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Abstract: Blink detection is considered a useful indicator both for clinical conditions and
drowsiness state. In this work, we propose and compare deep learning architectures for
the task of detecting blinks in video frame sequences. The first step is the training and
application of an eye detector that extracts the eye regions from each video frame. The
cropped eye regions are organized as three-dimensional (3D) input with the third dimension
spanning time of 300 ms. Two different 3D convolutional neural networks are utilized (a
simple 3D CNN and 3D ResNet), as well as a 3D autoencoder combined with a classifier
coupled to the latent space. Finally, we propose the usage of a frame prediction accumulator
combined with morphological processing and watershed segmentation to detect blinks and
determine their start and stop frame in previously unseen videos. The proposed framework
was trained on ten (9) different participants and tested on five (8) different ones, with a total
of 162,400 frames and 1172 blinks for each eye. The start and end frame of each blink in the
dataset has been annotate by specialized ophthalmologist. Quantitative comparison with
state-of-the-art blink detection methodologies provide favorable results for the proposed
neural architectures coupled with the prediction accumulator, with the 3D ResNet being
the best as well as the fastest performer.

Keywords: blink detection; 3D CNN; 3D autoencoder; 3D ResNet; prediction accumulator;
signal analysis

1. Introduction
Blink detection and extraction of blinking patterns is considered an essential compo-

nent in applications like human–computer interaction (HCI) [1] systems, sentiment comput-
ing, monitoring fatigue and alertness [2,3], or behavioral studies [4]. Blinking patterns can
also serve as important non-invasive biomarkers for several pathologies. More specifically,
altered blink rates can be indicators of neurological or ocular conditions, as well as for a
series of ophthalmological and systemic diseases or even with more severe pathologies or
mental diseases [5,6], such as Parkinson’s disease [7,8], Tourette syndrom [9], hemifacial
spasm [10], dry eye syndrome [11] or even schizophrenia [12], making blink recognition
a valuable diagnostic tool. In the transportation and industrial sectors [13], reduced or
irregular blink patterns can help to identify fatigue or drowsiness, consequently preventing
accidents and enhancing safety. Moreover, in assistive communication systems [14], blink
recognition serves as a non-invasive, intuitive way of interaction for individuals with severe
physical limitations. Therefore, the automatic detection and analysis of blinks is a crucial
and versatile step in many artificial intelligence pipelines.
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Using image processing and machine learning techniques, as well as sensor-based
tracking, blink detection systems capture eyelid motion with high precision. Many of
these methods utilize facial landmarks [15], using deep neural networks like convolutional
neural networks (CNNs) or vision transformers. Blink detection systems can improve
user’s experience, ensuring safety, and enable accessibility in diverse contexts.

Thus, automatic blink detection and identification of blinking patterns can bridge criti-
cal gaps between human needs and the capabilities of machines, offering solutions for more
accurate, on-time diagnosis and improving the interaction between human and machines.

In this work, we propose a complete blink detection framework based on video se-
quences of the participants’ upper face, comparing various architectures of neural networks
combined with signal segmentation techniques applied to a prediction accumulator for
each video frame. The main contributions of this work are

• The training and application of an object detector (YOLOX [16]) that extracts the
regions around each eye from each frame of a video sequence, since the zoom factor of
the images renders other methods of eye-detection not applicable (i.e., Mediapipe [17]).

• Embedding temporal information in three-dimensional (3D) input into convolutional
neural networks (3D CNN, 3D autoencoder and 3D ResNet), with the third dimension
spanning a typical blink duration, combined with a simple classifier in order to classify
the image sequences during training.

• The proposed inference mode (blink detection in unseen videos) that utilizes one
accumulator for each eye, aggregating predictions during a single forward pass of
all Ns−subsequences in the unseen video with step = 1. The accumulators are subse-
quently processed using morphology and watershed segmentation in order to robustly
detect blinks of any duration.

• A novel and accurate definition of blink detection metrics that considers many-to-one
predicted and actual blinks (and vice versa).

