Journal of

Imaging

Article

LittleFaceNet: A Small-Sized Face Recognition Method Based on
RetinaFace and AdaFace

Zhengwei Ren "2, Xinyu Liu 1*, Jing Xu "2, Yongsheng Zhang "> and Ming Fang !

check for
updates

Academic Editor: Pierre Gouton

Received: 17 November 2024
Revised: 28 December 2024
Accepted: 8 January 2025
Published: 13 January 2025

Citation: Ren, Z.; Liu, X,; Xu, J.;
Zhang, Y.; Fang, M. LittleFaceNet: A
Small-Sized Face Recognition Method
Based on RetinaFace and AdaFace. J.
Imaging 2025, 11, 24. https://doi.org/
10.3390/jimaging11010024

Copyright: © 2025 by the authors.
Licensee MDP], Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license

(https:/ /creativecommons.org/
licenses /by /4.0/).

School of Artificial Intelligence, Changchun University of Science and Technology, Changchun 130012, China;
renzhengwei@cust.edu.cn (Z.R.); xujing@cust.edu.cn (J.X.); zys@cust.edu.cn (Y.Z.);

fangming@cust.edu.cn (M.E.)

Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528400, China
Correspondence: liuxinyucust@163.com

Abstract: For surveillance video management in university laboratories, issues such as oc-
clusion and low-resolution face capture often arise. Traditional face recognition algorithms
are typically static and rely heavily on clear images, resulting in inaccurate recognition for
low-resolution, small-sized faces. To address the challenges of occlusion and low-resolution
person identification, this paper proposes a new face recognition framework by reconstruct-
ing Retinaface-Resnet and combining it with Quality-Adaptive Margin (adaface). Currently,
although there are many target detection algorithms, they all require a large amount of
data for training. However, datasets for low-resolution face detection are scarce, leading
to poor detection performance of the models. This paper aims to solve Retinaface’s weak
face recognition capability in low-resolution scenarios and its potential inaccuracies in
face bounding box localization when faces are at extreme angles or partially occluded. To
this end, Spatial Depth-wise Separable Convolutions are introduced. Retinaface-Resnet
is designed for face detection and localization, while adaface is employed to address low-
resolution face recognition by using feature norm approximation to estimate image quality
and applying an adaptive margin function. Additionally, a multi-object tracking algorithm
is used to solve the problem of moving occlusion. Experimental results demonstrate sig-
nificant improvements, achieving an accuracy of 96.12% on the WiderFace dataset and a
recognition accuracy of 84.36% in practical laboratory applications.

Keywords: face recognition; RetinaFace; Adaface; object tracking; deep learning; low resolution

1. Introduction

Face recognition is a visual processing technology that automatically identifies indi-
viduals based on their facial features. In recent years, face recognition technology has been
widely applied in fields such as face-based payments, attendance systems, and identity
verification [1]. Compared with traditional biometric technologies, face recognition technol-
ogy is characterized by multi-feature capabilities, concealment, non-contact operation, and
low cost, enabling technologies originally used in stringent identity verification contexts to
proliferate on mobile devices [2]. However, current face recognition systems are primarily
static, requiring the person to be recognized to remain stationary in front of the capturing
camera during the recognition process. The device then matches the detected face with
faces in a database, a method that necessitates cooperation from the individual being recog-
nized. In contrast, dynamic face recognition does not require cooperation from the person
being recognized and can identify identities in unrestricted, unconstrained conditions [3].
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In unconstrained scenarios, factors such as changes in the recognized person’s facial ex-
pressions, posture, and lighting intensity [4], the proportion of occlusion, and varying
sizes of captured facial images [5] interfere with the overall face recognition process. In
real-life scenarios, these factors randomly and collectively affect face recognition, making it
challenging to accurately determine the identity of the person being recognized in actual
dynamic settings. Deep learning is widely applied in the field of face recognition [6]. It
can extract deep-level features, and training using vast datasets enhances the model’s
robustness and broader adaptability, resulting in excellent performance in detection and
recognition effects. Recently, face recognition has made significant progress by referencing
general advancements in object detection and deep learning. CNN-based object detectors
can be divided into two-stage detection algorithms and one-stage detection algorithms
based on regression [7]. Recent cutting-edge face recognition methods focus on adopting
dense sampling within a single-stage framework, which demonstrates good performance
in both speed and accuracy compared to two-stage methods [8].

With the advancement of technology, low-quality images are increasingly becoming an
important component of face recognition datasets, as they are encountered in surveillance
videos and drone footage. Given that state-of-the-art face recognition (FR) methods [9,10]
can achieve over 98% verification accuracy on relatively high-quality datasets such as LFW
or CFP-FP [11,12], recent FR challenges have shifted to lower-quality datasets like IJB-B,
IJB-C, and IJB-S [13,14]. Despite the challenge of achieving high accuracy on low-quality
datasets, most popular training datasets still consist of high-quality images [9,15,16], with
only a small portion of training data being of low quality. One issue with low-quality face
images is that they are often unrecognizable. When the image degradation is too significant,
relevant identity information disappears from the image, resulting in unrecognizable
images. These unrecognizable images are detrimental to the training process because the
model will attempt to utilize other visual features, such as clothing color or image resolution,
to reduce the training loss. If these images dominate the distribution of low-quality images,
the model’s performance on low-quality datasets during testing may be poor.

