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Abstract: The safety and efficiency of assembly lines are critical to manufacturing, but
human supervisors cannot oversee all activities simultaneously. This study addresses
this challenge by performing a comparative study to construct an initial real-time, semi-
supervised temporal action recognition setup for monitoring worker actions on assembly
lines. Various feature extractors and localization models were benchmarked using a new
assembly dataset, with the I3D model achieving an average mAP@IoU=0.1:0.7 of 85%
without optical flow or fine-tuning. The comparative study was extended to self-supervised
learning via a modified SPOT model, which achieved a mAP@IoU=0.1:0.7 of 65% with just
10% of the data labeled using extractor architectures from the fully-supervised portion.
Milestones include high scores for both fully and semi-supervised learning on this dataset
and improved SPOT performance on ANet1.3. This study identified the particularities
of the problem, which were leveraged and referenced to explain the results observed in
semi-supervised scenarios. The findings highlight the potential for developing a scalable
solution in the future, providing labour efficiency and safety compliance for manufacturers.

Keywords: computer vision; action recognition; temporal action localization; semi-supervised
learning; supervised learning; real-time feature extraction; assembly line monitoring

1. Introduction
Deep learning techniques have made tremendous advancements in the past decade and

have been successfully applied to many practical problems, such as object detection [1,2],
segmentation [3,4], depth estimation [5], and system prediction [6,7]. Modern factory work
is becoming increasingly complex, often lacks adequate supervision, and requires human
cognition and dexterity [8]. As a result, deep learning techniques are desired for monitoring
human activity in industrial settings to ensure safe, quality work [9]. Some automated
factory supervision methods employ a variety of sensors, which may be worn by the worker
or placed on the tools [10,11]. Additional sensors would provide more information but
have additional monetary costs, which could dangerously interfere with the worker or may
require difficult-to-synchronize sensor fusion [12]. Günther et al. [11] employs tool-only
sensors, forgoing cameras in favor of privacy and simplicity, but the authors acknowledge
their limited effectiveness. Both ML and DL classifiers have disadvantages; the former
requires features, and the latter requires more data.

Several works approach action seeking by viewing actions as a combination of ax-
iomatic base actions, be these therbligs [8], MTM-1 [13], or tool movements along the
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cardinal rotational axes [11]. Though atomic actions are interpretable and feature data-
efficient, hand-designed components, they may lack adaptability as arbitrary actions and
may not be easily separable in terms of basis. Therefore, decomposition based on confusion
matrices of [8] may not be effective in all cases. As factory worker tasks are numerous and
ever-changing, hand-designed components may not be ideal for future scalability despite
their short-term data efficiency. Utilizing pose-estimation skeletons is an alternative, be
it full-body [8,14] or hands [13]. Both decompose an action into related moving parts or
skeletons for data efficiency and explainability. However, purely skeleton-based methods
may ignore the surrounding context (including the tools in the worker’s hands), which is
exacerbated if only the hands are considered. A CNN solution may also be simpler.

A seminal conclusion of the deep learning era is that the neural network’s nature as an
automatic universal function approximator is, provided enough data, more effective than
hand-designed components [15]. General-use models should be considered as candidates
for our niche application due to the vast body of research conducted on them. Leveraging
the data efficiency of base actions and skeletons while still using a standard architecture
is possible through self-supervised learning. Real-time temporal action localization (TAL)
classifies and localizes actions as they occur, making it appropriate for detecting and
classifying actions in factory settings. Generally, an extractor encodes video clips into
feature vectors and then uses a head to classify that clip and predict the start and end times
of the action to which it belongs [16].

To formalize TAL, an input video of N frames is represented as tensor Xv ∈
R3×H×W×N . To be manageable for extractors trained for trimmed video classification
and with finite temporal context, Xv is divided into clips. A clip Xv,i ∈ R3×H×W×Sstack is a
contiguous subset of the video frames of length Sstack (the stack size) that starts at frame
i × Sstep (the step size). TAL starts with a feature extractor ϕ, a function (often a CNN)
trained to map the clip to a feature vector ϕ(Xv,i) ∈ RD, and a far more informationally
dense tensor. D is the feature dimension, which is the number of features that the architec-
ture can send downstream. Assuming the video was divided into T clips (can be viewed
as a “temporal location”), the extracted feature map of the video is ϕ(Xv) = RT×D. The
“head” will, from this feature map, make the prediction expected in TAL. Namely, this is
a set Ŷ = {(ŷi,s, ŷi,e, ŷi,c), . . .} of actions, which is identified by the start ŷi,s and end ŷi,e

time of the video where the action occurs and by the class ŷi,c of the action. This relates
directly to the goal of TAL to find when actions occur and the types of those actions. For
semi-supervised purposes, a model pretrained on a non-TAL task can be trained using this
TAL paradigm.

We assembled a study based on recent models fitting our criteria, which is defined
as follows. When recent temporal action localization systems achieve their impressive
performances [17,18], their best results typically leverage features extracted using large
models [19,20], which may not provide the real-time performance needed for correcting
worker actions. I3D [21] and R(2+1)D [22] are extractors based on successful CNN image
classifiers with kernels extended to the temporal dimension; the former simply converts
all 2D filters to 3D, and the latter follows each 2D kernel with a separate 1D to respect the
differing natures of space and time. We also seek methods that reduce the workload for
annotators, which are presented in Table 1. Self-supervised methods use these extractors
but also include a pretraining regimen based on calculable pretext tasks to promote dataset
understanding [23–25]. SSP [23] keeps training on fewer labels and is consistent by using
an exponential moving average of the weights. SSTAP [24] adds a branch tackling clip
shuffling to better understand feature order. SPOT [25] parallelizes classification and
localization and refines action/background borders with a contrastive loss. Though SPOT
has been effective, it could be improved through adaptations based on assumptions from
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the dataset. Accurate localization in TAL is challenging, as adjacent video frames are nearly
identical. We incorporate a novel loss to produce firmer action/background boundaries
by contrastively repelling the action and background predictions. A focus of previous
TAL solutions has been to find relevant pretext tasks, though these will inevitably have a
distribution that differs from the downstream task. We intersperse training epochs within
the pretraining to direct the losses toward the downstream task. Doing this will reduce the
gap that the limited quantity of supervised data would need to correct for.

Table 1. A review of self-supervised TAL heads.

SSL Head Description Limitations amAP% *

SSP [23] • Mean Teacher model to ensure consistency
• Sequential perturbations as pretext tasks:

– Time Warping: warps input signals using
a random flow-field grid

– Time Masking: predicts masked features

• Perturbations disrespect
temporal relationships

38.9

SSTAP [24] • Temporal-aware branch: SSP, but the perturba-
tions maintain temporal relations

• Separate relation-aware branch for masking

• Localization-only implies that
errors are propagated forward
to the external classifier

40.7

SPOT [25] • Unites localization and classification in parallel • Lacking localization sensitivity,
since the clip is the smallest pre-
diction unit

49.9

Ours [26] • SPOT, with modifications:
– Losses to encourage hard action and back-

ground boundaries
– Pretraining–training alternation for earlier

task introduction

• Further flexibility of localiza-
tion predictions

• Lifelong learning system

56.2

* mAP@IoU=0.5 on ANet1.3, 10% labelled.