The proposed methodologies were validated and tested in our clinical data and in one
public dataset in comparison with other state-of-the-art methods.

2. Materials and Methods
2.1. Related Work

An early algorithm, which efficiently detects faces and isolates the eye regions was
based on Adaboost method and utilized image features based on the integral image [18],
has been an initial component in many blink detection methods, especially when acquired
images have full-frontal faces. In [19], multi-scale and orientation Gabor filtering were
utilized for blink detection, reporting precision 84.62%. In addition, a method using SVM
classifier with Haar wavelets and HOG (Histogram of Oriented Gradient) features [20]
achieved blink detection accuracy 92.5% and 86% when tested on standard databases
and under real world conditions, respectively. A similar method proposed in [21], where
Haar-like features were utilized for face detection, reported 95% blink detection accuracy
for good illumination conditions and 77% for poor illumination conditions.

In the study of Choi et al. [22], an AdaBoost classifier was proposed as blink detector,
achieving 96% accuracy on their own dataset. Additionally, Al-gawwam and Benaissa [23]
proposed a facial landmark estimator in order to calculate the vertical distance between the
upper and lower eyelids and used Savitzky–Golay (SG) filter to detect blinks with 96.65%
precision on standard datasets.

Drutarovsky and Fogelton proposed an eye blink detection algorithm based on the
motion vectors of each eye region [24]. A simple finite state machine was used to change
the state of each eye and thus detect blinks. Following this approach, in [25], Fogelton
and Benesova estimated motion vectors [26] for each pixel of the eye region, extracting
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the vertical component of the average motion vector and the statistical standard deviation.
Those two parameters were fed to a finite state machine that classifies whether the frame
can be considered blink or not. A basic constraint in this method is that the head should
not be rotating significantly, and it also requires the cropping of the eye.

In [27], Fogelton and Benesova expanded their previous work, utilized the detected
motion vectors of the eye region combined with two LSTMs (each 64 units) that accept
normal and reversed time input implementing a bidirectional LSTM. The input subsequence
length was set to 40 frames and care was taken to extract the subsequences with the blink
of a closed eye in the middle of the frames. However, no details were provided on how
an unseen video sequence is temporally segmented into 40-frame subsequences. This
method also requires the cropping of the eye region, which was performed manually in the
reported results.

In a more recent method [28], a Siamese CNN neural network was used as a 256-length
feature extractor. These features were fed to a bidirectional LSTM with 256 cells, followed
by a dropout layer and a fully connected layer, which performs many-to-many sequence
predictions. The training of the Siamese network was performed independently from the
LSTM. Although the authors noted a subsequence length of 64 frames, no details were
provided on how a given video was split into subsequences, nor how the exact blink start
and stop frame were determined. Cropping of eye regions is a prerequisite for this method
as well.

In [29], a deep learning encoder–decoder (DLED) architecture, DeepLabv3+ [30], was
used, and two different instances of this network were trained to segment the iris and
the palpebral fissure regions from each frame independently. In a post-processing step,
the distance between the eyelids and the iris diameter was calculated. The estimated
fraction of the palpebral fissure height and the moving median iris diameter were used to
classify blinks using adaptive thresholds to handle cases of varying patient–camera distance
or the patient’s orientation. This is not an end-to-end method; thus, it may be susceptible
to erroneous segmentations. In contrast, the DLEDs are trained using individual frames
rather than subsequences.

2.2. Overview of the Proposed Methodology

The proposed blink detection method is established through the following basic
algorithmic steps. Initially, each eye region (left and right) is identified and detected for
each participant using a trained YOLOX [16] neural network detector. The detector predicts
the four values of the parameters (upper left corner -x and y coordinate-, width and height)
that are used in order to define the bounding boxes that isolate the two eye regions. Typical
results of the application of YOLOX are shown in Figure 1.

