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Abstract: In recent years, deep-network-based hashing has gained prominence in image
retrieval for its ability to generate compact and efficient binary representations. However,
most existing methods predominantly focus on high-level semantic features extracted from
the final layers of networks, often neglecting structural details that are crucial for capturing
spatial relationships within images. Achieving a balance between preserving structural
information and maximizing retrieval accuracy is the key to effective image hashing and
retrieval. To address this challenge, we introduce Multiscale Deep Feature Fusion for
Supervised Hashing (MDFF-SH), a novel approach that integrates multiscale feature fusion
into the hashing process. The hallmark of MDFF-SH lies in its ability to combine low-level
structural features with high-level semantic context, synthesizing robust and compact hash
codes. By leveraging multiscale features from multiple convolutional layers, MDFF-SH
ensures the preservation of fine-grained image details while maintaining global semantic
integrity, achieving a harmonious balance that enhances retrieval precision and recall.
Our approach demonstrated a superior performance on benchmark datasets, achieving
significant gains in the Mean Average Precision (MAP) compared with the state-of-the-art
methods: 9.5% on CIFAR-10, 5% on NUS-WIDE, and 11.5% on MS-COCO. These results
highlight the effectiveness of MDFF-SH in bridging structural and semantic information,
setting a new standard for high-precision image retrieval through multiscale feature fusion.

Keywords: content-based image retrieval; hashing code; deep learning; multiscale feature
extract; deep supervised hashing

1. Introduction
The surge in high-dimensional multimedia data, driven by advancements in com-

puter networks and social media platforms, underscores the need for efficient storage
and retrieval solutions [1–5]. Approximate Nearest Neighbor (ANN) searching [6] has
emerged as a pivotal area of study in computer vision and information retrieval since
it is a technique essential for reducing storage requirements and improving search effi-
ciency in high-dimensional spaces. Hashing [7] has garnered considerable attention as
a potent strategy within ANN searching, which transforms high-dimensional data into
compact binary codes while preserving spatial relationships between data points. Deep
hashing techniques [8–11] have been devised to concurrently learn visual features and
binary hash codes, enriching encoded information with a semantic context. Deep hashing
approaches have emerged as powerful tools for simultaneous feature learning and binary
code generation. Unlike conventional hashing methods that rely on independently trained
hash functions and quantization algorithms, deep hashing techniques adopt an end-to-end
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framework to extract semantic representations and construct binary hash codes. These
end-to-end frameworks enable the cohesive construction of semantic representations and
binary hash codes, surpassing traditional hashing techniques that rely on separate hash
functions and quantization steps. While recent advancements in deep hashing have shown
promise in information retrieval [12–16], there remains a need for further improvements,
particularly in retaining local structural details within images. Most deep hashing ap-
proaches emphasize high-level features from fully connected (FC) layers [17–19], leading
to a dearth of local feature information due to the global nature of these representations. In-
tegrating multi-level features that capture both local and global details has shown promise
for enhancing retrieval accuracy [20–22]. Despite attempting to fuse multi-feature repre-
sentations, existing methods often fall short of achieving true end-to-end compatibility
between feature representation and binary hash coding.

To address these limitations and to effectively harness the complementary nature
of deep multi-scale features, this paper introduces Multiscale Deep Feature Fusion for
High-Precision Image Retrieval through Supervised Hashing (MDFF-SH). By leveraging
ResNet50 [23], convolutional multi-scale features are aggregated from images of varying
sizes and fused within corresponding convolutional layers to yield robust representations.
Inspired by the feature pyramid network [24], this fusion process incorporates top-down
pathways and lateral connections, enabling the exploration of both top-layer semantic
and bottom-layer spatial features. In summary, the key contributions of this paper are
as follows:

1. Dual-scale approach: We propose a dual-scale approach that considers both feature
and image sizes to preserve the semantic and spatial details. Moreover, this compen-
sates for the loss of high-level features and ensures the generated hash codes are more
discriminative and informative.

2. Multi-scale feature fusion: MDFF-SH learns hash codes across multiple feature scales
and fuses them to generate final binary codes, enhancing retrieval performance.

3. End-to-end learning: our MDFF-SH model integrates joint optimization for feature
representation and binary code learning within a unified deep framework.

4. Superior performance: extensive experiments on three well-known datasets demon-
strated that MDFF-SH surpassed state-of-the-art approaches in retrieval performance.