Within the broader context of action recognition research, we study real-time, super-
vised, and semi-supervised temporal action localization solutions. Previous works have
considered non-real-time segmentation models [27], considered factors affecting TAL in
non-factory settings [28], inspected repetitive actions for time estimation [29], looked at
human-centric assembly [30], and have applied complex mesh-based systems, but none
have addressed our particular niche. Using a new factory dataset named Undercover Ac-
tions (UAs) as a benchmark, each pipeline’s applicability to the assembly action recognition
task is assessed. UAs is not publicly available at the time of publication to preserve the
privacy of workers, but a generalizable analysis is provided.

This paper makes the following contributions:

1. A comparative study on a new assembly line action recognition dataset with the
intention of comparing real-time and/or self-supervised solutions. Analysis of the
dataset is provided to direct further generalization of the understanding of temporal
action localization in factory settings.

2. Modifications to SPOT, an existing semi-supervised model, to enhance its per-
formance on ANet1.3 [31] and provide good results on the assembly line action
recognition dataset.
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2. Materials and Methods
2.1. Undercover Assembly (UA) Dataset

This study focuses on a typical assembly-line application, Undercover Actions (UAs),
as shown in Figure 1. UAs is a collection of untrimmed videos from a pair of cameras
placed under (hence the “Undercover” part) one stage along a vehicle assembly line in
which a plate is attached to the undercarriage. Each video contains a single round of actions
on a single vehicle. The 995 videos (with a mean duration of 71 s) are split into five equal
folds for training/testing. There are 19 action classes pertaining to the bolts and clips
being installed; from the right camera, which contributes 45% of the videos, only 5 classes
are visible. The classes are left-bolt-X, X ∈ {1, . . . , 10}, right-bolt-X, X ∈ {1, . . . , 5}—that
represent the installation of bolts on the left and right side of the plate—and left-clip-X,
X ∈ {1, . . . , 4} to represent the installation of the clips on the left side of the plate. The
factory footage contains sensitive information, including faces, logos, and techniques and
is therefore not currently publicly available.

Figure 1. Qualitative analysis of UA’s nature, represented as annotated timelines of two select videos
(selected as both are 1 min in length and have an annotation for each class visible to their side). For
example, the image frame on the bottom left is a frame from an annotation of class left-clip-1, which
tends to occur early in videos. Right-camera (undercover-right) videos have five classes, all right-bolt.
Left-camera (undercover-left) videos have classes from left-clip (visible hands, no bolt tightener),
left-bolt (visible hands, bolt tightener), and right-bolt (but from this camera, the right-bolt hands
are obstructed).

Compared to standard TAL benchmarks THUMOS’14 [32] and ANet1.3 [31], most UA
videos include one annotation for every class in a constant order across the videos. Instances
are very short compared to those of other benchmarks (visualized in Figure 2), as they
pertain to a particular bolt or clip being attached. The classes are spatially separated when
done correctly, suggesting that location could be useful for verifying identity/correctness.
Depending on the view, this indicates that large spatial regions may exist where no correct
actions could occur. It can be reasonably assumed that general factory work would also
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be ordered and repetitive, with short actions corresponding to the attachment of some
component to the product at a particular station. UAs represents a useful starting use case
that should be generalized, as many products are manufactured on auto-like assembly lines.

Table 2 shows the statistics of UAs compared with large standard TAL benchmarks.
The higher mAP suggests that TAL on UAs is an easier problem than on THUMOS/ANet1.3.
The UA backgrounds are mostly static, making them easily ignored by attention-based
extractors [19], but provide no context. Assuming the extractor is trained on UAs, the
spatial location of the classes would become a useful feature; even without training, the
spatial locations would still affect the feature for a downstream head to decipher.

Table 2. UAs statistics compared with large standard TAL benchmarks. UAs is similar in the number
of videos and the number of labeled actions to the THUMOS TAL subset. UAs has shorter videos.
UAs has a similar number of instances and actions per video, suggesting that classes represented in a
UA video are represented once. Only about 15% of the frames in a UA video pertain to an action,
suggesting a significant action/background imbalance.

Dataset #Videos #Actions Duration (s) Instances/Video Actions/Video %Action/Video mAP *

UAs 995 19 71.63 8.16 8.11 15 85%

THUMOS [32] 412 20 213 15.4 1.15 25 71%

ANet1.3 [31] 19,228 200 117 1.15 0.74 65 53.5%

* avg. mAP@IoU=0.5; supervised using I3D and ActionFormer.

Figure 2. A spatiotemporal comparison of one select video from each dataset used in this paper.
Timelines are shown with end times (duration, in seconds). Frames from along the annotated timeline
are presented.

2.2. Models

In this study, we selected four backbones (VideoMAEv2 [19], I3D [21], R(2+1)D [22],
TSP [33]), RAFT [34] for optical flow generation, two supervised heads (ActionFormer [35],
TemporalMaxer [18]) and one self-supervising head (SPOT [25]). Several rationales gov-
erned this selection. For a rich comparative study, we sought a group of SOTA TAL
components with diverse architectures. However, since real-time performance is critical,
we strongly prioritized simple, real-time models. Similarly, we hope to deploy these models
in a variety of factories, so easy-to-generalize convolutional systems are preferred. I3D and
R(2+1)D were reasonable choices, as they are based on tried-and-true Inception and ResNet
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modules. We also sought to observe the effect of the dataset’s nature. For understanding
repetitive sequences, TSP was selected for its consideration of global information and
background clips, and was chosen VideoMAEv2 for its attention. For short actions, TSP
was tuned for temporal sensitivity. These are summarized in Figure 3. Among the back-
bones, these are the following descriptions: VideoMAEv2 is a large attention-based model,
which is not real-time but has been selected to inspect how well an automated system
can perform on this dataset; I3D and R(2+1)D are real-time, fully-convolutional models
structured as 3D Inception and (2+1)D ResNet, respectively; RAFT was used to evaluate
I3D in a two-stream setup; TSP specializes R(2+1)D (among others) for TAL by explicitly
predicting binary action/background for sharper temporal boundaries. ActionFormer
and TemporalMaxer are both real-time SOTA heads that map the extracted features to the
set of starttime-endtime-class triplets expected by TAL. Both use a pyramid of blocks
to collect features at various scales, but ActionFormer uses vanilla transformer blocks
(with downsampling to form the pyramid) to perform attention, whereas TemporalMaxer
performs a simple max-pooling operation for its selection of critical features. SPOT is
another classifier/localizer head that is a top-performing system for semi-supervised tasks
through random start–end generation (a TAL-oriented preliminary task) and a contrastive
boundary refinement. This study therefore provides comparisons across extraction speeds,
supervision proportions, and architectures.

Figure 3. A summary of the extractors and localizers used in the comparative study and their
relationships. Each complete path represents an architectural base for experiments.