Following eye detection, the eye region is extracted using YOLOX from 12 consecutive
frames (or 300 ms) into a 3D image of size 48× 48× 12, and it is input into a blink classifier.
Three different deep neural architectures were tested as a blink classifier: a 3D ResNet
neural network, a simpler 3D CNN encoder and a 3D CNN autoencoder (3D AE). Moreover,
there were tested with a few consecutive fully connected layers coupled with a classification
layer from the latent space in order to classify the whole subsequence as blink or no blink.

During inference, the 3D eye region extraction is performed on all tuples of 12 con-
secutive frames with an overlap of 11 frames (equivalently step = 1 frame) for the total
video duration. Each 3D eye region is input in the trained classifier, and each one of the
12 frames is characterized as 0 or 1 no blink or blink, respectively. An accumulator A is
defined for each eye with a non-negative integer value for each frame of the whole video
sequence that sums the predicted value for each frame. Considering the accumulator
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as a 1D discrete signal, the blinks are identified as the peaks of A, using the watershed
segmentation algorithm.

Figure 1. Typical initial video frames and the cropping of the right and left image area 48× 48 using
the trained YOLOX.

2.3. Eye Region Detection and Preparation of Dataset for the Training Phase

A web-camera setup was used to acquire videos from 17 different subjects during
a clinical examination. In order to extract the necessary eye region that was used as
input to the classifiers, a YOLOX eye detector was trained. Using the pre-trained neural
network for palpebral fissure segmentation [29], the coordinates of the bounding box
from 48,000 images from 7 different individuals can be calculated and can be used to train
the detector. The YOLOX differs from the classic YOLO methods as it adopts an anchor-
free manner and performs other advanced detection techniques like the decoupled head,
achieving state-of-the-art results. Having the two bounding boxes (one for each eye, see
Figure 1) for each frame and knowing the blink starting and ending points (annotation of
ground truth), the dataset can be formed as follows.

For all participants, the median blink length/duration was found to be 300 ms or
12 frames correspondingly, considering that videos are captured with frequency 25 frames
per second (fps); however, the number of frames where the palpebral fissure is substantially
small (i.e., the eye appears closed). It is 85 to 100 ms or 3 to 4 frames at 25 fps. Using
the ground truth, we extract a subsequence of length Ns = 12 frames, starting from the
annotated beginning of the blinks. Non-blink sequences with a length of Ns = 12 frames are
also selected to represent the “No blink” class. In both cases, YOLOX-generated bounding
boxes are used to crop the subsequences, which obtain the size of 48× 48× 12. A graphical
overview of the data preparation procedure is shown in Figure 2.

2.4. Deep Learning Architectures for Blink Detection

Three different architectures of deep learning neural networks are proposed and tested
as blink classifiers. Since blinking is a temporal process of finite duration, we utilized 3D
CNNs as proposed architectures, using the cropped subsequences 48× 48× Ns as input.
Spatial cropping was generated by YOLOX, as described in the previous subsection. Except
for the 3D CNN, we also experimented with an end-to-end two-phase model consisting of
a 3D CNN subsequence classifier and of a 3D autoencoder, with a linear combination of
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the corresponding loss functions. This technique has been shown to be beneficial in many
machine learning tasks [31].

Figure 2. Training data preparation overview. Given the ground truth, starting and ending frames,
blink and no-blink Ns-tuples are formed and used as input for the classifiers.

After the inference process, the classification results of each classifier are stored in the
accumulators and processed, as shown in the next subsection.

2.4.1. Three-Dimensional CNN Architectures for Subsequence Classification

The first tested classifier is the 3D ResNet classifier. It consists of a 50-layer ResNet
with 3D convolutions [32], with one (1) stack of four (4) residual blocks, where each
convolutional layer of the stack has 64 filters. This architecture was selected since it was
already pre-trained on the generic ImageNet dataset, enabling it to successfully capture
image characteristics.