2. Related Works
Hashing techniques have gained significant popularity in image retrieval due to their

minimal storage requirements and fast processing capabilities [25,26]. The primary purpose
of hashing is to map high-dimensional data into low-dimensional hash codes, ensuring
that similar data points have minimal Hamming distances while dissimilar points have
maximized distances.

Hashing methods are categorized into supervised [27,28] and unsupervised [29–33]
approaches based on the use of labeled data. Researchers developed unsupervised hashing
methods [34–37] to learn hash functions using unlabeled training samples, transforming
input images into binary codes. Locality-Sensitive Hashing (LSH) [38] is one of the most
well-known unsupervised methods, followed by significant approaches, such as Spectral
Hashing (SH) [35] and Iterative Quantization (ITQ) [36].

In contrast, supervised hashing techniques leveraged labeled data to learn hash func-
tions, often yielding higher accuracy compared with unsupervised methods. Supervised
Hashing with Kernels (KSH) [39] employs kernel methods to create nonlinear hash func-
tions. Minimal Loss Hashing (MLH) [40] uses structured SVMs to define an objective for
learning hash functions. Supervised Discrete Hashing (SDH) [30] refines the objective
function to produce high-quality hash codes without relaxation.
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The emergence of deep neural networks propelled the development of deep hashing
algorithms [14,18,41–46], which outperformed traditional methods by using rich feature
representations. Researchers proposed pairwise and triplet-based similarity preservation
strategies to utilize label information effectively. CNN-based Hashing (CNNH) [18] ex-
tracted features using CNNs but separated feature learning from hash function training,
which limited feedback integration. Deep Pairwise-Supervised hashing (DPSH) [14] em-
ployed a Bayesian approach to model relationships between pairwise labels and hash codes,
optimizing this relationship for better outcomes. HashGAN [41] uses a Wasserstein GAN
to generate hash codes while leveraging pairwise similarities within a Bayesian framework.
Zhuang et al. [42] developed a binary CNN classifier that leveraged triplet loss to maintain
semantic relationships. Deep Triplet Quantization (DTQ) [43] integrated triplet-based
quantization into a supervised learning framework, enabling the joint optimization of quan-
tization and feature learning. In Supervised Semantics-Preserving Hashing (SSDH) [44],
researchers embedded hash functions as a fully connected layer, focusing on minimizing
the classification error during training. Wang et al. [45] offered a comprehensive framework
for distance-preserving linear hashing extended to deep learning, where the fully con-
nected layer’s features supported hashing. Shen et al.’s Similarity-Adaptive Deep Hashing
(SADH) [46] utilized outputs from fully connected layers to refine a similarity graph matrix
for enhanced hash code learning.

Product Quantization (PQ) techniques [34] have played a pivotal role in large-scale
image retrieval due to their ability to compress high-dimensional data into compact rep-
resentations while maintaining similarity-preserving properties. For instance, the study
by Ma et al. [47] introduced a novel framework that leverages progressive quantization
strategies to enhance fine-grained retrieval tasks. By integrating causal intervention into
the quantization process, this approach achieves robust encoding and improved semantic
preservation, making it highly effective for large-scale datasets. While vector quantization
methods primarily optimize data compression and efficiency, our proposed MDFF-SH
approach focuses on multiscale feature fusion to enhance the semantic representation
and retrieval accuracy. These two paradigms are complementary, as future extensions of
MDFF-SH could benefit from incorporating advanced quantization strategies to further
improve the scalability in massive image databases.

Traditional approaches often relied on high-level features, typically from the final
fully connected layers. However, capturing diverse features for a more comprehensive
representation became a focus of multi-level image-retrieval methods. Lin et al. intro-
duced Discriminative Deep Hashing (DDH) [16], which integrates end-to-end learning
and multi-scale feature extraction from convolution-pooling layers. Yang et al. [48] devel-
oped Feature Pyramid Hashing (FPH), a dual-pyramid framework for learning detailed
and semantic features for fine-grained retrieval. Redaoui et al. proposed Deep Feature
Pyramid Hashing (DFPH) [49] to leverage multi-level visual and semantic data, and Deep
Supervised Hashing with Multiscale Feature Fusion (DSHFMDF) [50], which extracts and
combines multiscale features from various convolutional layers for robust image retrieval.
Ng et al. [51] introduced Multi-Level Supervised Hashing (MLSH), which separately trains
tables at different feature levels to enhance both the structural and semantic representations.