For such low-resolution images, two primary approaches have been explored to
address this issue: (1) construction-based and (2) projection-based methods. Construction-
based methods involve enhancing the visual quality of the low-resolution (LR) input prior
to recognition, known as face super-resolution (FSR). In this way, the FR process is divided
into two tasks: identity-preserving FSR and super-resolution face recognition (SRFR).
Special attention has been given to Generative Adversarial Networks (GANs) [16-18]
within the face generation module. Although GANs achieve remarkable outputs in terms
of image quality and human perception, they add high-frequency components to the
synthesized images, which adversely affect the recognition process [19]. Furthermore, FSR
is an ill-posed problem due to the existence of multiple high-resolution (HR) faces for each
LR image [19]. Additionally, face images are influenced by several other covariate factors
(esthetics), such as head pose, lighting, and expression. These factors result in a significant
gap between the feature embeddings of HR and SR faces in the identity metric space, which
significantly degrades the final FR performance.

Projection-based methods aim to create a shared embedding space that can accommo-
date both HR and LR images. To achieve this, synthetic LR data can be utilized to enhance
the resolution diversity of the dataset [20,21]. However, due to the fixed angular margin in
traditional FR methods, there are convergence issues, and they do not adapt well to data
augmentations such as downsampling or random cropping [22,23]. To address this prob-
lem, methods based on adaptive margin adjustment according to sample difficulty have
been proposed [23,24]. MagFace suggests using feature norms as a metric of image quality
and adjusting the margin accordingly. Adaptive margins have solved the convergence
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problem to some extent. However, performance still deteriorates significantly when dealing
with LR images [25]. For instance, the face verification accuracy on LFW is typically above
99%. Yet, the performance of Tinyface is around 59%. Furthermore, Nourelahi et al. [26]
demonstrated that training models on perturbed data results in poorer performance on
original samples while enhancing robustness.

Many researchers have investigated face recognition solutions tailored for surveillance
videos. In pursuit of achieving stable video surveillance, Baomansi et al. designed a re-
view process based on the RPCA-PCP method [27], comparing it with the BMC dataset and
showecasing the performance of 13 state-of-the-art RPCA methods. Zhang et al. proposed a
framework for recognizing personnel in video surveillance scenarios by leveraging hetero-
geneous contextual information and facial features to address face recognition issues with
low-quality data [28]. Mandal et al. introduced a robust visual analysis system for detecting
driver fatigue in buses, which involves detecting the driver’s state based on head-shoulder
detection, face detection, and eye detection [29]. Liu et al. presented a PRO framework based
on deep neural networks [30], which not only utilizes multimodal data from large-scale video
surveillance, such as visual features and camera locations, but also constructs its own dataset
of surveillance videos to ensure accuracy. Ding et al. proposed a trunk-branch ensemble CNN
to enhance the robustness of CNN features against pose variations and occlusions [31]. This
model extracts complementary information from the entire face image and patches cropped
around facial components, achieving state-of-the-art performance on three popular video
face databases. Wang et al. introduced a deep learning-based method for face recognition
in real-world surveillance videos [32]. Through face detection, tracking, and labeling, they
automatically and incrementally constructed a new dataset of target real-world surveillance
videos and then fine-tuned a convolutional neural network with the labeled dataset. Mahdi de-
signed a system for real-time monitoring using cameras [33], which consists of two steps: face
detection using the Viola—Jones method and face recognition using the Kanade-Lucas-Tomasi
algorithm as a feature tracker and PCA for identifying specific individuals. In 2018, Deng et al.
chose an AdaBoost-based face detection algorithm to detect faces [34] and implemented a
face recognition algorithm based on LBPHFace to create a laboratory management system
using face recognition. Jose et al. implemented an intelligent multi-camera face recognition
surveillance system using FaceNet and MTCNN algorithms on Jetson TX2 [35]. The proposed
portable system tracks objects or suspects using camera IDs/locations and timestamps and
records their status in a database through multiple camera installations. Wang et al. used
an improved MTCNN algorithm for face detection [36], optimizing MTCNN and replacing
the network feature extraction module in FaceNet with MobileNet for face recognition. They
also designed a face recognition-based laboratory access control system. In 2023, Dong et al.
adopted the DRN algorithm for super-resolution of low-resolution images and then performed
face recognition using ArcFace [37], designing a smart classroom management system.