2.2.1. Supervised Models

The supervised portion of the comparative study sought to achieve good results on
UAs and indicate an extractor capable of informative features. The billion-parameter,
top-performing masked autoencoder VideoMAEv2 [19] is not real-time but serves as a high
watermark for other extractors and could adopt continual learning roles. VideoMAEv2 is
attractive as a large-scale model for comparison, since its dual-masking strategy provides
efficiency to counteract its size. The two base architectures recruited as real-time extractors
are I3D [21] and R(2+1)D [22], which were chosen due to their speed as effective fully-
convolutional extensions of image models.
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I3D [21] is Inception [36] (to ensure that multiple scales are represented), where each
k2 kernel becomes a k3 kernel pretrained on ImageNet [37]. The network-in-network is
useful during the “still video” phase, as it forces the model to look temporally at different
scales and for maintaining efficiency with a higher weight count. However, the spatial and
temporal dimensions have different distributions, and the 3D kernel dramatically increases
model size. I3D can be used as a two-stream model; an identical I3D architecture can learn
effective optical flow features given optical flow frames generated from RGB frames using
a model such as (used in this paper) RAFT [34]. Additional features increase the average
precision but slow the inference to below a real-time rate.

R(2+1)D [22] is a ResNet [38] variant for videos that follows each original 2D convolu-
tion for the spatial (image) dimension with a 1D convolution in the temporal dimension.
Consecutive layers (a group of residual blocks) output feature maps of decreasing size in
accordance with the standard pattern of encoding and scale hierarchy and maintain the
benefits of ResNet for the vanishing gradient problem. R(2+1)D was used here with and
without Temporally Sensitive Pretraining (TSP) [33]. TSP counters the action/background
imbalance problem and enhances localization through a branch to explicitly discriminate
between action and background.

Two fully supervised heads were selected to map the features to a set of predicted
annotations: ActionFormer [35] and TemporalMaxer [18]. Both use a pyramid structure
to generate and aggregate features at multiple scales and use lightweight decoders to
provide predictions at temporal locations. ActionFormer uses transformer blocks and
downsampling to form the pyramid, constituting a powerful yet still real-time method.
TemporalMaxer’s pyramid tiers are composed of two 1D convolution layers followed by a
max-pooling layer. This results in a simple, lightweight system. The convolution layers in
the encoder do not reduce the dimension of the features, mixing the encoder’s features to
increase their applicability to the current task. By sending all features through max-pooling
layers, the model’s decision is based on which responses are strongest. These responses
come from weights learned to provide features that measure their relevance to the class of
the given case. The responses should be strongly class-discriminative through this filtering,
although features of secondary importance would be lost.

2.2.2. Semi-Supervised Model and Augmentations

The standard semi-supervised TAL pipeline follows the extractor with a localizer,
which produces a set of proposals for the locations of general actions [23,24] to be followed
with a classifier such as UntrimmedNet [39]. This separation simplifies the problem in the
face of the challenge of limited data, yet this causes errors to be propagated forward. The
most recent SPOT model [25] employs a lightweight transformer to add temporal context
to the input features, produces the localization and classification predictions in parallel,
and then joins these branches using contrastive learning to enforce action/background
boundaries. Due to this structure, SPOT is faster and better performing than its predecessor
SSTAP [24].

Our SPOT pipeline has been mostly unchanged from the original. We applied the
following series of augmentations to increase SPOT’s performance on ANet1.3 and UA.

A. Pretraining-Training Alternation. The general SSL pipeline has a first stage, which
pretrains a deep architecture on a pretext task that is trivially decidable, followed by a
second stage of supervised fine-tuning on the labeled dataset portion using layers that
have gained insight into the dataset distribution but are still relevant to the task [40,41].
However, the discrepancy between tasks may result in suboptimal features [42]. The recent
BiSSL [43] jointly optimizes pretext and downstream via framing as a bilevel optimization
problem, though the solution does incur significant additional computational complexity.
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We intersperse some training epochs into the pretraining phase to regulate and direct
the pretraining toward the downstream task. RIFLE [44] also performs repeated training
but re-initializes fully connected layers randomly, which may lead to instability. As per
Algorithm 1, pretraining and training epochs were alternated to direct the weights toward
the optimal for the downstream task significantly earlier. As determined empirically,
30 epochs of pretraining and 40 epochs of training, alternating every 3 epochs, was found
to be effective. Multiple epochs at a time ensure that sufficient progress is made for directed
training. More pretraining than training ensures that the final weights are directed at the
training task, though excessive training epochs would naturally lead to overfitting through
a lack of data and forgetfulness regarding the pretraining task.

Algorithm 1 Pretraining–training alternation

Require: SPOT model fθ with parameters θ
Require: features {xi}N

i=1
Require: Training dataset Dtrain = {(xi, yi)}N

i=1
Require: Pretraining dataset Dpretrain = {(xi, y′i)}N

i=1
Require: loss functions Lpretrain,Ltrain
Require: epoch schedule eschedule = rounds ∗ (blocksize ∗ [epretrain] + blocksizetrain ∗ [etrain])

▷ List concatenation; example eschedule = 2 ∗ (1 ∗ [ep] + 2 ∗ [et]) = [ep, et, et, ep, et, et]
Require: learning rate η
Require: number of epochs E
Require: batch size B
Ensure: Trained model parameters θ

1: Initialize model parameters θ (e.g., randomly or with a predefined strategy)
2: for epoch in eschedule do
3: if epoch = epretrain then
4: let: D = Dpretrain
5: let: L = Lpretrain
6: let: y = y′ ▷ For brevity while discussing the target value
7: else if epoch = etrain then
8: let: D = Dtrain
9: let: L = Ltrain

10: end if
11: Shuffle the training dataset D
12: for each batch Bj ⊂ D do
13: Compute predictions: ŷi = fθ(xi) ∀(xi, yi) ∈ Bj

14: Compute loss: Lbatch = 1
|Bj | ∑(xi ,yi)∈Bj

L(ŷi, yi)

15: Compute gradients: ∇θLbatch
16: Update parameters: θ ← θ − η∇θLbatch
17: end for
18: end for

B. Reconstruction Loss and Temporal Crop. An MSE reconstruction loss was applied
to pairs of input and SPOT encoder features, before and after the temporal crop, to ensure
robustness. Though UAs’ classes might tend to appear at particular parts of a video, this is
not guaranteed nor will this be guaranteed at deployment.

C. NLLLoss for Classification. The NLLLoss [45] replaces the MSELoss for the
classification branch as a more appropriate loss for classification and to better encourage
high-confidence predictions. If this is preceded by a softmax, NLLLoss receives values that
are not only restricted to the range [0, 1] for easy computation, but they are probabilities
which sum to 1, which NLLLoss can process as a multinomial MLE. The negative log
function will encourage high confidence by severely punishing low confidence scores.

D. MSE+Contrast for Localization. During pretraining, the MSELoss was found to
exceed the performance of a BCE/Dice combination, since the former produces smooth gra-
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dients for generalizability. For the localization branch, we proposed the loss in Equation (1)
to push action and background predictions apart for sharper temporal boundaries. In
addition to the binary cross-entropy (BCE) loss, a variance term (variance of the predicted
mask given as σ(x)) was added to resist small prediction value ranges, subtracted from
0.25. This is because the maximum possible value of the variance of the mask is 0.25, as
proven in Appendix A. The x̄action and x̄background (a justification for this selection is given
in Appendix B) refer to the means of the scores on ground truth actions and ground truth
backgrounds, respectively, and we pushed these apart. To address foreground/background
imbalance, the action term was scaled by a coefficient (we set w = 5 in our experiment as
determined empirically). Divide-by-zero errors were avoided by adding 1 to the mean
denominator (ground truth action count).

