficult-to-segment
nodules. Zhu et al. [7] designed a high-resolution network with multi-scale progressive
fusion in the encoder, and proposed a progressive decoding module (PDM) in the decoder.
Similarly, there are lots of researchers who have focused on the classification of pulmonary
nodules [9–14]. Lyu et al. [9] proposed a multi-level convolutional neural network (ML-
CNN) composed of three CNN branches, in which the output of the pooling layer at the end
of each CNN was flattened and concatenated to extract multi-scale features of lung nodules.
Zhai et al. [12] constructed a new multi-task convolutional neural network (MT-CNN)
framework to identify benign and malignant nodules on chest CT scans. MT-CNN learned
3D lung nodule features from nine 2D views from different angles of each nodule. Each
2D MT-CNN model consisted of two branches, one was the nodule classification branch
(the main task) and the other was the image reconstruction branch (the auxiliary task).
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The motivation of the auxiliary task was to retain more microscopic information in the
hierarchy of the CNN, which was conducive to the identification of malignant nodules.
Zhang et al. [14] built an integrated learner for pulmonary nodule classification by fusing
multiple deep CNN learners. Eight DCNN learners with different architectures were
trained separately, so each nodule had eight predictions from eight major learners. The
results showed that the prediction accuracy of the integrated learner (84.0% vs. 81.7%) was
higher than that of the single CNN learner.

Although the performance of the above CNN-based methods has been further im-
proved, they are all limited to a single segmentation or classification task and ignore the
performance improvement that can be brought by the internal correlations between tasks.
To solve this problem, Amyar et al. [15] adopted a multi-task deep learning model that
consists of a generalized encoder, two decoders, and a multi-layer perceptron, where the
generalized encoder can untangle features for all three tasks. It is a multi-task framework
with a shared backbone structure. Liu et al. [16] applied a multi-task deep model with
margin ranking loss (MTMR-Net) to the automatic pulmonary nodule analysis, in which
the parallel layers of each task structure have information flow interactions. The model
explicitly explored the correlation between pulmonary nodule classification and attribute
score regression in a causal manner while producing results for different tasks. Both ap-
proaches explored the internal correlations between tasks; even so, the parallelism among
tasks may result in insignificant performance improvement, which can be achieved by a
prediction distillation structure.

The prediction results of one task in the distillation structure can assist another task
to achieve higher-precision predictions. Wang et al. [17] proposed a cascade network
architecture that can segment and classify ground glass nodules (GGNs) simultaneously, in
which the segmentation model was used as a trainable pre-processing module to provide
an attention weight map for classification guidance to the original CT data so as to achieve
better nodule classification performance. Yu et al. [1] designed an algorithm based on
a 3D ResU-Net segmentation network and a 3D ResNet50 classification network, which
first segmented the nodules and then classified them as benign and malignant. Although
these methods have achieved improvements, their performance in the second phase task
was highly dependent on the results of the first phase task. Unlike these attempts, our
method uses only the location information contained in the coarse segmentation mask
as the auxiliary prior information for subsequent tasks, helping the segmentation and
classification network to better identify nodules and avoiding the possible adverse effects
of the poor performance of the first phase task on the final results.

3. Materials and Methods
3.1. Materials and Data Preprocessing
3.1.1. Materials

The publicly available LIDC-IDRI dataset was used to evaluate the performance of
our network. LIDC-IDRI is a dataset collected at the initiative of the National Cancer
Institute in the United States, which contains a total of 1018 cases (the file type of the CT
image data is Dicom) with corresponding diagnostic results. The images of each case were
annotated by four experienced chest radiologists. Four physicians rated the malignancy of
each nodule on a scale of 1 to 5, with higher scores indicating greater malignancy.