With the frequent use of university laboratories, an increasing number of issues have
emerged. To better implement open management of laboratories, it is necessary to identify
individuals entering and exiting the laboratories. Traditional face recognition methods
rely heavily on high-definition facial images as input, and when faced with low-resolution
faces, recognition may fail due to insufficient features. While increasing the clarity of
camera equipment can address the issue of low resolution, it is limited by high costs and
the substantial maintenance expenses associated with such equipment. Another approach
is to reconstruct images using super-resolution techniques to convert low-resolution facial
images into high-resolution ones, but as resolution decreases, facial features gradually
diminish, leading to poorer reconstruction results. Furthermore, issues such as occlusion
can arise due to factors like camera placement and personnel movement. Therefore, a better
recognition solution is needed for facial recognition in surveillance scenarios.
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This paper proposes a low-resolution face recognition method for application in
laboratory surveillance scenarios. In this work, the backbone feature extraction network is
improved, and the latest face recognition techniques and multi-object tracking algorithms
are integrated into the network to address face recognition under practical surveillance
conditions with low resolution.

Currently, there are several main factors that hinder face recognition in laboratory
surveillance: the complex classroom environment often results in excessively small face
resolutions, making detection and recognition difficult. Additionally, there are issues of
misrecognition caused by occlusion and pose changes due to personnel movement. To
address these problems, the research is divided into two parts:

1.  Small Face Detection: In this paper, the WiderFace dataset is used to divide the
training and testing sets. An improved face detection algorithm based on Retinaface
is employed to complete the face detection task in laboratory surveillance. The
improvement mainly involves incorporating SPD-Conv into the original Retinaface.
Compared to traditional convolutions, this method maintains high performance while
having fewer computations and achieving higher perception, thereby enhancing its
performance in small target detection.

2. Small Face Recognition: In response to the decline in detection accuracy for low-resolution
faces observed in current face recognition algorithms such as FaceNet, AdaFace is selected
as the face recognition algorithm. During the face recognition process, misrecognition
may occur due to occlusion caused by personnel movement. To address this, the Byte-
Track multi-object tracking algorithm is integrated into AdaFace. Kalman filtering and
the Hungarian algorithm are used to track the IDs of already recognized individuals,
preventing the need for re-recognition. Finally, comparative experiments demonstrate
that the improved method outperforms existing common face recognition algorithms.

2. Materials and Methods

Face recognition is one of the important research topics in the field of computer vision.
It consists of face location, face alignment, and face classification [38]. Specifically, the first
step is to detect faces and locate their positions in the image. Then, the preprocessed and
cropped main face region is input into the backend network for face feature extraction
and face matching. The main issues with current face recognition are not only the loss
of features due to low resolution but also the scarcity of low-resolution datasets and the
difficulty in applying them to practical applications.

2.1. Small-Sized Face Detection

RetinaFace is the latest single-stage face detection model proposed by Insight Face in
2019. This model is based on the structure of RetinaNet, utilizing deformable convolutions
and a dense regression loss [8]. This paper leverages RetinaFace, which traditionally em-
ploys two types of backbone feature extraction networks: ResNet and MobileNet. Among
them, ResNet outputs three effective feature layers {C3, C4, C5} from the convolutional
blocks conv3_x, conv4_x, and conv5_x. This detection network is pre-trained and initial-
ized using the ImageNet dataset. It adopts a Feature Pyramid Network (FPN) to extract
features with rich semantic information using a top-down pyramid and lateral connections.
Learning from the successful designs of Single Shot Headless Face Detector (SSH) [39]
and PyramidBox [40], it employs separate context modules following the FPN to expand
the receptive fields of pre-detection regions and enhance reasoning capabilities, thereby
efficiently computing the corresponding multi-task losses.

This paper proposes to improve RetinaFace using Space-to-Depth Convolution. Reti-
naFace’s performance tends to decline rapidly when faced with tasks involving low-
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resolution images or small objects. This is due to the inevitable loss of fine-grained
information and the learning of ineffective features when using strided convolutions
or pooling layers.

This paper reconstructs RetinaFace using TensorFlow and experimentally validates
the selection of ResNet as the backbone network for implementing the face detection model.
Although ResNet’s powerful feature extraction capabilities have been widely applied in
face detection, its performance tends to decline rapidly when faced with tasks involving
low-resolution images or small objects due to the inevitable loss of fine-grained information
and the learning of ineffective features caused by strided convolutions and pooling layers.

As the number of convolutional and pooling layers increases, it does not necessarily lead
to better learning outcomes; instead, issues such as gradient vanishing, gradient exploding,
and degradation arise. The prediction performance tends to worsen as the number of layers
deepens. ResNet proposes a method where, when building a deep network by stacking new
layers onto a shallow network, the added layers can be made to learn nothing and merely
replicate the features of the shallow network. In this way, the new layers become identity
mappings, ensuring that the performance of the deep network is consistent with that of the
shallow network, thereby addressing the degradation problem. Compared to traditional
convolutional networks, ResNet introduces shortcut connections that are connected to the
input of the second activation function. In ResNet, this operation where the output equals
the input is referred to as an identity mapping, which is the key to the residual structure.