Lmask = BCE(x, y) + (0.25− σ(x)) + w(1− x̄action) + x̄background (1)

E. Reduced Temporal Scale. ANet1.3’s videos generally have a single long action,
approximating a classification problem (as shown in Table 2), and hence, a smaller scale is
advantageous, since a naive localizer, which uses the entire video as an action prediction,
may do very well on these videos. However, UAs’ actions are short, and therefore, the
temporal scale must be increased markedly to avoid the harsh penalty of failing to recall
the actions.

3. Experiments and Results
This section presents the comparative study. The extractors—the first component of

the TAL pipeline applied to supervised and self-supervised—are inspected in Section 3.1.1.
The objective is to determine how the key hyperparameters of architecture, step size, and
stack size relate to runtime and mAP. The heads—the second component—are compared
in Section 3.1.3 to ensure real-time performance and compare the mAP for a given set
of features. The highest-mAP experiment for extractor–head combinations is given in
Section 3.3. To showcase the dataset’s properties and to direct future work, Section 3.1.2 an-
alyzes the effect of cropping out the static background. Semi-supervised work is discussed
in Section 3.2.

We implemented all learning models and compared their performance. The implemen-
tation setups and the hyperparameter settings for the ActionFormer and TemporalMaxer
heads are given in Appendix C. Within the Appendix, Table A1 summarizes the software
environment and the code bases used for the models in the comparative study. Table A2
summarizes the hyperparameters used by the supervised heads. The hyperparameters
shown in Table A2 were fixed for all experiments using the supervised heads; only the
heads’s stack and step size varied, set equal to the clip size for each experiment in Table 3
to ensure alignment between features and heads.

Unless otherwise stated, all experiments were carried out by sending the entire dataset
through a non-fine-tuned extractor, and then the features were passed into the supervised
or self-supervised head. The inference time for RGB and flow features assumes a combined
algorithm, though flow frames require prior computation with separate weights, making
total times comparable. All experiments were conducted with the same training and testing
folds; semi-supervised experiments utilized a portion of the same training folds and used
systematic sampling based on the necessary sampling interval.
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Table 3. A comparison of feature extractions on UAs. Various architectures and clip sizes were used
for the extraction and compared against the extraction time and the downstream performance of
the features.

UAs Clip Size Time

Setting Model Params Stack Step h:m:s Real * amAP **

Vg VideoMAEv2-giant 1 B 16 16 125:48:53 6.3× 87.69

Vs VideoMAEv2-small 20 M 16 16 39:08:00 2.0× 82.67

R18 r2plus1d_18_16_kinetics 31.5 M 16 4 6:44:13 0.34× 84.10

R3432-164 r2plus1d_34_32_ig65m_kinetics 31.3 M 16 4 6:44:13 0.44× 82.26

R3432-32 r2plus1d_34_32_ig65m_kinetics 31.3 M 32 32 4:25:13 0.22× 42.81

R348-164 r2plus1d_34_8_ig65m_kinetics 31.3 M 16 4 10:46:45 0.54× 82.78

R348-8 r2plus1d_34_8_ig65m_kinetics 31.3 M 8 8 5:38:31 0.28× 80.14

TSP-R21D-16 r2plus1d_34-tsp_on_thumos14 31.3 M 16 16 1:30:36 0.08× 73.49

TSP-R21D-4 r2plus1d_34-tsp_on_thumos14 31.3 M 16 4 6:46:49 0.34× 84.48

TSP-R21D-1 r2plus1d_34-tsp_on_thumos14 31.3 M 16 1 32:19:55 1.63× 84.89

I3D-164 I3D (rgb) 12.7 M 16 4 10:30:10 0.53× 85.00

I3D-R-164 I3D (rgb + flow) 25.4 M 16 4 30:07:35 1.52× 85.59

* The ratio of the time taken to extract to the total time of the UAs dataset (hh:mm:ss = 19:47:55); Real < 1.0× is
therefore a “real-time” extractor setting. ** amAP refers to the avg. mAP@IoU=0.1:0.7 using our implemented
ActionFormer [17].

3.1. Supervised Experiments

This subsection covers the experiments using a supervised training/evaluation scheme
and supervised heads, i.e., ActionFormer or TemporalMaxer.

3.1.1. Extractor Comparison

Extractors are critical, as they must effectively filter superfluous pixels and include
features relevant to the task and are required by all the supervised and self-supervised heads
examined here. These extractors are evaluated for their feature quality (as measured by
ActionFormer’s mAP) and if they are real-time (defined as the FPS of the system exceeding
the FPS of the video). Some hyperparameters/factors can be intuitively identified as
having an outsized effect on the runtime and mAP. One natural one is the model, which
will incorporate not only the architectural achievements of those models but also the
parameter count. The clip size is the other key hyperparameter for runtime and mAP,
since it directly controls how much information is provided (and must be processed);
step_size = 4, num_frames = 16 indicates a clip of 16 frames is used, where the starting
frames of adjacent clips are four frames apart. The case where step_size = num_frames
would create a non-overlapping partition where, except for the incomplete remainder frame
at the end, each frame is included in exactly one frame. For each row, ActionFormer’s clip
size setting was matched to the clip size of the extractor; this provided compatibility to
maximize mAP, and ActionFormer’s setting was insignificant for runtime in comparison to
the extractor.

Table 3 compares the extraction time and mAP based on various extractors on UAs.
One conclusion is that non-real-time solutions do not provide a justifiable gain in mAP for
the loss of real-timeness. The small VideoMAEv2 configuration, VideoMAEv2-small, did
not provide significantly better results than its real-time counterparts. It did provide better
results considering the larger step size, which would make each frame appear in only one
clip, but increasing the step size would make VideoMAEv2-small even further from the
real-time requirement. VideoMAEv2-small has a similar parameter count to the real-time
solutions; differences in runtime and performance can be explained by its attention module.
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In comparison to an RGB-only I3D, the two-stream variant took 3× as long to run yet
provided a less than 1% mAP boost. The requirement that RAFT computes a H ×W × 2
flow frame for each H ×W × 3 frame used prior to the extractor run explains the runtime
disparity. The minuscule improvement due to flow frames (I3D-164 vs. I3D-R-164 in
Table 3) could be explained by the sufficiency of spatial location and the minimal movement
associated with each class. Except for a powerful model such as VideoMAEv2, it would
appear that step_size<=8 is needed for good results. UAs’ video frame rates vary but are
typically about 20 FPS; therefore, step_size = 16 is nearly a full second gap, which is too
much for a dataset in which actions typically last about 1 s. R(2+1)D has more weights (and
skip connections) than I3D, and both were pretrained on Kinetics [21], yet I3D performed
slightly better; though this dataset’s action annotations are ordered and repetitive, spatial
location is more critical for classification, and therefore, R(2+1)D’s 1D temporal convolution
may not be providing good value. Despite having fewer trainable parameters, I3D was not
faster than R(2+1)D. This may result from the computationally expensive 3D convolutions
and the multiple branches associated with the Inception modules. The 85.00% achieved by
I3D-164 is the best yet result for a real-time supervised solution on UAs, and so we focused
on this extractor configuration for the semi-supervised experiments.