3. Proposed Methodology
This section outlines the proposed method in detail. First, we define the primary

objective of our network: converting image information into hash codes for efficient
retrieval. Next, we describe the structure of the proposed model, illustrated in Figure 1.
Finally, we present the objective function that guides the optimization of the method.
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3.1. Problem Definition

Let X = {xi}N
i=1 ∈ Rd×N represent a training dataset with N images, where

Y = {yi}N
i=1 ∈ RK×N are the associated ground truth labels for the xi samples, and K

denotes the number of classes. To express the semantic similarities between images, we
used a pairwise label matrix S =

{
sij
}

, where sij ∈ {0, 1} indicates whether images xi

and xj are semantically related sij = 1 or not sij = 0. The objective of deep hashing is to
learn a function f : x 7→ B ∈ {−1, 1}L that maps each input image xi to a binary code
bi ∈ {−1, 1}L, where L represents the length of the binary code.

3.2. Model Architecture

The architecture of the proposed MDFF-SH model, depicted in Figure 1, is structured
to achieve high-efficiency and high-precision image retrieval through five main compo-
nents: (1) feature extraction, (2) feature reduction, (3) feature fusion, (4) hash coding,
and (5) classification. This modular approach ensures a cohesive understanding of each
component and how they contribute to the model’s overall functionality.

Figure 1. Enhanced image retrieval using Multiscale Deep Feature Fusion in Supervised Hashing
(MDFF-SH).

1. Feature extraction: The initial feature extraction stage is crucial for gathering infor-
mative details from the input image. In MDFF-SH, the ResNet50 network serves
as the backbone due to its capability to capture complex and distinguishing image
features. Each layer in ResNet50 is designed to capture image details at increasing
levels of abstraction, making it an ideal foundation for extracting both structural and
semantic features. MDFF-SH systematically collects features from distinct levels of
ResNet50. This includes low-level features, capturing fine details, such as edges and
textures, and high-level features, encapsulating semantic attributes. This multi-level
approach ensures that the image representation integrates both granular details and
overall semantic meaning.

2. Multiscale feature focus: The model’s multiscale feature extraction focuses on layers
from several convolutional blocks—specifically, the final layers of the ‘conv3’, ‘conv4’,
and ‘conv5’ blocks, along with the fully connected layer fc1. Lower-level layers,
like ‘conv1’ and ‘conv2’, are excluded to optimize memory usage, as their semantic
contribution is limited. The selected layers effectively capture a balanced mix of
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structural and semantic information, providing a comprehensive representation of
the image that includes both low- and high-level characteristics.

3. Feature reduction: After the extraction, the dimensionality of the multiscale features
is reduced to retain discriminative power without excessive computational overhead.
Using a 1 × 1 convolutional kernel, the model combines features across levels in a
linear manner, creating a streamlined yet rich representation. This step enhances the
depth and robustness of the features while minimizing the redundancy.

4. Feature fusion: In the fusion stage, the reduced features from different levels are
combined to produce a unified representation. By merging both low- and high-level
information, the fusion layer enables the model to construct an image representation
that captures local structures alongside the global context. This fusion provides a
robust basis for generating binary codes that reflect a detailed and semantically rich
image profile.

5. Hash coding: To generate the final hash codes, the fused feature representation un-
dergoes nonlinear transformations through hash layers, each of which outputs binary
codes of the desired length L. This transformation ensures that the binary codes retain
the core characteristics of the images in a compact and retrieval-optimized format.

6. Classification: The classification layer, which corresponds to the number of classes in
the dataset, assigns the generated hash codes to specific image categories. This final
component allows MDFF-SH to distinguish between classes based on learned binary
representations, reinforcing the network’s retrieval effectiveness.

Through this structured architecture presented in Table 1, MDFF-SH captures both
the local and global image information, resulting in a powerful and compact feature
representation that is tailored to high-precision image retrieval.

Table 1. Summary of the feature extraction network. Layers marked with ‘#’ are used for feature
extraction. ReLU and batch normalization layers are omitted for simplicity.