SPD-Conv [41] is a novel convolutional module whose primary purpose is to enhance
performance when dealing with low-resolution images and small-sized objects. As shown
in Figure 1, SPD-Conv adopts a new approach by utilizing an SPD layer combined with
a non-strided convolutional layer to address this issue. It processes the original feature
map through a series of transformations, resulting in a decrease in spatial resolution and
an increase in the number of channels. Subsequently, a non-strided convolutional layer is
applied to obtain more discriminative feature representations.

4C x H/2 x W/2 Cix H2 x W/2
CxH x W

| C x H/2 x W/2 | |

SPD layer convolution

Figure 1. For an input feature map with dimensions C x H x W, downsampling is first performed.
Assuming a scale factor of 2, the original CxHxW feature map is divided into four sub-feature
maps of dimensions C x H/2 x W/2 each. This stage increases the depth of the feature map by
reducing its spatial resolution. Next, these sub-feature maps are concatenated to form a new feature
map with dimensions 4C x H/2 x W/2. This stage preserves the information from the original
feature map while reducing its spatial resolution. Finally, a convolutional layer with a stride of 1
is applied to the new feature map. At this point, every pixel in the feature map is covered by the
convolutional kernel, ensuring no information is skipped. The result is a new feature map with
dimensions C; x H/2 x W/2.

To address the issue of information loss as the network depth increases when dealing
with low-resolution images, we propose an improvement to the residual structure of
ResNet, as shown in Figure 2. We select ResNet as the backbone feature extraction network
and replace the convolutional layers with a stride of 2 with SPD-Conv. This modification
helps prevent the loss of important information for low-resolution images and small-sized
objects due to downsampling.
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Figure 2. Take conv3_4 in ResNet50 as an example. The first residual block in each of the series of
residual structures corresponding to conv3_x, conv4_x, and conv5_x are dotted-line residual blocks.
This is because the first layer of these series of residual structures has the task of adjusting the shape
of the input feature map. Figure (b) shows that the original Resnet three-layer residual element is
first reduced by a 1 x 1 convolution, then by 3 x 3 convolution, and finally by 1 x 1 by ascending
dimension. In addition, if the input and output dimensions are different, you can do a linear mapping
transformation dimension for the input, and then connect the layers behind it. As shown in (a), after
the first dotted-line residual block, solid-line residual blocks are connected, and the convolutional
layer with a stride of 2 in the first dotted-line residual block is replaced with SPD-Conv.

After modifying the backbone feature extraction network, we obtain three feature maps
with different shapes, as shown in Figure 3. RetinaFace constructs an FPN (Feature Pyramid
Network) structure using these three effective feature layers. Firstly, 1 x 1 convolutions are
used to adjust the number of channels in these three feature layers. Then, upsampling and
addition (Add) operations are performed for feature fusion. Finally, three feature layers are
obtained, and the SSH (Single Shot Head) module is used to enhance the receptive field.
After obtaining these three effective feature layers, prediction results are obtained through
them. The face detection part corresponds to the RetinaFace-SPD section in Figure 4.
Finally, based on the characteristics of surveillance scenarios with low-resolution images,
we reconstruct RetinaFace using TensorFlow to accelerate the training speed.

SSH S3

Figure 3. The improved network structure diagram of RetinaFace has the red portions representing
the modified convolutional blocks from Figure 2. After obtaining the three effective feature layers S3,
54, and S5, classification prediction, bounding box regression for faces, and facial landmark detection
are performed. Subsequently, non-maximum suppression (NMS) is applied to filter out the bounding
box with the highest score within each region.
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Face detection and alignment
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Figure 4. The process of the proposed face recognition method.

2.2. Quality-Adaptive Margin for Face Recognition and Motion Occlusion Issues

Face classification differs from general object classification due to the challenging
distinction between intra-class and inter-class feature variations in practical applications.
The biggest challenge in large-scale face classification is optimizing the loss function to
enhance intra-class compactness and inter-class separability for highly similar faces [42].
The Additive Angular Margin Loss (ArcFace) aims to enhance the discriminative power of
learned deep features, thereby maximizing the separability of face classes [9]. However,
the detection process heavily relies on clear face images and scenarios with minimal noise,
leading to poor performance in identity recognition in surveillance scenarios. Due to the
blurring and degradation of face images, face recognition in low-quality images and videos
can result in the loss of relevant identity information. AdaFace [21] proposes an image
quality-adaptive loss function that assigns different weights to samples of varying difficulty
based on image quality. It adapts the margin function based on the phenomenon where the
angular margin scales with training difficulty, optimizing hard samples when image quality
is high and ignoring extremely hard samples when image quality is low. Moreover, it does
not require additional modules to compute image quality but directly uses the correlation
between feature norms and image quality, which is greater than the correlation between
probability outputs and image quality.

AdaFace adjusts its function adaptively based on image quality indicators, as illus-
trated in the face classification section of Figure 4. When image quality is low, it does not
emphasize hard samples, whereas when image quality is high, it emphasizes hard samples.
By utilizing a margin-based loss function, the learned features are made sufficiently dis-
criminative. The model can automatically assess the quality of images and differentiate
between high-quality and low-quality images during the recognition process by assigning
higher gradient scales to high-norm features far from the decision boundary and higher
gradient scales to low-norm features close to the decision boundary.