In the screening of the dataset, we first excluded nodules with a malignancy score
of 3. We then identified nodules with a malignancy score of 1–2 as benign and with
a score of 4–5 as malignant. Finally, we examined the nodules annotated by the four
radiologists, and due to the variability among the four different radiologists, nodules
that met the 2/3 consensus standard were adopted to generate ground truth. In addition,
nodules with blurred identity documents (IDs) and that were smaller than 3 mm or larger
than 25 mm were also excluded to avoid the interference of poor data for CNN model
training. In the end, 1543 CT scans were selected, including 470 benign nodules and
1073 malignant nodules.
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3.1.2. Data Augmentation and Preprocessing

Firstly, the CT image and pixel-level label in LIDC-IDRI with a depth of 32 in RGBA
mode were converted to images with a depth of 24 in RGB mode and a label with a depth
of 8 in L mode. Then the nodule images were uniformly cropped into 64 × 64 CT patches.
To avoid overfitting, we further augmented the number of images by 9 times in the pre-
processing stage. Specifically, this involved actions such as randomly cropping based on
the center of the image at a ratio of 50% to 100% of the original image size, zooming at
an equal ratio of 110%, horizontally and vertically flipping, etc. Finally, images after data
augmentation were resampled to 224 × 224. In this study, the ratio of 6:2:2 was adopted to
divide the training, validation, and testing sets.

3.2. Method
3.2.1. The Overall Structure of the Model

Suppose that the segmentation training set and validation set with N1 and N2 images
are represented as IST = (Xst, Yst)

ST1 and ISV = (Xsv, Ysv)
SV1, respectively, where each

image Xst and Xsv are labeled pixel-by-pixel, and each pixel belongs to a lung nodule
(i.e., Ysti = 1) or background (i.e., Ysti = 0). Suppose that the classification training set
and validation set with N1 and N2 images are represented as ICT = (Xct, Yct)

CT1 and
ICV = (Xcv, Ycv)

CV1, respectively, where each image Xct and Xcv are labeled at the image
level (e.g., Yct, Ycv ∈ {l1, l2}, where l1 and l2 denote the benign and malignant pulmonary
nodules, respectively). The proposed MT-Net consists of three subnetworks, Coarse Seg-net,
Fine Seg-net, and Class-net. Figure 1 shows the pipeline of this model. Different tasks can
improve each other’s performance by transferring information to each other. First, Coarse
Seg-net is trained on segmentation datasets IST to generate the coarse mask of nodules from
lung CT images. Then, we use the fine layer of Fine Seg-net to fuse the high-level features
extracted from its encoder and the corresponding nodule localization map generated by
Coarse Seg-net, which are then fed into the decoder of Fine Seg-net to obtain the fine
segmentation of lung nodules. Finally, the original CT patches of pulmonary nodules on
classification datasets ICT are concatenated with its corresponding nodule coarse masks
generated by Coarse Seg-net and fed into Class-net to boost the performance of nodule
benign–malignant classification.
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and Class-net.

3.2.2. Coarse Seg-Net

Coarse Seg-net takes the segmentation training images as input with the aim of obtain-
ing a coarse mask of the lung nodules, which provides the corresponding prior location
information for the subsequent cooperative segmentation and classification subnetworks
to enhance their localization and discrimination capabilities. Figure 2 shows the structure
of Coarse Seg-net, which is an improvement on Deeplabv3+ [18] and pre-trained on the
MS-COCO dataset [19]. Based on the understanding of the classical semantic segmentation
network Deeplabv3+ and lung nodule segmentation, we employed a modified aligned
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Xception as the backbone in the encoder of Coarse Seg-net, as shown in Figure 3. The core
idea is to replace the max pooling operation with a depthwise separable convolution with
down-sampling (stride = 2) so that the resolution of the feature map can be enlarged by a
dilated convolution. To better adapt to the setting of the pulmonary nodule segmentation
task, a 1 × 1 convolution with output channel 1 and with a sigmoid activation function is
used to replace the last 3 × 3 convolution of the network for predictions. The weights of
the new layer are randomly initialized. In addition, a hybrid loss with rank loss is used to
optimize Coarse Seg-net.
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3.2.3. Fine Seg-Net