3.1.2. Cropped Experiments

In each frame of the assembly video, large spatial regions exist that contain no actions
and are static; their inclusion may therefore be a source of confusion while providing no
discriminative information. As determined qualitatively and shown in Figure 4, the right
half of the dataset only requires half of the original pixels to spatially show all actions. To
evaluate the effect of removing these background regions and determine if a sufficient
improvement is noted to suggest pursuing a more sophisticated crop, we applied a simple
spatial crop to the dataset and ran experiments on it and the original, ceteris paribus.

Figure 4. A diagram of the simple crop, showing which subset of the original frame pixels are kept
for each frame for each side (undercover-left or undercover-right) of the dataset.

Experiments were run using both attention-based and attention-free extractors—VideoMAEv2
and R(2+1)D—to test the hypothesis that an attention-based extractor should nearly by
definition be more effective at recognizing important portions, and therefore, manually
eliminating unused regions was less necessary. A copy of UAs, dubbed UA-simplecrop,



J. Imaging 2025, 11, 17 12 of 23

was created by cropping each 1080× 720 UA video to 880× 720 (81% of original size) for
undercover-left or to 630× 612 (50%) for undercover-right. The simple crop, determined
qualitatively, is shown in Figure 4.

These cropped videos were fed into the extractors. All videos were resized to the
same size as per the extractor’s requirements, and no more automatic cropping was done
to produce the results in Table 4. With a strong attention mechanism already in place,
VideoMAEv2 benefited less from the rough crop. This experiment suggests that eliminating
the unnecessary portions of the video is beneficial for action recognition, though the
performance gains were not significant using the rough crop. A stronger crop (centered
around the hands), and perhaps some encoding of the location of that crop, may lead to
further gains.

Table 4. A summary of the effects of the mild crop on the UAs dataset. As the cropped and uncropped
versions are both resized to the same shape, there was no significant difference in runtime.

Uncropped Cropped

Model Side mAP
Avg. % of
Original

Size
mAP * ∆mAP

VideoMAEv2 left 83.64 81 83.89 +0.25

VideoMAEv2 right 89.95 50 90.34 +0.39

R(2+1)D left 77.24 81 77.63 +0.39

R(2+1)D right 87.95 50 89.00 +1.05
* amAP@IoU=0.1:0.7 using the ActionFormer head.

3.1.3. Head Comparison

Two SOTA heads were selected for comparison in this unsupervised portion so that a
somewhat complex architecture could be compared to an extremely simple architecture.
Multiple architectures were used to extract features in Table 3; we sought to determine if
the localizer/classifiers were (with respect to each other) sensitive to the extractors or if
one head would perform better than the other on all sets of features. In Table 5, the heads
are directly compared; top-performing settings for each extractor were used to generate
features, which were then sent into ActionFormer and TemporalMaxer and compared for
mAP and runtime (inference). The provided inference time is the time required for the
entire test set and therefore implies that both heads are real-time.

Table 5. A direct comparison of the classification/localization heads (ActionFormer and Temporal-
Maxer) on the datasets. The inference time is given for the entire test set.

ActionFormer TemporalMaxer

Extractor Dataset amAP Inference
Time amAP Inference

Time

VideoMAEv2 UA 86.59 34.16 s 87.31 56.85 s

I3D (rgb) UA 85.00 33.42 s 82.80 32.71 s

I3D (rgb+RAFT) UA 85.59 34.16 s 84.24 33.89 s

R(2+1)D UA 84.09 58.58 s 83.23 53.50 s

The UA results in Table 5 confirm that on I3D and R(2+1)D, TemporalMaxer pro-
vided worse results (despite having twice as many training epochs as per Table A2) but
was slightly faster at inference. I3D and R(2+1)D provide local spatiotemporal features,
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with minimal global context; TemporalMaxer can aggregate features to achieve global
understanding based on these local understandings but may do so less effectively than
ActionFormer’s ViT. The ViT’s sufficiency, and ActionFormer’s focus on local self-attention
(rather than the global motion context that can also be garnered from optical flow) may
explain why TemporalMaxer sees more relative benefit when moving from a one-stream to
a two-stream I3D. On VideoMAEv2, however, TemporalMaxer was the better performer.
This may be due to an agreement between the head and extractor on local/global con-
text. VideoMAEv2 is a large transformer model which would discover rich long-term
relationships. While ActionFormer might be effective at local attention, TemporalMaxer
is a pyramid of max-pools so global patterns (such as the near-constant order of actions
in videos in this dataset) could be used to great effect to predict when a class might occur.
Given that both are real-time, this project recommends the use of ActionFormer, given the
choice of these two. Why TemporalMaxer’s inference for VideoMAEv2 took nearly twice
as long as ActionFormer’s is highly unusual and unclear and may have a cause external to
the program run.

3.2. SPOT

SPOT is used for experimentation as a means of achieving good semi-supervised
results on UA. These modifications were successful in improving SPOT’s performance on
ANet1.3 beyond the result claimed in the SPOT paper, an additional contribution of this
work analyzed in Table 6.

For SPOT experiments, the main environment details are given in Table A1. For
extracted features, experiments using ANet1.3 use the I3D features from the SPOT reposi-
tory [25]. This facilitates a fair comparison between the original SPOT, our implementation
and our modifications (Table 6) while using the general I3D architecture from our other
experiments. For UA, SPOT experiments use the same single-stream I3D features that
provided the 85.00% result in Table 3, since this was the best real-time result. As justifi-
cation, I3D’s winning performance on supervised ActionFormer evidenced its ability to
extract informative features from UA’s clips. Though not all extractors performed better
on ActionFormer (Table 5), given SPOT’s attention mechanism it may be more similar to
ActionFormer than to TemporalMaxer. I3D was also not fine-tuned on UA to achieve its
results, requiring no labelled data percentage assumptions. Table 7 has the best SPOT
results achieved on UA; this result was attained using all of the contributions outlined in
Table 6, although the temporal scale must be increased rather than reduced to work with
the short annotations of UA. The details of the contributions were selected in part based on
the regression analysis in Table A3 and the associated data in Appendix D.

Table 6. An ablation study of the improvements made to SPOT during this project outlined in
Section 2.2.2. mAP refers to mAP@IoU=0.5, 10% labelled ANet1.3, for which 49.9% is the result
published in the SPOT paper [25].

Contribution A B C D E mAP

Initial implementation 42.377
A: Pretraining-Training Alternation X 43.433
B. Reconstruction loss for temp. crop X X 43.924
C. NLLLoss for Classification X X X 45.931
D. MSE+contrast for Localization X X X X 47.856
E. Reduced Temporal Scale X X X X X 56.216

Table 6 showcases our evaluation on ANet1.3. The results demonstrate that the
pretraining alternation provided a boost of 1% mAP versus the base implementation, sug-
gesting that the early introduction of the downstream task provided a useful direction for
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the pretraining. Ensuring that reconstruction loss was applied before and after the temporal
crop provided another slight boost through additional information. Using NLLLoss was
found to be more beneficial, agreeing with the prior that NLLLoss’s use of log-likelihood is
more agreeable with classification. A boost of 2% mAP was attained using the additional
loss which seeks to provide more clear temporal boundaries. ANet1.3 videos are mostly
one action, so reducing the temporal scale is a benefit.