Conv Block Layers Kernel Sizes Feature Dimensions

1 Conv2D, Conv2D#,
MaxPooling 64 × 3 × 3, 64 × 3 × 3 224 × 224

2 Conv2D, Conv2D#,
MaxPooling 128 × 3 × 3, 128 × 3 × 3 112 × 112

3 Conv2D, Conv2D, Conv2D,
Conv2D#, MaxPooling

256 × 3 × 3, 256 × 3 × 3,
256 × 3 × 3, 256 × 3 × 3 56 × 56

4 Conv2D, Conv2D, Conv2D,
Conv2D#, MaxPooling

512 × 3 × 3, 512 × 3 × 3,
512 × 3 × 3, 512 × 3 × 3 28 × 28

5 Conv2D, Conv2D, Conv2D,
Conv2D#, MaxPooling

512 × 3 × 3, 512 × 3 × 3,
512 × 3 × 3, 512 × 3 × 3 14 × 14

After extracting features from multiple scales, we employed a 1 × 1 convolutional
kernel to reduce the dimensionality while preserving the discriminative information. This
process enhances the feature depth and robustness and eliminates redundancy.

Subsequently, a fusion layer composed of 1024 nodes integrates these multi-scale
features, combining low-level structural details with high-level semantic information. This
fusion step creates a comprehensive image representation that balances fine-grained local
structures with broader contextual understanding.

To generate compact binary hash codes, we applied a nonlinear mapping through
multiple hash layers, each with L nodes. This nonlinear transformation effectively en-
capsulates key image characteristics into binary codes. The concatenated hash code rep-
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resentation is further refined in the final hashing layer to ensure semantic integrity and
discriminative power.

Finally, a classification layer with neurons corresponding to the number of classes is
employed to categorize images based on their learned representations. The discriminative
nature of the hash codes enables accurate image classification.

By integrating multi-scale features and a well-structured architecture, our model
generates diverse and informative hash codes. These hash codes effectively capture both
the local details and global context, leading to improved retrieval performance and accurate
image classification.

3.3. Loss Functions and Learning Rule

To ensure that the generated hash codes effectively preserve semantic similarity,
our MDFF-SH method combines three distinct loss functions: pairwise similarity loss,
quantization loss, and classification loss. These losses are harmonized to support efficient
and effective training.

3.3.1. Pairwise Similarity Loss

The MDFF-SH method is designed to maintain similarity between pairs of input
samples within Hamming space. Pairwise similarity is evaluated by calculating the inner
product between the hash codes bi and bj, defined as dist distH

(
bi, bj

)
= 1

2 bT
i bj . Given a set

of binary codes B = {bi}N
i=1 and pairwise labels S =

{
sij
}

, the probability of the pairwise
labels is represented as

p(sij|B) =

σ(wij) if sij = 1

1 − σ(wij) if sij = 0
(1)

where σ(wij) =
1

1+e−wij
and wij =

1
2 bT

i bj

This formulation implies that a larger inner product ⟨bi, bj⟩ corresponds to a smaller
distH

(
bi, bj

)
and a higher value of p

(
1|bi, bj

)
. When sij = 1, the binary codes bi and bj are

considered similar.
The optimization problem then becomes minimizing the negative log-likelihood over

labels in S, resulting in

J1 = − log p(S|B) = − ∑
sij∈S

(sijwij − log(1 + ewij)) (2)

This objective function aims to minimize the Hamming distance between similar
samples while maximizing the distance between dissimilar samples, aligning with the
principles of similarity-based hashing.

3.3.2. Quantization Loss

In practical applications, binary hash codes are commonly used for measuring simi-
larity. However, optimizing discrete hash codes directly within a neural network can be
challenging. To address this, we employed a continuous approximation for hash coding.
Let ui denote the output of the hash layer, with bi defined as bi = sgn(ui). To minimize the
gap between continuous and discrete representations, we introduced quantization loss as a
secondary objective:

J2 =
Q

∑
i=1

|bi − ui|22 (3)

where Q represents the mini-batch size.
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3.3.3. Classification Loss

To support the robust learning of multiscale features across the network, we employ
cross-entropy loss for classification, which helps the model correctly categorize input
samples. The classification loss is given by

J3 = −
Q

∑
i=1

K

∑
k=1

yi,k log(pi,k) (4)

where yi,k denotes the true label and pi,k represents the softmax output of the i-th training
sample for the k-th class.

In conclusion, the total loss function combines the pairwise similarity, quantization,
and classification losses, as follows:

J = J1 + βJ2 + γJ3 (5)

where β and γ are balancing parameters that control the contributions of the quantization
and classification losses, respectively.