For scenarios with multiple individuals in laboratory surveillance footage and low
resolution, issues such as re-identification and recognition failure can arise when the
movement of individuals obscures the recognition targets. To address these issues, the
ByteTrack multi-object tracking algorithm is incorporated into the existing AdaFace face
recognition system. The ByteTrack algorithm inputs a video sequence, a detector, and a
detection threshold. As shown in Figure 5, the algorithm outputs the trajectories of the
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video, with each frame containing the bounding boxes and IDs of the objects. For each frame
in the video, the detector (Det) is first used to predict the bounding boxes and prediction
scores. Then, based on the detection score threshold, the bounding boxes are classified into
two categories: Det(high) and Det(low). After separating the bounding boxes, a Kalman
filter is used to predict the new positions in the current frame for each trajectory T. By
calculating the Intersection over Union (IOU) between the detected bounding boxes and the
predicted bounding boxes, the Hungarian algorithm is finally used to match the IOU and
return successful and failed trajectories. Instead of directly discarding low-score bounding
boxes that may result from occlusion, the algorithm performs a secondary matching for
these low-score bounding boxes, optimizing the issue of ID switching caused by occlusion
during the tracking process. This avoids the need for secondary matching of already
matched faces due to factors such as occlusion.

Trace the
track

Low confidence

Tie detection
frame was not

The trajectory
is not matched
Match tracks

High confidence level is not matched

matches

u_track

The
trajectory is i ]

not matched

u_detection Update the
track to an

Active state

track to an
active state

The update
track is lost T

The first time to track the track

Figure 5. The ByteTrack flowchart represents the ByteTrack class, which handles processes such
as trajectory creation, updating, and deletion. It features a primary method called update that
continuously updates trajectory paths through the integration of predicted bounding boxes and
existing calculations. The working principle of tracking involves processing each frame individually
while also considering the context of consecutive frames. After distinguishing high-score and low-
score bounding boxes, different treatments are applied based on the results. Finally, unmatched
high-score detection boxes are reassessed, and if they meet the criteria, they are designated as
new trajectories.

When dealing with severely occluded and overlapping trajectories, a series of strate-
gies are employed: 1. The detection boxes in ByteTrack are classified based on confidence
levels, dividing them into high-confidence and low-confidence groups. High-confidence
detection boxes are used for initial matching, while low-confidence detection boxes are uti-
lized in subsequent matching. Low-confidence detection boxes that have not been deleted
continue to participate in the evaluation of subsequent frames, which helps maintain track-
ing even when the target is occluded. When a target is severely occluded or overlapped,
the confidence of its detection box may decrease. However, ByteTrack helps to restore the
identity of occluded or overlapped targets by retaining low-confidence detection boxes
and reassessing their status in subsequent frames. 2. ByteTrack assigns a life cycle to each
trajectory. If a trajectory does not match any detection box within a certain period, it will be
deleted, avoiding fragmented trajectories caused by false detections or missed detections.
For detection boxes that do not match any trajectory but have a sufficiently high confidence
level, a new tracking trajectory will be created, which helps resume tracking after the target
reappears from occlusion. 3. ByteTrack uses a Kalman filter to predict the movement of
tracked objects, enabling the prediction of the target’s position in the next frame to assist
in tracking even when the target is occluded or even disappears. 4. ByteTrack minimizes
the use of RelD models. Instead of relying on identity matching, ByteTrack relies more
on the positional overlap and motion continuity between detection boxes and trajectories
for matching.
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This paper proposes a multi-face recognition method tailored for laboratory surveil-
lance scenarios. As shown in Figure 4, images of individuals captured from a self-
constructed laboratory setting are input into the designed face recognition system for
automatic processing. The obtained images are fed into an improved backbone feature
extraction network for feature extraction. Face detection is achieved through the Feature
Pyramid Network (FPN) and Single Shot MultiBox Detector (SSH) detection network,
which outlines the faces. AdaFace is utilized to classify and match the detected faces with
those recorded in the database. Finally, multi-object tracking is employed to track the
classified faces, preventing issues such as misrecognition and re-identification caused by
occlusion and movements of individuals.

3. Results
3.1. Dataset

Given the complexity of laboratory personnel scenarios, the WiderFace dataset is more
suitable for this experiment. The WiderFace dataset was first released in 2015, containing
32,203 annotated images with a total of 393,703 face data points. This is shown in Figure 6,
each face is annotated with detailed information. We divided the WiderFace dataset into a
training set and a test set and used it to train RetinaFace in order to verify the effectiveness
of the reconstructed RetinaFace model.

Occlusion Expression Makcup Hlumination
|5 ' : = -

Figure 6. The Widerface dataset contains images categorized by various factors, including blur
(degree of blurriness), expression (facial expression), illumination (lighting conditions), occlusion
(degree of obstruction), and pose (facial orientation). Furthermore, it is divided into a total of 62
different categories based on different scenarios.