Fine Seg-net takes the segmentation training images as input. As shown in Figure 4,
it consists of an encoder, a decoder and a fine layer. The encoder and decoder of Fine
Seg-net share the same structure and parameters with Coarse Seg-net but differ in that it
introduces a new Fine-layer for receiving the coarse mask generated by Coarse Seg-net as a
second input. The purpose of this new layer is to incorporate the prior location information
from the coarse segmentation mask and the deepest high-level semantic features from
the encoder to enhance the performance of Fine Seg-net in achieving accurate pulmonary
nodule segmentation results. Specifically, Fine-layer first concatenates the feature maps
generated by the encoder with the coarse segmentation mask. Then, a 1 × 1 convolutional
layer followed by a batch normalization (BN) layer and a ReLU activation function is



J. Imaging 2024, 10, 234 6 of 15

adopted for information fusion. Finally, the feature maps generated by Fine-layer are fed
into the decoder for fine segmentation. The weights of Fine-layer are randomly initialized,
and we also apply a hybrid loss with rank loss to optimize the Fine seg-net.
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3.2.4. Class-Net

For each segmented training image, it is fed into Class-net for classification training.
Class-net utilizes coarse nodule masks generated by Coarse Seg-net to enhance its nodule
location and discrimination ability. Specifically, the classification training images with
image-level class labels and corresponding coarse masks are concatenated as inputs to
Class-net. The weights of the coarse masks in the 4th channel are initialized by averaging
the weights of the other three channels of the original RGB images. The structure of
Class-net is shown in Figure 5, which is an improvement on the classification network
Xception [20] and pre-trained on the ImageNet dataset [21]. The improvements are in
the following two aspects: (1) the last max pooling layer in the exit flow of Xception is
removed to preserve the resolution of the feature map and prevent the loss of small lung
nodule details during progressive down-sampling. (2) To compensate for the reduced
receptive field resulting from the removal of down-sampling in (1), the last two separable
convolutions in the exit flow of Xception are replaced by a separable dilated convolution
with a dilated rate of 2 and padding = 2. In addition, a binary cross-entropy loss is applied
to optimize Class-net.

J. Imaging 2024, 10, x FOR PEER REVIEW 7 of 16 
 

 

 
Figure 5. The structure of Class-net, where the last max pooling layer of its exit flow is replaced by 
two dilated separable convolutions with a dilated rate of 2 and padding = 2. The red font on the blue 
background is the modified layer. 

3.2.5. Experiment Details 
We selected Python3.6.2 as the programming language and PyTorch 1.4. to build the 

deep learning model. The algorithm was deployed on a device equipped with 2×Nvidia 
GTX1080 graphics card (made by Nvidia of Santa Clara, California, USA) and 32GB of 
memory. We describe the implementation details as follows: 

In the model training phase, we trained Coarse Seg-net and Fine seg-net using the 
LIDC-IDRI training set and validation set with pixel-level labels, and Class-net using the 
LIDC-IDRI training set with image-level labels. An Adam optimizer with a batch size of 
16 and 32 was used to optimize the segmentation and classification networks, respectively. 
We set the initial learning rate to 1 × 10−4, the maximum number of epochs to 100, and set 
the hyper-parameters in the hybrid loss to 0.02, 20Kλ = =  , and 0.3margin =  . In the 
model testing phase, the trained MT-Net was directly applied to the LIDC-IDRI segmen-
tation and classification testing set for lung nodule segmentation and classification. 

3.2.6. Loss Function 
The overall framework consists of two tasks, segmentation and classification, and 

each task has a different loss function. Class-net adopts binary cross-entropy as the loss 
function of the classification network, while Coarse Seg-net and Fine Seg-net employ the 
hybrid loss. 

seg Dice RankL L L= +γ  (1) 

where γ  is used to control the proportion of RankL  in the hybrid loss. 
Considering that the imbalance between the foreground and background in the seg-

mentation image can have a negative impact on the performance, the segmentation sub-
networks chose Dice loss [22], which has the ability to focus on the foreground region 
mining. 