Furthermore, in order to assess the required complexity of the CNN architecture,
a much simpler 3D CNN is also tested as a sequence classifier. This particular architecture
“simple 3D CNN” consists of two components, one 3D CNN encoder for feature extraction
and one classifier, which is created from repeated blocks of fully connected, ReLU and
dropout layers. A graphical representation of this architecture is depicted in Figure 3,
where the green box is highlighting the part of the 3D CNN feature extractor and with the
blue box being highlighted as the classifier.

Figure 3. The architecture of the autoencoder with the classifier. Each parallel pipe is the output of
the previous block (and the input to the next one).

2.4.2. Three-Dimensional CNN Autoencoder

Finally, a more complex neural architecture was used as a classifier, a 3D CNN au-
toencoder along with a classifier. This particular architecture is trying to isolate features
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in an unsupervised way, aimed at reconstructing the 3D sequence. Alternatively, using
descriptive features to classify the subsequence into one of the two classes in a supervised
manner can only be carried out when we are given ground-truth labels.

The encoder part of the autoencoder and the classifier (fully connected layers) are
identical with the feature extractor and the classifier of the simple 3D CNN, respectively.
The encoder part consists of four blocks; each block consists of a 3D convolutional layer,
a ReLU activation and a dropout layer. The convolutional layer of the first block, “Conv_1”,
with stride [2, 2, 2] and 16 filters with 5 width across the three dimensions, expects the input
to be of size 48 × 48 × 12 × 1, resulting in a lower feature map of size 24 × 24 × 6 × 16.
The following block, “Conv_2” with stride [2, 2, 2] and 32 filters of size [5, 5, 5], also outputs
a lower feature map of size 12 × 12 × 3 × 32. The third convolutional block, “Conv_3”,
preserves the same dimensions as the previous “Conv_2” by setting the stride to [1, 1, 1]
and retains the same number of filters. The last convolution block, “Conv_4”, reduces the
size of the first three dimensions into 6 × 6 × 3 × 32, due to stride [2, 2, 1] and preserving
the same number of filters. Finally, the output of “Conv_4” block is flattened and fed to a
fully connected layer, which defines the latent space, with 2048 units.

From each one of the “Conv_1”, “Conv_2” and “Conv_4” blocks, a skip connection is
created, and the outputs of those blocks are connected and concatenated with the input of
the corresponding 3D transposed convolution layer of the decoder’s three blocks.

The decoder part consists of three blocks of repeated 3D transposed convolutional and
ReLU layers, while the last 3D convolutional layer followed by a Clipped-ReLU with ceiling
255 are the last layers that will give the predicted/reconstructed output. An example of this
architecture is shown in Figure 3, where the size of each output feature map is available
along with the skip connections. The skip connections are used in order to minimize the
information loss due to the compression and decompression of an encoder and decoder,
respectively. Also, their usage will help the autoencoder and the reconstruction loss function
to quickly converge in the solution. The autoencoder learns to reconstruct the given input
using the characteristics of latent space, while the classifier is utilizing them in order to
classify the input sequence as blink or no-blink.

2.5. Supervised Training Mode

Considering the blink detection problem as a classification task, the objective is to
minimize the error between the predicted probability distribution and true distribution,
namely the cross-entropy. Due to the fact that the problem is binary (“Blink”, “No Blink”),
the binary cross-entropy function is selected. It is defined in Equation (1). This loss function
is selected for the two out of three architectures, the simple 3D CNN and the 3D ResNet
classifiers. Let us denote by tj the given ground-truth label for j subsequence, with pj being
the predicted probability of j subsequence belonging to the same class and N being the
number of total frames. The training loss function is defined as

Lcross = −
1

N − Ns

[
N−Ns

∑
j=1

tjlog(pj) + (1− tj)log(1− pj)

]
(1)

While the above classifiers are exclusively based on the cross-entropy loss, the loss
function of the 3D CNN autoencoder is a combination of two loss functions, the cross-
entropy and the mean squared error Lrec between the predicted (reconstructed) image and
the input image, as follows:

Lrec =
1

N − Ns

N−Ns

∑
i=1

(Yi − Ŷi)
2 (2)
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where Yi and Ŷi are the 48 × 48 × 12 input image and the reconstructed output of the
decoder, respectively. Lrec calculates how well the decoder can reconstruct the input
image sequence based on the features of the latent space. Consequently, the compressed
features in the latent space are expected to be quite descriptive. Finally, the total loss
for the 3D autoencoder is defined in the following equation as a weighted combination
of Equations (1) and (2). The weights were used so that the network considered the
classification task as being more significant than the task of reconstruction. It was noticed
during experimentation that equal weights result in Lrec converging quicker than Lcross,
leading to an overfitted autoencoder and an underfitted classifier during the training phase.