3.2. Self-Built Laboratory Surveillance Dataset

The laboratory environment in this study is sourced from surveillance footage captured
within computer rooms in university laboratories, as shown in Figure 7. The footage
originates from surveillance cameras positioned above and to the left rear of the students
in actual laboratory settings, with a resolution of 1920 x 1080. A total of 5344 valid images
were extracted. By simulating various scenarios that may occur in daily laboratory use
among students within the university, we recreated issues such as low facial resolution
due to different seating distances and occlusion during movement. To test the feasibility of
our method under extreme conditions, we also included recognition scenarios with high
illumination, nighttime infrared camera footage, low light conditions, and recognition from
greater distances. As illustrated in Figure 8, this figure demonstrates the size of extracted
low-resolution faces. The pixel size of the farthest test subject is 25 x 30, with the smallest
face size under extreme conditions being only 16 x 19 pixels. The closest test subject has a
pixel size of 51 x 53.
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(b)
Figure 7. Figures (a,b) are the self-constructed laboratory surveillance camera student dataset
simulates the daily use environment of the laboratory through different students entering and exiting

the laboratory. The camera’s position is located at the top-left corner, and the resolution is 1080p
(1920 x 1080).

far near
Figure 8. The size of faces captured at different distances in real-world scenarios.

3.3. Experimental Environment Setup

The experimental setup is as follows: the images used for training are of size 640 x 640;
the Batch Size is set to 16; the maximum learning rate is 10-3, and the minimum learning
rate is 10-5; and the model is trained for a total of 30 epochs to observe the decreasing rate
of the loss function. The GPU used is RTX 1050 Ti, the Python version is 3.7, the PyTorch
version is 1.8.0, the optimizer is SGD, and the processor is i5-8300H.

3.4. Experimental Evaluation Metrics

The experiment is mainly divided into two parts: the first part focuses on face detection,
and the second part focuses on face recognition. During the face detection phase, this paper
verifies the effectiveness of face detection using the test set divided from the Widerface
dataset. To objectively evaluate the effectiveness, recall, precision, and mean Average
Precision (mAP) are selected as evaluation metrics. Recall refers to the proportion of
true samples that are correctly identified by the algorithm among all true samples. Ntp
represents the number of samples correctly predicted by the network, while Ny represents
the number of samples falsely predicted by the network.
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Nrtp

_ 1
Nrp + Ngn M

Viecall =

Precision represents the proportion of samples that are determined to be true by the

system among those that are already confirmed as true samples. The meanings of Ntp and
Ngy are the same as those used in the calculation of recall:

Ntp

Vprecision = m (2)

Nrtp stands for the number of true samples that the network correctly predicts as

“true”. Npp represents the number of false samples that the network incorrectly predicts as

“true”. The mean Average Precision value is calculated by averaging the average precision

across all categories for all images:

1
Vmar = /O Vprecision(r)dr 3)

During the face recognition phase, the self-built dataset of laboratory personnel is used
for testing. The main evaluation metric is the accuracy rate of face recognition, denoted
as TAR. Here, N1R represents the number of correct recognitions, and Nar represents the
total number of test attempts:

TAR = NTR . 100% (4)
Nar

3.5. Face Detection Experiment

We employed MobileNet and ResNet as the backbone feature extraction networks
for RetinaFace and conducted comparisons using common face detection models on the
WiderFace test set. The results verified that ResNet, as the backbone feature extraction
network, outperforms MobileNetV1. We set three levels of difficulty for different images,
easy, medium, and hard, and calculated the mAP values at these three difficulty levels to
observe the performance of different models:

Fast R-CNN and DSFD exhibit higher accuracy in face detection, as shown in Table 1.
However, both are two-stage detection algorithms, which means despite their very high
accuracy, they have slower detection speeds due to their large number of parameters and
computational requirements. In contrast, the one-stage algorithm RetinaFace offers advan-
tages in both speed and detection accuracy. When comparing different backbone feature
extraction networks, MobileNet demonstrates lower detection accuracy than ResNet, with
ResNet maintaining good performance across samples of three different difficulty levels.

Table 1. Comparison of mAP performance for face detection between several common face detection
algorithms and the algorithm we used.

Model Easy AP Medium AP Hard AP
Fast-Renn 96.38 94.92 89.92
MTCNN 85.10 82.36 60.84
DSFD 94.61 93.72 88.02
Yolov8-face 92.34 86.35 81.34
Retinaface 89.77 86.98 7475

mobilev1l

Retinaface resnet50 94.76 93.22 84.92

The comparison of precision, recall, and mean Average Precision (mAP) before and
after the improvement of SPD-Conv is shown in Figure 9. The four groups on the left
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represent the results before the improvement, while the four groups on the right represent
the results after the improvement. Before the improvement, the Retinaface model exhibited
significant fluctuations in precision and recall values as the threshold changed. The overall
precision was below 0.6, and the overall recall was below 0.2. After the improvement, the
fluctuations in precision and recall of the model were smaller, and there was a noticeable
overall improvement. The overall precision was significantly above 0.6, and the recall could
reach 0.25. This demonstrates that the Retinaface model improved with SPD-Conv is more

capable of performing face detection in low-resolution scenarios.
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Figure 9. Comparison of precision, recall, and mAP before and after improvement using SPD-Conv.