We then evaluated the performance on the UA dataset with all augmentation strategies
in Table 6. The results in Table 7 are congruent with what would be expected. The
mAP approaches supervised UA results, with higher scores than on ANet1.3. Due to the
effectiveness of the extractors and the predictable nature of the dataset, even a small amount
of labelled data is sufficient for fair results. As the actions are relatively short compared to
the video, the temporal scale was made large to ensure that fine temporal transitions are
captured and short action sequences are not washed away.

Table 7. Test results for SPOT on the UAs dataset.

Labeled 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.1:0.7

10% 82.77 81.23 74.89 69.21 65.60 54.24 28.59 65.22

60% 89.12 88.34 85.42 80.05 75.58 65.23 45.85 75.66

3.3. Combined Comparative Study

Our SPOT work from Table 7 can now complete the main comparative study, and the
results are shown in Table 8. When compared with a standard benchmark (THUMOS),
extractors on UAs did not experience a significant change in frame rate. The same stack
and step sizes provided good results on both datasets despite differing mean annotation
lengths, since this configuration ensured that nearly all frames were included in multiple
clips. All configurations attained significantly higher scores on UAs. Though the UA
video’s static background provides minimal context, in a dataset where spatial location
is highly predictive of class, a plain background may be beneficial, as it may provide
minimal distraction from the key spatial location feature. As shown in Table 8, our approach
achieved good results using a variety of pipelines, including those with limited labeled data.
Since all instances of UA classes are visually similar, spatially separated, and temporally
repetitive, it is easy for the self-supervised tasks to teach spatiotemporal relationships, and
few action instances can capture the distribution of each action.

Table 8. A comprehensive collection of our results. For each combination of (dataset, extractor, head),
we present the highest-amAP configuration (as taken from Table 3).

Data Architecture Clip Size Metrics

Dataset Label% Extractor Flow Head Step Stack Real * amAP% **

THUMOS 100 I3D None ActionFormer 4 16 0.4× 61.10

THUMOS 100 I3D RAFT ActionFormer 4 16 10× 65.27

THUMOS 100 I3D RAFT TemporalMaxer 4 16 10× 71.75

THUMOS 100 R(2+1)D None ActionFormer 4 16 0.33× 55.18

THUMOS 100 R(2+1)D RAFT ActionFormer 4 16 5.0× 62.35

THUMOS 100 R(2+1)D+TSP None ActionFormer 4 16 0.34× 60.87

THUMOS 100 R(2+1)D+TSP None ActionFormer 1 16 1.63× 61.87

THUMOS 100 VideoMAEv2-g None ActionFormer 16 16 6.3× 73.28
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Table 8. Cont.

Data Architecture Clip Size Metrics

Dataset Label% Extractor Flow Head Step Stack Real * amAP% **

THUMOS 100 VideoMAEv2-g None TemporalMaxer 16 16 6.3× 74.48

UAs 100 I3D None ActionFormer 4 16 0.53× 85.00

UAs 100 I3D None TemporalMaxer 4 16 0.53× 82.80

UAs 100 I3D RAFT ActionFormer 4 16 1.52× 85.59

UAs 100 I3D RAFT TemporalMaxer 4 16 1.52× 84.24

UAs 100 R(2+1)D None ActionFormer 4 16 0.34× 84.10

UAs 100 R(2+1)D None TemporalMaxer 4 16 0.34× 83.23

UAs 100 R(2+1)D+TSP None ActionFormer 4 16 0.34× 84.48
UAs 100 R(2+1)D+TSP None ActionFormer 1 16 1.63× 84.89

UAs 100 VideoMAEv2-s None ActionFormer 16 16 2.0× 82.67

UAs 100 VideoMAEv2-g None ActionFormer 16 16 6.3× 87.69

UAs 100 VideoMAEv2-g None TemporalMaxer 16 16 6.3× 86.59

UAs 10 I3D None SPOT 4 16 0.53× 65.22

UAs 60 I3D None SPOT 4 16 0.53× 75.66

* The ratio of the time taken to extract to the total time of the dataset; Real < 1.0× is therefore a “real-time”
extractor setting. ** amAP refers to the avg. mAP@IoU=0.1:0.7.

4. Conclusions and Future Directions
Through the comparative study of extractors and modifications of SPOT, this paper’s

results include the best supervised performance yet on UAs, useful adjustments to SPOT in
this application and the first good semi-supervised results on UAs. The experimental results
demonstrate that self-supervised learning can be applied to factory applications in settings
with uncommon/mixed camera angles in real-time without hand-designed features.

Though all actions are present for the given station, UAs does not include any indi-
cation of the correctness of the action. Few authentic examples of dangerous actions may
be collectable and that lack of representation restricts UAs’ applicability. While SPOT’s
benchmark results suggest good performance on spatially similar classes (and hence the
ability to differentiate from subtleties), extending SPOT for anomaly detection is needed
and planned.

One of the challenges regarding SPOT’s temporal sensitivity is that each temporal
location (clip) is given a class. Hence, the clip size is the finest granularity that the action
recognition can handle. Some heads such as ActionFormer return a prediction for each clip
for the beginning and ending time of the action to which that clip belongs. Though this
would add complexity, it would in theory allow much more accurate predictions.

Ethical vulnerabilities and potential solutions have been addressed herein. All technol-
ogy related to surveillance could be used punitively; packaging the model in an assistance
tool frontend rather than a monitoring system can assist here. Prior to training, the video
footage could be intelligently anonymized to hide identifying facial details without inter-
fering with the model’s performance. Each factory should use its own deployed model
without data from other factories; not only are different factories likely unrelated, but
membership inference attacks may become more prevalent.

As an evolution of simple cropping (Table 4), a fast object detector could be used
to localize the hands of the worker, yielding a window of particular interest for usage in
an additional model branch. Suitable results may be attainable through a combination
of unsupervised and contrastive prototypical learning [46] with the potential to further
reduce annotation needs to one instance per class. A non-real-time but powerful model
such as VideoMAEv2 [19] could adopt the role of the human-in-the-loop function within a
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lifelong learning system. It may assist with challenging cases as measured by the entropy
and diversity of predictions.
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Abbreviations
The following abbreviations are used in this manuscript:

AP Average Precision. The ratio of the number of correct predictions to the number of total
predictions for a particular class. Ranges from 0 to 1; a greater value is better.

CNN Convolutional Neural Network
FPS Frames per second
IoU Intersection over Union. Given a predicted annotation and a ground-truth annotation,

both expressed in terms of start time and end time (one-dimensional “boxes”), IoU is the
ratio of the length of the boxes’ intersection (overlap region) to their union (the region
where at least one box covers). This measures localization: how well the predicted
annotation overlaps with the true action location.

mAP mean Average Precision. The mean of the (class-wise) APs.
mAP@IoU mean Average Precision @ Intersection over Union. This is the main metric of TAL.

This is the mAP, where “correct” predictions must meet a certain overlap threshold to
be considered correct. For example, a mAP@IoU=0.5 requires that a correct prediction
has an IoU with a ground truth of at least 0.5. mAP@IoU=0.1:0.7 is the mean of all
mAP@IoU=X, with X ∈ {0.1, 0.2, . . . , 0.7}.