Ltotal = 0.9× Lcross + 0.1× Lrec (3)

2.6. Inference Mode: Identifying Blinks in Unseen Videos

A common issue in time sequence analysis, such as video, is the segmentation of the
sequence into subsequences and their individual classification.

Many of the referenced works on blink detection do not adequately clarify the process
of inference in the case of video sequences. Segmenting a previously unseen video sequence
into constant-length subsequences will inevitably split a blink event into two subsequences.
Thus, inference in these cases may be incorrect. The proposed method consists of inter-
ference subsequences of constant length Ns with step equal to 1. Thus, each frame will
be “seen” by the deep learning model Ns times. Specifically, we may assume the number
of frames with a palpebral fissure as substantially small (i.e., the eye appears closed). i.e.,
for them to be M = 3 or 4 frames (equivalently 85 to 100 ms at 25 fps). The significant
frames of each blink will be split into two adjacent subsequences M times, whereas the
blink significant frames will be contained into a single subsequence Ns −M times. In our
application, we selected the subsequence length of Ns = 12 frames or an equivalent time
of 300 ms. Setting Ns = 12 ensured that, on average, each frame was expected to be
correctly classified 8 to 9 time. Otherwise, it could have been wrongly classified 3 to 4 times.
Therefore, accumulating the predictions for each frame and subsequent accumulator peak
detection and segmentation is expected to be immune to the blink split issue.

It is evident that increasing Ns would cause a small improvement in the achieved
classification metrics; however, it would increase the third dimension of the input to the
deep learning architectures, thus increasing the memory requirements and computational
burden, with it being significant for both training and testing.

For any unseen video V of N frames, the following steps are applied: The YOLOX
eye detector is applied to generate two cropped sequences around each one of the eyes:
V̂R, V̂L = YOLOX(V), where V̂R, V̂L ∈ R48×48×N . For both V̂R, V̂L, the subsequences of
length Ns and overlap Ns − 1 are fed to the blink classifier C, and the prediction for the
Ns-tuple frames is assigned to each frame. The blink classifier C may be a simple 3D CNN,
a 3D autoencoder or a 3D ResNet, as described in the previous subsection.

The first step is to create an accumulator array A that holds the sum of predictions
for each frame. For each i = 1, . . . , N, the subsequence Si = (Fi, Fi+1, . . . , Fi+11) is extracted.
The blink classifier C is applied to predict the class of the subsequence (0: no blink, 1:
blink). The index i is increased by 1, and the next subsequence is extracted and fed into the
classifier. Thus, each frame F is being “seen” by the classifier Ns = 12 times, with an equal
number of predictions. An accumulator array A of size N adds all the predictions for each
frame. The algorithmic steps for generating the accumulator for the right and left eye are
given in detail in Algorithm 1.

It is easily confirmed that Ai has integer values in [0, Ns]. A part of A that contains
8 blinks is shown as blue and as a partially red curve in Figure 4. A blink event defined
in a frame range will cause the accumulator to exhibit high values within the same range,
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with the peak value being close to the middle of the blink interval. In order to segment
different blinks, the following method is applied. First, the morphological operation of
closing is applied to the accumulator with a structuring element Se of length = 3,

A = erode(dilate(A, Se), Se),

in order to avoid over-segmentation. The watershed algorithm [33] is applied to the
negative of the accumulator, i.e.,

W = watershed(−A).