1
Dice

1

2
1

( )

N
i ii

N
i ii

PG
L

P G
=

=

= −
+ +


 ε  

(2) 

Figure 5. The structure of Class-net, where the last max pooling layer of its exit flow is replaced by
two dilated separable convolutions with a dilated rate of 2 and padding = 2. The red font on the blue
background is the modified layer.



J. Imaging 2024, 10, 234 7 of 15

3.2.5. Experiment Details

We selected Python3.6.2 as the programming language and PyTorch 1.4. to build the
deep learning model. The algorithm was deployed on a device equipped with 2×Nvidia
GTX1080 graphics card (made by Nvidia of Santa Clara, CA, USA) and 32GB of memory.
We describe the implementation details as follows:

In the model training phase, we trained Coarse Seg-net and Fine seg-net using the
LIDC-IDRI training set and validation set with pixel-level labels, and Class-net using the
LIDC-IDRI training set with image-level labels. An Adam optimizer with a batch size of
16 and 32 was used to optimize the segmentation and classification networks, respectively.
We set the initial learning rate to 1 × 10−4, the maximum number of epochs to 100, and set
the hyper-parameters in the hybrid loss to λ = 0.02, K = 20, and margin = 0.3. In the model
testing phase, the trained MT-Net was directly applied to the LIDC-IDRI segmentation and
classification testing set for lung nodule segmentation and classification.

3.2.6. Loss Function

The overall framework consists of two tasks, segmentation and classification, and
each task has a different loss function. Class-net adopts binary cross-entropy as the loss
function of the classification network, while Coarse Seg-net and Fine Seg-net employ the
hybrid loss.

Lseg = LDice + γLRank (1)

where γ is used to control the proportion of LRank in the hybrid loss.
Considering that the imbalance between the foreground and background in the seg-

mentation image can have a negative impact on the performance, the segmentation subnet-
works chose Dice loss [22], which has the ability to focus on the foreground region mining.

LDice = 1 − 2∑N
i=1 PiGi

∑N
i=1 (Pi + Gi) + ε

(2)

where N represents the total number of pixels, Pi is the prediction probability of the i pixel
belonging to the nodule, Gi is the pixel-level label of the i pixel, and ε is the smoothing factor.

In general, pixels located at the edge of the nodule contribute more to the optimization
of the segmentation results than those located in the internal area of the nodule and
background. Due to the severe imbalance between edge and non-edge pixels in images,
using Dice loss alone to train the segmentation network often cannot achieve good results.
Inspired by the maximum-edge classification in [23,24], we therefore use rank loss for
special supervision of pixels that are difficult to segment. Rank loss is an online rank
scheme that dynamically selects edge pixels based on the prediction error. Specifically, the
pixels of the nodule and background are ranked separately according to the error after the
forward propagation of each batch. Rank loss is defined as follows:

LRank(Pn, Gn) =
1

K2

K

∑
i=1

K

∑
j=1

max
{

0, H0
ni(Pn, Gn)− H1

nj(Pn, Gn) + margin
}

(3)

where K represents the number of pixels with the highest error in the manually selected
foreground or background, that is, the difficult to segment pixels in this region. H0

ni
and H1

nj denote the prediction probability values of the i difficult-to-segment pixel in the
background and the j difficult-to-segment pixel in the nodule region of the n input image,
respectively. margin is used to control the difference between the prediction probabilities of
pixels in the foreground and background. In the training phase of the model, H1

nj(Pn, Gn) >

H0
ni(Pn, Gn) + margin is forced to control the segmentation network to pay more attention

to the difficult-to-identify pixels.
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4. Experimental Results
4.1. Evaluation Metrics

We select four general metrics to evaluate classification results, including accuracy
(ACC), the area under the curve (AUC), sensitivity (SEN), and specificity (SPE), which is
similar to other pulmonary nodule classifications [16,25,26]. They are defined as follows:

ACC =
TP + TN

TP + TN + FP + FN
(4)

SEN =
TP

TP + FN
(5)

SPE =
TN

TN + FP
(6)

where TP, FP, TN, and FN denote the number of true positives, false positives, true nega-
tives, and false negatives, respectively.