4. Experiments
This section evaluates the performance of MDFF-SH and its variations on three exten-

sive public datasets: CIFAR-10, NUS-WIDE, and MS-COCO. Our objective was to demon-
strate the effectiveness of the proposed method compared with several leading hashing
approaches. We begin with an overview of these datasets and follow with the experimental
setup. Section 4.3 details the evaluation metrics and baseline methods. Finally, we present
the results, including a comparative analysis with state-of-the-art hashing techniques.

4.1. Datasets

CIFAR-10 [52]: This dataset consists of 60,000 color images across ten object classes,
with each class containing 6000 images sized 32 × 32 pixels. Following the protocol in [53],
we randomly selected 1000 images (100 per class) as the query set, with the remaining
images serving as the database. From the database, we sampled 5000 images (500 per class)
as the training set.

NUS-WIDE [54]: Comprising 123,287 color images (40,504 validation images and
82,783 training images), this dataset includes images labeled with one or more of 80 cate-
gories. For our experiments, we randomly selected 5000 images as the query set, 10,000 as
the training set, and used the remaining images as the database.

MS-COCO [55]: This is a dataset consisting of 123,287 color images (40,504 validation
and 82,783 training). Each image is labeled by one or more of 80 categories. We randomly
selected 5000 images as query points and 10,000 images as the training dataset. The rest of
the images were used as the database.

4.2. Experimental Settings

The MDFF-SH method was implemented using the PyTorch 2.0 deep learning frame-
work, and we initialized the network parameters with the ResNet50 convolutional model
pretrained on the ImageNet dataset [56]. All experiments were conducted using the
RMSProp optimizer [57] with a learning rate of 1 × 10−5 and a batch size of 32. The
hyperparameters were set as follows: γ = 0.01 and β = 0.1.

4.3. Evaluation Metrics and Baselines

To assess the performance of our image retrieval method and facilitate comparisons
with alternative approaches, we used the following metrics:
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1. Mean Average Precision (MAP) results;
2. Precision–recall (PR) curves;
3. Precision at top retrieval levels (P@N);
4. Precision within a Hamming radius of 2 (P@H ≤ 2).

The MDFF-SH method was compared with a selection of traditional and state-of-the-
art methods, including five unsupervised methods: LSH [6], SH [35], SGH [58], ITQ [36],
and PCAH [59], as well as two supervised hashing methods: SDH [30] and KSH [39].
Additionally, we included nine deep supervised hashing methods: CNNH [18], DNNH [10],
DCH [60], DHN [9], HashNet [61], DHDW [62], DPH [63], LRH [53], and MFLH [64]. For
multi-label datasets, such as MS-COCO and NUS-WIDE, two samples were considered
similar if they shared one or more semantic label.

4.4. Results

Table 2 presents a comparison of the MAP results for our method and competing
hashing methods on CIFAR-10 and NUS-WIDE with hash code lengths of 12, 24, 32,
and 48 bits. Our MDFF-SH method consistently outperformed all the other methods.
Specifically, compared with the best traditional hashing method SDH [30], MDFF-SH
achieved average MAP improvements of 52.7% and 23.55% on CIFAR-10 and NUS-WIDE,
respectively. Deep hashing methods generally perform better than classical methods due
to their ability to generate more robust feature representations. For CIFAR-10 and NUS-
WIDE, MDFF-SH delivered average MAP increases of 9.58% and 2.95%, respectively, over
the second-best method MFLH [64] across all hash code lengths. For example, the MAP
values of MDFF-SH at different lengths were enhanced by 52.6%, 52.5%, 53.3%, and 52.4%,
respectively, compared with the SDH method. The MAP of the MDFF-SH method was also
significantly improved compared with the deep hash method. These results indicate the
capability of MDFF-SH to produce high-quality hash codes for efficient image retrieval.

Table 2. Mean Average Precision (MAP) of the Hamming ranking for different numbers of bits on
CIFAR-10 and NUS-WIDE. The MAP values were calculated for the top 5000 retrieval images from
the NUS-WIDE dataset.