This operation segments the video sequence to consecutive parts, with each one containing
one peak of A (or one minimum of −A), along with frames not belonging to a blink, as it
can be seen by the binary black continuous curve in Figure 4. A threshold T is set to each of
the watershed segments that indicate the corresponding blinks, which appear as magenta
parts of the A curve in the same figure. The value of T is selected close to half the expected
average blink duration Ns

2 . Thus, the start and end frames of each detected blink can be
established. For reference, the ground truth, as annotated by ophthalmologists, is shown
at the bottom using the thick green curve. In this specific example, Blinks 6, 7 and 8 were
successfully identified by the proposed algorithm, despite the fact that they are occurred in
rapid succession. The aforementioned process is applied independently to both the right
and the left eye of each participant. An overview of the whole process is shown in Figure 5.

Algorithm 1 Prediction Accumulator
Input: video sequence
Output: the accumulator A

N ← num. of frames in video
The YOLOX eye detector is applied to generate two cropped sequences around each of the eyes:
V̂R, V̂L = YOLOX(V), where V̂R, V̂L ∈ R48×48×N

Initialize the accumulator Ai ← 0, i = 1, · · ·N
for k = 1 to N − Ns do

the subsequence of frames Si = (Fi, Fi+1, · · · , Fi+11) is extracted from V̂R, V̂L
The blink classifier C is applied to predict the class of the subsequence: pk = C(Si) ∈ [0, 1] (0:

no blink, 1: blink)
for each i = 1, · · ·Ns do

The predicted class is assigned to all frames in the class and the accumulator sums the
predictions for each frame Ai = Ai + pk

end for
end for

2.7. Definition of Blink Detection Metrics During Inference

A blink is considered as detected if the intersection over union IOU between the true
start–end frames and the predicted ones is not less than 0.2. Considering that there is
probability of a single long-duration detected blink to produce IOU ≥ 0.2, we construct
the correspondence matrix Rij, which marks that the true blink i and the predicted blink j
have IOUij ≥ 0.2. Ideally, Rij should be square, but it is usually not due to imperfect blink
predictions. First, let us define the false-negative blinks (FN) as the number of rows in Rij

with their sum being equal to 0.

FN = number of rows of R with ∑
j

Rij = 0. (4)

For the definition of false positives (FPs), let us define the number of excessive predicted
blinks corresponding to each one of the true blinks. For example. if three blinks were
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predicted, all of which correspond to the same true blink, then two of them are considered
as FPs. Specifically, the above is expressed as

a = ∑
i:∑j Rij>1

[
∑

j
(Rij)− 1

]
. (5)

Similarly, if a column of R has a sum of >1, then the number of FP blinks is equal to the
sum of the column minus 1. Specifically,

b = ∑
j:∑i Rij>1

[
∑

i
(Rij)− 1

]
. (6)

The number of FP (a + b) may count a single predicted blink ij twice as a FP, if and only if
the column j and the line i of the blink both have a sum of greater than 1. Thus, we must
subtract these blinks. Specifically,

c = ∑
ij

Rij, where j : ∑
i

Rij > 1 and i : ∑
j

Rij > 1. (7)

Figure 4. A simplified example of 8 consecutive blinks, where the values of the accumulator, the wa-
tershed segments and the ground truth along with the predicted blinks are depicted. It should be
noticed that Blinks 6 and 7 are clearly separated due to the watershed algorithm.

In addition, the number of columns of R with a sum equal to 0 is also as FP blinks.
Combining all the above, the total number of FP blinks is given by

FP = a + b− c +

(
number of columns of R with ∑

j
= 0

)
(8)

Finally, the number of correctly predicted blinks or true positives (TPs) is defined as

TP = ∑
ij

Rij − FP (9)