A comparison between the original RetinaFace and the improved version is presented
below. As shown in Table 2, the improvements not only accelerated the training speed but
also enhanced the accuracy of face detection. We set 30 epochs to compare the training
speeds and the face recognition accuracy of the trained models. The reconstructed Reti-
naFace exhibited faster training speeds. In this paper, images featuring different numbers
of people, varying distances, and complex scenes were used to test the accuracy of face
detection. As shown in Table 3, the recognition accuracy is compared before and after
the improvement in three different experimental environments. A comparison of the face
detection accuracy between the two versions is shown in Figure 10. For complex and
densely packed small faces, the sample results intuitively demonstrate that using ResNet
as the backbone feature extraction network significantly outperforms MobileNet.

Table 2. Comparison of convergence speed of the training loss function between the original Reti-
naFace and the improved RetinaFace.

Epoch Retinaface_Loss Retinaface-SPD_Loss
1 2.2149 1.7170
5 1.4833 1.1937
10 1.0883 0.8474
20 0.9124 0.5199
30 0.8401 0.3787
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Table 3. Comparison of face detection accuracy between the original RetinaFace and the improved
RetinaFace in different scenarios and under varying numbers of people.

Experiment Retinaface Retinaface-SPD
1 47.5% 96.1%
2 62.2% 90.3%
3 58.5% 92.5%

AN
B4 T

3.6764
) sod

1 (36 *wimeogo_t‘
- ongs.l.

Figure 10. Comparison of face detection images using MobileNetV1 versus using ResNet50 as
the backbone feature extraction network. The left side uses MobileNetV1, and the right side uses
Resnet50. Obviously, it works better with Resnet50.
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RetinaFace combines deep learning and multi-task learning strategies to achieve
high precision and efficiency in face detection. As shown in Figure 11, the face detection
performance of YOLOvS8-face is illustrated. In scenarios with extremely dense faces and
low resolution, there are a large number of missed detections or even detection failures.
This is because object detection algorithms such as YOLO prioritize real-time performance
and generalizability. When encountering low-resolution face images, the detection accuracy
is compromised, leading to missed detections at extreme resolutions. Additionally, due
to the limited availability of face detection datasets currently, and the fact that YOLO
algorithms require a large number of training images, a small dataset can also adversely
affect detection performance.

Figure 11. Face detection results using YOLO object detection algorithm.

On the Widerface dataset, 3226 annotated face images were selected as the test set. With
the environment remaining constant, a series of comparative experiments were conducted
using popular deep learning-based object detection algorithms (such as Faster-RCNN,
RetinaFace, YOLO, etc.) to verify the feasibility of the proposed face detection scheme. The
results, as shown in Table 4, indicate that our method achieves significant improvements in
both accuracy and recall compared to other methods.

Table 4. Comparison of precision, recall, and mAP between several common face detection algorithms
and the algorithm we used.

Model Precision Recall AP
HighDimLBP 30.95 50.79 34.51
WebFace 45.22 82.84 45.49
Softmax 76.53 83.48 75.23
YOLOv8-face 91.03 82.62 86.53

Ours 96.12 90.42 91.46
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3.6. Face Recognition Experiment

The face recognition experimental data in this paper are sourced from two parts: 1. A
self-built laboratory surveillance dataset. 2. The heterogeneous face recognition benchmark
dataset IJB-S. As shown in Figure 12, to verify the feasibility of our method, we conducted
comparative experiments with various common face recognition algorithms. In practical
detection scenarios, there are not only issues of low face resolution but also problems
such as cluttered scenes caused by furniture and equipment, as well as occlusion due to

people’s movements.

s =

Figure 12. The image shown is an original image from a self-built laboratory monitoring scenario,
where face recognition has not been performed.

When conducting detection on the IJB-S dataset, as shown in Table 5, the accuracy of
face recognition is clearly demonstrated. When using Adaface, the recognition accuracy
significantly outperforms all baselines, with improvements in the average performance
across all four ranks. This indicates that Adaface will perform better in real-world appli-
cation scenarios such as laboratory surveillance. As shown in Table 6, our method also
exhibits excellent performance in our self-built dataset. We selected the most common
super-resolution method in low-resolution application scenarios for comparison, and our
method demonstrated superior performance both before and after personnel movement.

Table 5. Comparison of the IJB-S dataset.

Dataset Model Rank-1 Rank-5
ArcFace 56.39 62.43
PFE 50.84 60.79
MSIMV2 [9] URL 61.48 65.23
ArcFace + aroFace 61.64 67.60
Ours 65.26 70.53
ArcFace 68.29 72.43
WebFace4M [43] ArcFace + aroFace 70.94 75.54
Ours 70.43 76.29

Table 6. Comparison of face recognition accuracy on a self-built laboratory surveillance dataset.