Method
CIFAR-10 (MAP) NUS-WIDE (MAP)

12 Bits 24 Bits 32 Bits 48 Bits 12 Bits 24 Bits 32 Bits 48 Bits

SH [35] 0.127 0.128 0.126 0.129 0.454 0.406 0.405 0.400
ITQ [36] 0.162 0.169 0.172 0.175 0.452 0.468 0.472 0.477
KSH [39] 0.303 0.337 0.346 0.356 0.556 0.572 0.581 0.588
SDH [30] 0.285 0.329 0.341 0.356 0.568 0.600 0.608 0.637
CNNH [18] 0.439 0.511 0.509 0.522 0.611 0.618 0.625 0.608
DNNH [10] 0.552 0.566 0.558 0.581 0.674 0.697 0.713 0.715
DHN [9] 0.555 0.594 0.603 0.621 0.708 0.735 0.748 0.758
HashNet [61] 0.609 0.644 0.632 0.646 0.643 0.694 0.737 0.750
DPH [63] 0.698 0.729 0.749 0.755 0.770 0.784 0.790 0.786
LRH [53] 0.684 0.700 0.727 0.730 0.726 0.775 0.774 0.780
MFLH [64] 0.726 0.758 0.771 0.781 0.782 0.814 0.817 0.824
MDFF-SH 0.811 0.854 0.874 0.880 0.828 0.854 0.866 0.887

Table 3 shows the performance of MDFF-SH on the MS-COCO dataset. MDFF-SH
achieved a superior retrieval performance at all code lengths compared with all the baseline
methods. As a multi-label dataset, MS-COCO presented a more complex semantic structure
than the single-label datasets, which posed a greater challenge for maintaining semantic
integrity in hash codes. For example, the MDFF-SH method improved the MAP values over
different lengths of hash codes by 7.4%, 11.7%, 14.1%, and 15.2%, respectively, compared
with the DCH method. Nonetheless, MDFF-SH achieved the best results, underscoring the
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effectiveness and robustness of the proposed approach for high-precision image retrieval
in complex datasets.

Table 3. Mean Average Precision (MAP) of the Hamming ranking for different numbers of bits on
MS-COCO. The MAP values were calculated for the top 5000 retrieval images.

Method
MS-COCO (MAP)

16 Bits 32 Bits 48 Bits 64 Bits

SGH [58] 0.362 0.368 0.375 0.384
SH [35] 0.494 0.525 0.539 0.547
PCAH [59] 0.559 0.573 0.582 0.588
LSH [6] 0.406 0.440 0.486 0.517
ITQ [36] 0.613 0.649 0.671 0.680
DHN [9] 0.608 0.640 0.661 0.678
HashNet [61] 0.642 0.671 0.683 0.689
DCH [60] 0.652 0.680 0.689 0.690
DHDW [62] 0.655 0.681 0.695 0.702
MDFF-SH 0.726 0.797 0.830 0.842

Figures 2a and 3a present the precision curves for P@H = 2, demonstrating that our
MDFF-SH method consistently outperformed other techniques by achieving the highest
precision within this Hamming radius. Although a slight decline in the P@H = 2 perfor-
mance was observed as the code length increased, MDFF-SH maintained a strong retrieval
accuracy, indicating its ability to focus on relevant points within a Hamming radius of 2,
even with longer hash codes.

Additionally, Figures 2b,c and 3b,c compare the precision–recall and precision at top
results performance of MDFF-SH with the other methods. In particular, Figures 2c and 3c
show that MDFF-SH achieved the highest precision with 48-bit codes across varying numbers
of returned samples, especially in the range of 100 to 1000. Furthermore, Figures 2b and 3b
illustrate that MDFF-SH achieved notably high precision at low recall levels—a crucial
feature for precision-first retrieval systems widely used in practical applications. Overall,
these results underscore the superior performance of MDFF-SH compared with the other
methods evaluated.

Figures 2a and 3a display the precision curves for P@H = 2, clearly showing that
our MDFF-SH method outperformed other approaches by achieving the highest precision
within this Hamming radius. While a slight decrease in the P@H = 2 performance occurred
as the code length increased, this result highlights MDFF-SH’s effectiveness in concentrating
on relevant points within a Hamming radius of 2, even with longer hash codes.

In summary, our MDFF-SH method consistently outperformed the compared methods
across various evaluation metrics, underscoring its superiority in image retrieval tasks. To
visually illustrate its effectiveness in eliminating irrelevant images, we present Figure 4,
showcasing the retrieval accuracy of different image categories in the CIFAR-10 dataset
using MDFF-SH with 48-bit binary codes. This figure features query images in the first
column, while the subsequent columns display images retrieved using MDFF-SH. This
example reinforced our approach’s capability to precisely retrieve pertinent images, further
substantiating its practical utility.