A simplified example of the corresponding matrix R is shown in Figure 6 to demon-
strate the relevant definitions. Each row of the matrix represents a ground-truth blink, and
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each column represents a predicted blink after applying the inference process. Considering
Equation (4), the number of false-negative blinks (FNs) is equal to the number of rows of R
with a sum equal to 0; thus, FN = 1 due to the 7th row. The 5th column of R is empty; thus,
it contributes 1 blink to the FPs. Further, according to Equation (5), a = 2 (due to R6,7, R6,8.
Similarly, according to Equation (6), b = 2 (due to R2,3, R3,3. Also, according to Equation (7),
c = 1 (due to R2,3. Thus, FP = 4, according to Equation (8). Having calculated the number
of false-positive and false-negative blinks, the number of true-positive blinks (indicated by
green color) can be readily calculated using Equation (9) as TP = 9− 4 = 5.

Figure 5. Inference of new video data with a dense overlap (step = 1): 12-tuple eye region frames are fed
and classified as blink or no-blink. Blinks are identified utilizing time series analysis and accumulators.

Figure 6. A simplified example of a correspondence matrix between the ground-truth blinks and the
predicted ones. TP blinks are indicated by a green color. See text for details.

2.8. Clinical setting

The data were acquired through a prospective study. The protocol that was utilized
adhered to the principles of the Declaration of Helsinki, and written informed consent was
provided by all participants. The institutional review board of Democritus University of
Thrace approved the study protocol (protocol number/date of approval: ES2/Th15/25-
2-2021). This clinical study was conducted between October 2020 and March 2021. The
official registration number of this study is NCT04828187.
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3. Results
3.1. The Available Dataset

The available dataset consists of 17 patients, 5 of them wearing glasses, each with one
video of their frontal face with a duration of between 5 and 10 min. The total number of
frames is 162,400, containing 2376 blinks. The ground truth (starting and ending frame for
each blink and each eye) was provided by specialized ophthalmologists. The data were split
into training and test subsets, using nine and eight patients, respectively. The corresponding
number of frames/blinks was 69,400/1204 and 93,000/1172, respectively. All methods
under comparison were trained using subsequences from the trained subsets, except for
the [29], where deep learning segmentation models were used as already-pretrained models
using static images. All methods (including [29]) were validated using the aforementioned
test subset. The publicly available dataset “Talking face” [34], provided with the manual
annotations of [27], was also used as a separate test subset to assess all methods.

3.2. Quantitative Results

Table 1 provides the confusion matrices for each eye separately, as well as the cu-
mulative matrices for both eyes for the three deep learning methodologies and the other
competitive methods ([27–29]) under comparison.

Statistics are calculated over the test set. True-negative (TN) blinks are not applicable
and are thus indicated by ’-’. A value of 0.2 was selected for IOU.

The 3D autoencoder, 3D CNN and 3D ResNet achieved more TP blinks than [27,28],
with Nousias et al. [29] detecting the maximum number of TPs. Moreover, the three
proposed deep neural architectures achieved the least number of false-positive blinks (FPs).
Overall, the 3D ResNet achieved the lowest number of FP ans FN blinks when considering
all methods, while detecting a very high number of TP blinks.

In Table 2, the classification accuracy and the F1-score are provided for both proposed
and state-of-the-art methods under comparison. In terms of F1-score, simple the 3D CNN
classifier and 3D autoencoder achieved equivalent classification results (89.72% and 89.63%),
surpassing the [29] by ≈2.5% and the [28] by ≈7%. Furthermore, 3D ResNet obtained the
highest F1-score (93.25%), with quite promising results. Table 2 also includes the results for
the “Talking Face” dataset [34]. The F1-score for the three state-of-the-art methods under
comparison was taken from the corresponding publications; however, accuracy was not
provided in the publications.

In terms of frame classification, the overall accuracy achieved for our dataset by the
methods under comparison was 95.57% for [28], 92.72 for [27], 93.48% for [29], 93.97% for
3D CNN, 93.74% for 3D autoencoder and 94.24% for 3D ResNet.