Model Before Moving After Moving
Facenet + DRN 75.41% 53.62%
Yolov8 + arcface 55.94% 43.36%
Ours 84.36% 83.79%

We incorporated a super-resolution reconstruction algorithm into Facenet for self-built
laboratory surveillance comparison. Figure 13a,c demonstrate that despite an improvement
in recognition accuracy after applying super-resolution reconstruction, there are still cases
of missed detections and identity matching errors. When individuals move, their features
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change accordingly due to changes in position, which leads to variations in the effectiveness
of super-resolution reconstruction and subsequently causes identity matching errors in
recognition. For instance, in Figure 13a,b, after the person moves, an identity matching
error occurs, resulting in a false match of a previously successfully matched face. In
Figure 13c,d, after the person moves, due to the incorporation of a multi-object tracking
algorithm, re-identification of already matched faces is not performed, and continuous
tracking is maintained along the movement trajectory. The results indicate that, in a
laboratory surveillance camera environment, both traditional recognition methods and
super-resolution reconstruction methods struggle with identity matching. The method
proposed in this paper improves the recognition accuracy for face recognition in laboratory
surveillance scenarios and is more suitable for environments where personnel frequently

move, such as laboratories.

Wy .

(f) After

Figure 13. Face recognition using super-resolution reconstruction methods and face recognition using
AdaFace classification, with the last group representing the case where no tracking is performed.
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In a larger laboratory setting, surveillance cameras positioned farther away were
selected, and testers were asked to move quickly to test the performance under motion blur
conditions. During the day, in the evening, and at night with lights off, face recognition
effectiveness was assessed using infrared surveillance cameras. As shown in Figure 14, de-
spite the distance from the surveillance cameras, the recognition results remained accurate.
However, when the testers moved quickly, causing motion blur, due to the extremely low
resolution, a significant amount of detail was lost, leading to recognition failures. During
the daytime and under adequate lighting conditions, recognition was accurate. But when
infrared cameras were used, recognition also failed due to the loss of facial features.

Camera 01

Camera 01 Camera 01

Camera 01

(e)

Figure 14. Experimental results in various special scenarios under real laboratory surveillance
conditions. Figure (a) is the blur caused by the movement of the person, resulting in recognition
failure, Figures (b-d), for a smaller size of the face, can still be recognized successfully, Figures (e f) is
infrared surveillance shooting, recognition failure.

3.7. Ablation Experiment

To evaluate the contributions of adding the ByteTrack tracking module and the im-
proved network based on SPD-Conv to face detection capability, experiments were con-
ducted using real-life laboratory scenarios as the benchmark for assessment. The experi-
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mental results are shown in Table 7, with the last row representing the method proposed in
this paper. Through comparative experiments, it was found that although face recognition
accuracy can be improved without incorporating the tracking algorithm, the emergence of
situations such as occlusion due to the movement of individuals can lead to a significant
drop in accuracy during secondary identity recognition. When using CAface as the face
detection algorithm, the performance is superior to adaface, but CAface is pre-trained on
the backbone of adaface, so the improvement in accuracy is not significant. Moreover,
adaface achieves better results when combined with the ByteTrack method.

Table 7. Ablation experiment results (bold indicates the method proposed in this paper).

. Face . Before .

Face Detection Recognition Tracking Moving After Moving
Facenet ByteTrack 30.32% 29.24%
. CAface ByteTrack 85.46% 81.89%
Retinaface-SPD Adaface None 86.47% 79.69%
Adaface ByteTrack 84.36% 83.79%
Retinaf AdaFace ByteTrack 81.75% 80.46%
etinaface Adaface None 81.45% 77.38%

4. Discussion

This paper investigates the issues associated with the application of traditional face
recognition in practical scenarios of open university laboratories and computer rooms. It
summarizes the development of face recognition algorithms in the direction of deep learn-
ing and the advancements in low-resolution face recognition. Furthermore, a method for
low-resolution face recognition in laboratory scenarios based on RetinaFace and AdaFace
is proposed. ResNet50-SPD is utilized as the backbone network for face detection and
the RetinaFace face detection model is reconstructed. This method demonstrates excel-
lent performance in detecting small-sized faces. For low-resolution face recognition, the
Quality-Adaptive Margin approach stands out in terms of performance. Compared to clas-
sical techniques, our method exhibits superior performance and effectiveness in scenarios
with low resolution, cluttered backgrounds, and frequent personnel movements, such as
those found in surveillance systems in university laboratories and computer rooms. In
a self-constructed environment, the proposed method achieved exceptional recognition
performance. However, in cases of no lighting, a significant loss of effective information
led to recognition failure. Similarly, rapid personnel movement resulted in the loss of facial
details, causing recognition failure.

This work has only achieved offline face detection and recognition. However, in practi-
cal laboratory applications, not only is accuracy emphasized, but also real-time performance.
In subsequent work, we will attempt to implement our method on embedded devices to
perform real-time face recognition by capturing images. Additionally, laboratory manage-
ment involves not only personnel management but also equipment management. Future
work will continue to investigate and research these aspects of equipment management.
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