The Dice similarity coefficient (DI) and Jaccard index (JA) are used to measure the over-
lap between two segmentation results. In addition, accuracy (ACC), recall and specificity
(SPE) are also adopted to evaluate the segmentation performance of pulmonary nodules.
These five metrics are also widely used in other segmentation works [27–29]. They are
formulated as follows:

DI =
2|S ∩ GT|
|S|+|GT| (7)

JA =
|S ∩ GT|

|S|+|GT|−|S ∩ GT| (8)

ACC =
I−|S ∪ GT|+|S ∩ GT|

I
(9)

Recall =
|S ∩ GT|
|GT| (10)

SPE =
I−|S ∪ GT|

I−|GT| (11)

where S, GT, and I represent the segmentation result, ground truth, and the original
image, respectively.

4.2. Overall Performance Comparison with Other Multi-Task Networks

We compare our MT-Net with three state-of-the-art multi-task methods, as shown
in Table 1. Wu et al. [30] proposed a multi-task method in which the segmentation en-
coder and the classification feature extractor share networks and parameters, and both
segmentation and classification can update the parameters of the public network. Chen
et al. [31] also adopted the same sharing strategy, but the difference is that it combined
the features of segmentation prediction again in the feature extraction of classification to
improve the classification performance. However, this approach of sharing pre-defined
architectures limits the flexibility of the network for specific tasks. Yu et al. [1] designed
the segmentation subnetwork and classification subnetwork as a serial structure, and the
segmentation results were directly used as masks to highlight the nodules in the original
image, which were then sent to the classification network for feature extraction. Neverthe-
less, this method relies heavily on the performance of the first subnetwork in the series and
has some limitations in optimizing the performance of the second subnetwork. In contrast,
the proposed MT-Net designs different subnetworks for different tasks, and the subsequent
subnetworks only need the coarse location information generated by the coarse segmenta-
tion subnetwork, which avoids the impact of direct cropping on classification performance
when the coarse segmentation is poor in the paper [1]. Specifically, our model transfers
the nodule location information generated by the coarse segmentation subnetwork to the
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cooperative classification subnetwork to improve its nodule classification and location
ability, and this nodule location information is also sent to the cooperative segmentation
subnetwork to facilitate nodule segmentation. Table 1 shows that the average DI scores for
segmentation, ACC, and AUC of the classification in our method are 2.7%, 4.6%, and 2.8%
higher than Yu et al. [1]. Although the model designed by Wu et al. [30] outperforms the
corresponding classification performance of our model in terms of the ACC score, its DI of
segmentation is 9.3% lower than our model. Similarly, although the segmentation results of
the multi-task network proposed by Chen et al. are higher than those of our method, the
classification ACC metric decreases by 4.8%. In summary, MT-Net achieves competitive and
the most balanced results on LIDC-IDRI datasets compared to the state-of-the-art methods.

Table 1. Comparison of pulmonary nodule segmentation and classification performance with other
three multi-task methods.

Methods

Tasks Segmentation Classification

DI (%) JA (%) ACC (%) Recall (%) SPE (%) ACC (%) AUC (%) SEN (%) SPE (%)

[30] 73.9 - - - - 97.6 - - -
[31] 86.4 77.1 - - - 87.1 - - -
[1] 80.5 - - 80.5 - 87.3 90.7 - -

Ours 83.2 71.2 96.3 92.5 97.7 91.9 93.5 81.4 95.0

“-” indicates that there is no corresponding parameter in the paper.

4.3. Comparison of Segmentation Results

As shown in Table 2, we compare the proposed MT-Net with the recently published
lung nodule segmentation methods. Our model achieves the best performance on the
LIDC-IDRI dataset with DI, JA, ACC, recall, and SPE scores of 83.2%, 71.2%, 96.3%, 92.5%,
and 97.7%, respectively. In particular, our model increases the average DI score from 83.0%
to 83.2% compared to the second-best approach of Ni et al. [32]. This indicates that our
model achieves better performance and higher accuracy in the task at hand.

Table 2. Comparison with other latest segmentation methods.