MDPI Multidisciplinary Digital Publishing Institute
ML Machine Learning
MSELoss Mean Squared Error Loss. The sum of the squared differences between SPOT’s action-

ness scores at particular temporal locations with the ground truth. This amplifies the
effect of large errors.

NLLLoss Negative Log-Likelihood Loss. For each temporal location, the network will produce
logits (converted to log probabilities) for each action class. NLLLoss relates to the
predicted probability of the correct class occurring at a given time interval.

PLM Predicted Localization Mask
RGB Red, Green, Blue (Color Model)
SOTA State of the art
SSL Self-Supervised Learning
TAL Temporal Action Localization
UAs Undercover Actions (Dataset)
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Appendix A
We prove in this section that the variance term is no larger than 0.25, so it is safe to

subtract it from 0.25 for the purpose of a loss (i.e., no negative losses). This result is then
used for the construction of Equation (1).

Background. The predicted localization mask (PLM) is a vector X = [x1, . . . , xT ],
where all x1 ∈ [0, 1]. We have mean µX = 1

n ∑n
i=1 xi and variance σ2

X = 1
n ∑n

i=1(xi − µX)
2.

Substituting µX gives σX = 1
n ∑n

i=1 x2
i − µ2

X , in which the variance is equal to the mean of
the squares subtract the square of the mean.

Lemma A1. For a PLM, the variance is maximized when ∀xt ∈ PLM, xt ∈ {0, 1}.

Proof of Lemma A1. The sum of squared deviations is

S = nσ2
x =

n

∑
i=1

(xi − µ)2 =
n

∑
i=1

x2
i − nµ2 (A1)

Let us explore what happens to ∑n
i=1 x2

i and nµ2 when we change some xi′ to some
other xj. The change in these is as follows:

∆(
n

∑
i=1

x2
i ) = x2

j − x2
i′ (A2)

∆(nµ2) = n((µ +
xj − xi′

n
)2 − µ2) = 2µ(xj − xi′)−

(xj − xi′)
2

n
(A3)

We can express the change in S as the sum of the changes of its terms:

∆S = (x2
j − 1) + (2µ(1− xj) +

1− x2
j

n
) = (x2

j − 1) +

(
2(

( n
2 − 1) + xj

n
)(1− xj) +

1− x2
j

n

)
(A4)

Equation (A4) can be simplified and represented as

∆S = (1− 1
n
)x2

j + 2(
1
n
− µ)xj − xi(−xi + 2µ− xi

j
) (A5)

This is a concave-up parabola with vertex at xj =
µn−xi
n−1 that intersects the xj axis at

xi′ and 2µn−xi′ (n+1)
n−1 . For some fixed xi′ , µ ∈ [ xi

n , n−1+xi
n−1 ], which occurs at the cases where

∀xi ̸=i′ = 0 or ∀xi ̸=i′ = 1, respectively. Therefore, the vertex, as are xi′ and xj by definition,
are in [0, 1]. The parabola will increase monotonically in both directions from the vertex, so
the most positive ∆S will occur at the endpoints of the domain of ∆S, where xj ∈ {0, 1}.

Note that fully maximizing S requires the exchange from xi′ to xj to occur for all
xi ∈ X. Consider a case X = [x1, . . . , xT−1, xi′ ∈ {0, 1}], where ∀xj, ∆S ≤ 0, such as
X = [0.5, 0.5, 0.5, 1 = xi′ ]. Clearly ∃xi /∈ {0, 1}, but this simply means that xi′ cannot be
further maximized (it should stay at an endpoint) and we should choose a different xj.

Therefore, we maximize S by sending all xi to 0 or 1.

Theorem A1. σ2
PLM ∈ [0, 0.25].

Proof of Theorem A1. By Lemma A1, ∀xi ∈ X, xi ∈ {0, 1}. Assume that there are
1 ≤ k ≤ n predictions/elements that are 1, and the remaining n − k are 0. Therefore,
the mean of X is µ = k

n . Based on this, the variance of the PLM X is

σ2
X =

1
n

n

∑
i=1

(xi − µ)2 =
1
n
[
k
(n− k

n
)2

+ (n− k)
( k

n
)2]

=
k(n− k)

n2 (A6)
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The derivative of σ2
X with respect to k is n−2k

n2 , which is maximized at k = n
2 . Therefore,

half of the elements should be 0, and the rest should be 1. Substituting, this means that
σ2

X = k(n−k)
n2 = 1/4 = 0.25 when maximized. And, since the variance is a sum of squared

terms, it must always be non-negative.

Appendix B
These are the equations that compute the action/background-wise prediction means.

xt ∈ [0, 1] is the predicted confidence score that there is an action at clip xt. yt ∈ {0, 1} is
the actionness of the ground truth, yt = 1 if the clip at time t is part of an annotation. By
construction, Equation (A7) is (approximately) the average confidence score of the scores
that are located at a ground-truth action, Equation (A8) does the same for the background
(1− y), providing the correct filtering.

x̄action =
1

∑t yt + 1
·∑

t
xtyt (A7)

x̄background =
1

∑t(1− yt) + 1
·∑

t
xt(1− yt) (A8)

Appendix C
This Appendix outlines the environment details used in these experiments. Table A1

lists the software and code repositories used. Table A2 shows the hyperparameters that are
kept constant for all supervised head experiments.

Table A1. A brief summary of the software tools used in the comparative study.

Models

VideoMAEv2 I3D RAFT R(2+1)D TSP ActionFormer TemporalMaxer SPOT

OS Ubuntu 20.04

GPUs 1x NVIDIA A100 80GB PCIe

CUDA 12.2

Python 3.8.10 3.8.5 3.10.13 3.8 3.9 3.8.10

PyTorch 1.12.1+cu113 1.7.1=py3.8_cuda11.0.221_cudnn8.0.5_0 1.11.0 1.11.0+cu113 1.12.1 1.11.0+cu113

Original Code [19] [47] [33] [35] [18] [25]

(Forked) Codebase [48] [49] [50] [17] [51] [26]

Table A2. The hyperparameter settings for the ActionFormer and TemporalMaxer heads.

Hyperparameter Value

Training Epochs ActionFormer: 30, TemporalMaxer: 60

Learning Rate 0.0001

Momentum 0.9

Optimizer AdamW [52]

Warmup Epochs 5

Weight Decay 0.05

Kernel Size 3

Step Size 4

Stack Size 16
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Appendix D
This appendix provides background details about the hyperparameters and exper-

iments used for the regression analysis in Table A3. In Table A4, the parameters are
presented, along with the default value of the parameter as used by SPOT for ANet1.3 and
the range of values used in the parameter sweep with selection justified herein. The full
table of experiments during the sweep used as data for the linear regression is provided in
Table A5. All of these results were used to empirically determine the parameters of the con-
tributions from Table 6. The following is a brief explanation of the hyperparameters used:

EmbeddingHead: The number of attention heads in the transformer used for embed-
ding. In addition to the default of four heads, a single head is studied to inspect if fewer
attention heads is sufficient and reduces the overfitting on UAs.

TrainingStep: Every TrainingStep epoch, the learning rate is multiplied by Gamma.
Lower values may provide faster convergence, but it may be suboptimal depending on
local minima.