In summary, our MDFF-SH method consistently surpassed the compared techniques
across multiple evaluation metrics, affirming its superior performance in image retrieval
tasks. To visually demonstrate its effectiveness in filtering out irrelevant images, Figure 4
presents the retrieval accuracy for various image categories within the CIFAR-10 dataset
using MDFF-SH with 48-bit binary codes. In this figure, query images are shown in the
first column, followed by images retrieved through MDFF-SH in the subsequent columns.
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This example highlights our method’s ability to accurately retrieve relevant images, under-
scoring its practical value in real-world applications.

(a) (b)

(c)

Figure 2. The comparison results on the CIFAR-10 dataset under three evaluation metrics. (a) Precision
within Hamming radius 2. (b) Precision recall curve on 48 bits. (c) Precision curve with respect to
top-N @48 bits.

4.5. Ablation Studies

(1) Ablation studies on multi-level image representations for enhanced hash learning:
To investigate the impact of multi-level image representations on hash learning, we
conducted ablation studies. Unlike many existing methods that primarily focus on
semantic information extracted from the final fully connected layers, we explored
the contribution of structural information from various network layers. Table 4
presents the retrieval performance on the CIFAR-10 dataset using different feature
maps. We observed that features from the fc1 layer yielded the highest MAP of
75.8%, emphasizing the importance of high-level semantic information. However,
using features from convs 3–5 resulted in an average MAP of 62.5%, highlighting the
significance of low-level structural details. Our proposed MDFF-SH approach out-
performed all other configurations, where it achieved an average MAP of 85.5%, and
thus, demonstrated the effectiveness of combining multi-scale features for enhanced
retrieval performance.

(2) Ablation studies on the objective function: To assess the impact of different loss
components in our objective function, we conducted ablation studies on the CIFAR-
10 dataset using the MDFF-SH model. We evaluated the performance of the model
when either the pairwise quantization loss (β = 0, MDFF-SH-J3) or the classification
loss (γ = 0, MDFF-SH-J2) was excluded. As shown in Table 5, the inclusion of both
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J2 and J3 resulted in an 8.55% performance improvement. This finding highlights the
importance of both the quantization loss, which minimizes the quantization error,
and the classification loss, which preserves semantic information, for generating
high-quality hash codes.

(a) (b)

(c)

Figure 3. The comparison results on the NUS-WIDE dataset under three evaluation metrics. (a) Preci-
sion within Hamming radius 2. (b) Precision recall curve on 48 bits. (c) Precision curve with respect
to top-N @48 bits.

Figure 4. Presented are the top 20 retrieved results from the CIFAR-10 dataset, which utilized MDFF-
SH with 48-bit hash codes. The first column showcases the query images, while the subsequent
columns display the retrieval results generated by MDFF-SH.
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Table 4. Mean Average Precision (MAP) for different feature scales with various bit lengths
on CIFAR-10.

Method
CIFAR-10 (MAP)

12 Bits 24 Bits 32 Bits 48 Bits

f c1 0.710 0.761 0.775 0.788
Convs 3–5 0.580 0.595 0.639 0.688
MDFF-SH 0.811 0.854 0.874 0.880

Table 5. Mean Average Precision (MAP) results for different variants of the objective function
on CIFAR-10.

Method
CIFAR-10 (MAP)

12 Bits 24 Bits 32 Bits 48 Bits

MDFF-SH-J2 0.667 0.812 0.830 0.852
MDFF-SH-J3 0.656 0.742 0.785 0.796

MDFF-SH 0.811 0.854 0.874 0.880

5. Conclusions and Future Work
This paper introduces a novel end-to-end framework, Multiscale Deep Feature Fusion

for High-Precision Image Retrieval through Supervised Hashing (MDFF-SH), designed
to generate robust binary codes. Our approach optimizes three key components: similar-
ity loss, quantization loss, and semantic loss, to effectively integrate structural informa-
tion into hash representations. By leveraging multiscale features, MDFF-SH achieves a
balance between the structural detail and retrieval accuracy, leading to improved recall
and precision.

Extensive experiments on standard image retrieval datasets demonstrate the superior
performance of MDFF-SH compared with state-of-the-art methods. In future work, we
aim to extend this approach to medical imaging, where the presence of multi-scale objects
could benefit significantly from our method’s ability to capture both fine-grained and
coarse-grained details.

The scalability of our model makes it adaptable to various computer vision tasks,
providing robust feature representations that have the potential to advance a wide range
of applications.
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