Methods Year DI (%) JA (%) ACC (%) Recall (%) SPE (%)

[33] 2018 78.0 64.0 - 86.0 -
[4] 2019 81.6 68.9 - 87.3 -
[34] 2020 82.7 70.5 - 89.4 -
[6] 2021 82.5 70.2 - 82.3 -
[32] 2022 83.0 71.0 - - -

Ours 83.2 71.2 96.3 92.5 97.7
“-” indicates that there is no corresponding parameter in the paper.

4.4. Comparison of Benign and Malignant Classification Results

In our comparison with other recently proposed classification methods, as shown
in Table 3, our proposed MT-Net outperforms almost all other methods. On the LIDC-
IDRI testing sets, MT-Net achieves the highest ACC of 91.9% and surpasses the second-
ranked model in terms of ACC by 0.8%. This demonstrates that MT-Net exhibits superior
performance and achieves higher accuracy in the classification of a given dataset.
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Table 3. Comparison with other latest classification methods.

Methods Year ACC (%) AUC (%) SEN (%) SPE (%)

[25] 2018 83.5 91.2 80.5 86.0
[35] 2019 84.2 85.6 70.5 88.9
[26] 2021 84.3 91.6 84.5 83.8
[36] 2022 91.1 95.8 - -

Ours 91.9 93.5 81.4 95.0
“-” indicates that there is no corresponding parameter in the paper.

4.5. Visual Results

In Figure 6, we present the visualizations of the results obtained from our method,
including the coarse segmentation, fine segmentation, and classified class activation map-
ping (CAM) [37]. It is evident that the nodule coarse segmentation information generated
by Coarse Seg-net plays a crucial role in guiding Fine Seg-net to achieve more precise
segmentation results. Additionally, this coarse segmentation information helps Class-net to
produce more accurate nodule localization during classification. Overall, the combination
of these tasks in our approach allows for improved segmentation and classification, leading
to enhanced performance in the given task.
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4.6. Ablation Experiment

In rank loss, the hyper-parameters K and margin denote the number of selected
difficult-to-segment pixels and the constraint between the predicted values of the back-
ground and foreground difficult-to-segment pixels, respectively. To explore the effect of
their settings on the segmentation, K is set to 10, 20, 30, 40, and 50, and margin is set to
0.1, 0.2, 0.3, and 0.4, respectively. Figure 7 plots the JA values corresponding to different K
values and margin values. It can be observed that the highest JA value is attained when
K = 20 and margin = 0.3. Consequently, we adopt K = 20 and margin = 0.3 as the selected
hyper-parameter values.

In addition, the weighting factor γ controls the proportion of rank loss contributing to
the hybrid loss in the segmentation task. In order to investigate the influence of different
settings of this parameter on the experiment, the nodule segmentation is repeated with K
fixed at 20 and margin fixed at 0.3 by setting γ to 0, 0.01, 0.02, 0.05, and 0.1. Figure 8 shows
JA values corresponding to different γ on the LIDC-IDRI testing set. It is clear that the
proposed model achieves the highest JA when γ is set to 0.02. Thus, γ = 0.02 is used as the
default weighting factor for rank loss.
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The coarse masks of nodules predicted by Coarse Seg-net are used to boost the classi-
fication ability of Class-net. To assess the effectiveness of this concatenation strategy, we
compare the discrimination ability with and without Coarse seg-net on the LIDC-IDRI
testing set in Table 4. It can be seen that combined with the auxiliary role of Coarse Seg-net,
the model achieves higher accuracy in nodule classification, with the AUC increasing from
90.6% to 93.5%. This is mainly attributed to the fact that the predicted nodule location
maps allow Class-net to focus more on the nodule region rather than the background on
the CT image.

Table 4. Pulmonary nodule classification performance with and without Coarse seg-net.