Gamma: The γ for the StepLR scheduler. γ = 0.8 will take many more epochs
to converge.

LossBalance: A weighing factor for the branch losses. The combined branch loss is
given as LossBalance · TopLoss + (1− LossBalance) · BottomLoss. The TopLoss refers to the
top (classification) branch, and the BottomLoss refers to the bottom (localization) branch.

Lambda2: A weighing factor for the F-Loss on the bottom (localization) branch. The loss
is given as F = λ2BCELoss + (1− λ2)DICELoss. Note that λ2 ≈ 0 =⇒ F ≈ DICELoss will
prioritize the segment level rather than the frame level, and the opposite is true when λ2

is large.

Table A3. Linear regression for SPOT on ANet1.3. Analyzes how select hyperparameters correlate
with the mAP and time to train. It is computed from the experimental data in Table A5.

mAP@IoU=0.5 Training Time

Coefficient Estimate p-Value Significance Estimate p-Value Significance

EmbeddingHead −0.35 2.94× 10−7 *** −6.17 0.73

TrainingStep 0.015 0.67 20.18 0.06 .

Gamma −0.17 0.57 −3.05 0.97

LossBalance −0.87 3.36× 10−3 ** 129 0.12

LambdaTwo 0.42 0.11 −16.0 0.84
Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘.’ 0.1 ‘ ’ 1.

Interestingly, EmbeddingHead is both highly significant and negative, suggesting that
fewer heads may be better. Despite the best efforts of self-supervised pretraining, with only
10% of the dataset labeled, overfitting is always a prime suspect. However, the margins are
fine; all rows in the table fall within 4.5 mAP, so there is no catastrophic overfitting due to
the extra heads. The other term that is significant at (standard) significance level α = 0.05 is
the LossBalance. This term is also negative, indicating that it is preferable to up-weigh the
bottom (localization) branch. In SPOT’s setup, the classification branch is more complex,
with two 1D convolutions instead of one. It is possible that the more complex top branch
could overfit if it is prioritized too heavily. In general, localization is considered more
difficult than classification, especially if it is temporal localization. Additionally, 0.5 is
a non-trivial IoU, so poor localization will be punished. None of these explanations are
mutually exclusive. As no early stopping mechanism is employed, the training time is
mostly unaffected by the factors.
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Table A4. The ranges of hyperparameters used in Table A5.

Parameter Range Default

EmbeddingHead {1, 4} 4

TrainingStep {5, 10} 10

Gamma {0.2, 0.8} 0.2

LossBalance {0.1, 0.5, 0.9} 0.5

Lambda2 {0.1, 0.4, 0.9} 0.4

Table A5. A parameter sweep of various hyperparameters for ANet1.3, 10% labeled. These rows
were analyzed using linear regression in Table A3.

EmbeddingHead TrainingStep Gamma LossBalance Lambda2 mAP * Time **

1 10 0.2 0.1 0.1 46.293 2282.234

1 10 0.2 0.1 0.4 46.642 2270.906

1 10 0.2 0.1 0.9 45.385 2138.472

1 10 0.2 0.5 0.1 44.234 2681.148

1 5 0.2 0.1 0.4 46.642 2148.239

1 5 0.2 0.1 0.9 45.385 2178.62

1 5 0.2 0.5 0.1 44.073 2143.392

1 5 0.2 0.5 0.4 45.78 2168.776

1 5 0.2 0.5 0.9 44.545 2160.215

1 5 0.2 0.9 0.1 44.271 2130.248

1 5 0.2 0.9 0.9 44.814 2293.03

1 5 0.8 0.1 0.9 45.345 2132.818

1 5 0.8 0.5 0.1 43.406 2112.199

1 5 0.8 0.5 0.4 45.348 2147.939

1 5 0.8 0.5 0.9 44.963 2141.788

1 5 0.8 0.9 0.1 43.944 2185.66

1 5 0.8 0.9 0.4 44.211 2170.468

1 5 0.8 0.9 0.9 45.023 2223.197

4 10 0.2 0.1 0.1 42.404 2282.896

4 10 0.2 0.1 0.4 44.687 2257.02

4 10 0.2 0.1 0.9 44.816 2244.643

4 10 0.2 0.5 0.1 44.071 2246.196

4 5 0.2 0.1 0.1 42.404 2238.389

4 5 0.2 0.1 0.4 44.729 2270.642

4 5 0.2 0.1 0.9 44.816 2277.225

4 5 0.2 0.5 0.1 43.953 2280.079

4 5 0.2 0.5 0.4 44.027 2280.583

4 5 0.2 0.5 0.9 43.663 2293.313

4 5 0.2 0.9 0.1 44.447 2236.358

4 5 0.2 0.9 0.9 43.807 2355.798

4 5 0.8 0.1 0.1 42.404 2204.206

4 5 0.8 0.1 0.4 44.71 2247.803

4 5 0.8 0.1 0.9 44.816 2222.575

4 5 0.8 0.5 0.1 44.053 2184.01

4 5 0.8 0.5 0.4 43.904 2269.515

4 5 0.8 0.5 0.9 43.678 2253.94
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Table A5. Cont.

EmbeddingHead TrainingStep Gamma LossBalance Lambda2 mAP * Time **

4 5 0.8 0.9 0.1 44.333 2250.151

4 5 0.8 0.9 0.4 43.421 2292.874

4 5 0.8 0.9 0.9 44.109 2235.912

1 10 0.2 0.5 0.4 45.364 3169.779

1 10 0.2 0.5 0.9 44.689 2142.15

1 10 0.2 0.9 0.1 44.175 2130.564

1 10 0.2 0.9 0.4 44.284 2180.587

1 10 0.2 0.9 0.9 44.836 2163.776

1 10 0.8 0.1 0.1 46.31 2159.365

1 10 0.8 0.1 0.4 46.642 2156.34

1 10 0.8 0.1 0.9 45.338 2150.775

1 10 0.8 0.5 0.1 43.874 2148.413

1 10 0.8 0.5 0.4 45.233 2135.986

1 10 0.8 0.5 0.9 44.346 2133.672

1 10 0.8 0.9 0.1 44.266 3163.667

1 10 0.8 0.9 0.9 44.693 3217.362

4 10 0.2 0.5 0.4 44.043 2254.155

4 10 0.2 0.5 0.9 43.672 2254.956

4 10 0.2 0.9 0.1 44.309 2282.938

4 10 0.2 0.9 0.4 43.77 2244.922

4 10 0.2 0.9 0.9 43.526 2250.859

4 10 0.8 0.1 0.1 42.404 2271.158

4 10 0.8 0.1 0.4 44.687 2276.477

4 10 0.8 0.1 0.9 44.817 2250.44

4 10 0.8 0.5 0.1 43.983 2246.682

4 10 0.8 0.5 0.4 44.003 2269.359

4 10 0.8 0.5 0.9 43.651 2252.148

4 10 0.8 0.9 0.1 44.276 2264.298

4 10 0.8 0.9 0.4 43.597 2247.971

4 10 0.8 0.9 0.9 43.53 2237.524
* mAP@IoU=0.5, ANet, 10% labelled, using I3D features from [25]. ** Time (seconds) to complete the entire
training phase.
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