Coarse
Seg-Net Class-Net ACC (%) AUC (%) SEN (%) SPE (%)

×
√

84.2 90.6 80.1 92.5√ √
91.9 93.5 81.4 95.0

To evaluate the impact of introducing the nodule location maps on the segmentation
performance, the segmentation performance with and without the introduction of prior
location information is compared on the LIDC-IDRI testing set in Table 5. It is observed
that Fine seg-net has better segmentation performance (i.e., DI increased from 80.1% to
83.2%) when guided by Coarse seg-net.
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Table 5. Pulmonary nodule segmentation performance with and without Coarse seg-net.

Coarse
Seg-Net

Fine
Seg-Net DI (%) JA (%) ACC (%) Recall (%) SPE (%)

√
× 80.1 66.8 94.9 93.4 98.2√ √

83.2 71.2 96.3 92.5 97.7

5. Discussion

With the development of CT imaging technology and deep learning technology, CAD
is more and more widely used in the medical fields. A CAD system of lung cancer includes
two crucial tasks, the segmentation of lung nodules and the classification of benign and
malignant tumors. However, the difficulty of accurate segmentation and classification
of pulmonary nodules is increased due to the following reasons: (1) there is significant
intra-class heterogeneity between different nodules; (2) there is high inter-class similarity
between nodules and normal tissues; and (3) pulmonary nodules often have complex
backgrounds and fuzzy boundaries. Considering that single-task studies often ignore the
correlation between different tasks, we designed a multi-task network (MT-Net) to perform
lung nodule segmentation and benign–malignant tumor classification simultaneously.

Multi-task frameworks apply different modules to handle different tasks. Our frame-
work implements the segmentation process of lung nodules from coarse to fine by sharing
the same basic modules and parameters, and transmits the location of the coarse segmenta-
tion of lung nodules as auxiliary prior information to the pulmonary nodule classification
task by a distillation structure, which avoids the bias that may be caused by the decisive
role of the first phase results. In addition, rank loss is used to impose extra constraints on
edge pixels that play a key role in segmentation tasks. Experiments show that our method
has both a high DI value for segmentation and a high ACC value for classification.

While our multi-task approach performs well compared to other state-of-the-art multi-
task methods, it lacks feedback or the facilitation of information from classification to
segmentation. In the future, we will explore the promotion of tasks to each other, maximize
the mutual enhancement between tasks, and even incorporate a detection task to maximize
the effectiveness of the multi-task model. In addition to improving the model to serve
as a feature extractor, the appropriate parameter selection of the deployed pre-trained
model may also have better performance [38–40]. This inspires us to rethink parametric
fine-tuning technologies, and we will focus on parametric fine-tuning in the future. In
addition, we also note the role of microribonucleic acid (miRNA) expression in the staging
diagnosis and treatment of cancers such as lung cancer [41–44], as well as the role of
endoscopic ultrasound (EUS) in the diagnosis and treatment of tumors, which allows for a
more detailed classification and complete staging of lung nodules in a single session, with
complementary effects [45–47]. In the future, we may integrate miRNA information or EUS
images to design a multi-modality deep learning model for boosting the accuracy of the
auxiliary diagnosis of lung cancer.

6. Conclusions

In this paper, we propose a multi-task model for lung nodule segmentation and benign–
malignant classification based on the idea that the correlations existing between tasks can
boost performance. Our approach is to introduce the coarse localization information of the
coarse segmentation mask into the cooperative segmentation subnetwork (Fine Seg-net)
and cooperative classification subnetwork (Class-net) to improve the performance of lung
nodule segmentation and classification. Experimental results show that MT-Net achieves a
DI of 83.2% for segmentation and an ACC of 91.9% for benign and malignant classification,
which are comparable to the overall segmentation and classification performance of the
multi-task model. In terms of single-task performance, the segmentation result of MT-Net
is 0.2% higher than the second-ranked model from Ni et al. [32] in DI score, and 0.8%
higher than the second-ranked model from Huang et al. [36] in terms of the ACC index
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for the classification of MT-Net. In addition, the visualized segmentation results and
CAM for classification indicate that the coarse segmentation information of the nodules
helps to guide the cooperative segmentation subnetwork to obtain better segmentation
results. It also facilitates the cooperative classification subnetwork to produce more accurate
nodule localization.
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