The required time in seconds for a single-eye forward pass of one 12-frame sub-
sequence, as well as for a single-eye inferencing for a 60 s video, is shown in Table 3.
The number of learnable parameters for each proposed model is also available. Please
note that the application of YOLOX for eye cropping, which precedes each of the three
models, requires 0.08 per frame. The total inference time (YOLOX plus the inferenceof
both eyes) for the 60 s video is also given. All measurements were made using the built-in
function of MATLAB (version 24.1.0.2689473 (R2024a) Update 6, The Mathworks, Inc.,
Natick, Massachusetts) on a MS Window 10 computer with the following specifications:
i5-9600KF CPU @ 3.70 GHz, 16 GB Ram, GPU: Nvidia GeForce RTX3060 super, 12 GB GPU
memory. As it can be observed, 3D ResNet was the fastest model, as well as the best
performing one.
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Table 1. Blink classification results for the test dataset (8 participants, 93,000 frames), with IOU = 0.2.
Three different confusion matrices are presented, one for each eye and one total, summing blinks of
both eyes (ground truth along lines; predictions along columns).

Total Right Left

Blink No Blink Blink No Blink Blink No Blink

de la Cruz et al. [28]
Blink 952 220 480 106 472 114

Non Blink 185 - 100 - 85 -

Fogelton et al. [27]
Blink 833 339 479 107 354 232

Non Blink 68 - 41 - 27 -

Nousias et al. [29]
Blink 1113 59 562 24 551 35

Non Blink 265 - 155 - 110 -

3D CNN
Blink 1056 116 522 64 534 52

Non Blink 126 - 64 - 62 -

3D autoencoder
Blink 1050 122 518 68 532 54

Non Blink 121 - 61 - 60 -

3D ResNet
Blink 1106 66 541 45 565 21

Non Blink 94 - 40 - 54 -

Table 2. The F1-score and accuracy were calculated for the three different proposed classi-
fiers and the previous state-of-the-art methods, using IOU = 0.2. The (*) indicates metrics re-
ported in the corresponding publications, while the (-**) indicates metrics not provided in the
corresponding publications.

Our Dataset Talking Face [34]
Methods Accuracy F1-Score Accuracy F1-Score

de la Cruz et al. [28] 70.15 82.46 -** 97.90 *
Fogelton et al. [27] 67.18 80.37 -** 97.10 *
Nousias et al. [29] 77.45 87.29 86.51 92.80

3D CNN 81.36 89.72 90.48 95.00
3D autoencoder 81.21 89.63 91.27 95.44

3D ResNet 87.36 93.25 92.86 96.30

Table 3. Number of learnable parameters and required time per eye (s) for inference (forward pass) of
one subsequence of 12 frames and 1 min of video for all three proposed models and for a single eye.

Models 12-Frame Sequence
Single-Eye Inference

60 s Video,
Single-Eye Inference

60 s Total Time for
Both Eyes

Learnable
Parameters

3D CNN 0.13 s 195 s 510 s 20,590,034
3D autoencoder 0.15 s 225 s 570 s 35,375,507

3D ResNet 0.09 s 135 s 390 s 174,500

4. Discussion
Three different deep learning architectures for blink detection in videos acquired

under clinical settings were described. A robust approach was proposed for the inference
mode of the three architectures for unseen videos. More specifically, all three architec-
tures were applied in an inference mode to cropped video subsequences with a constant
length Ns and a step set to 1 (overlap equal to Ns − 1). Thus, every cropped subregion of
each frame participated in Ns input subsequences and therefore received Ns predictions.
An accumulator added the predictions for every frame, for each eye. A watershed-based
segmentation of a negative accumulator segments different blinks and obtains their starting
and ending frames.
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Table 4 shows the achieved true-positive (TP) and false-positive (FP) blinks for three
different values of the IOU threshold. It can be observed that the number of TPs and FPs
shows a very slow decreasing trend, as expected, which indicates a low sensitivity of the
proposed methods with respect to the threshold.

Table 4. The number of TP and FP blinks for different values of the intersection over union (IOU)
threshold during inference mode.

IOU = 0.2 IOU = 0.3 IOU = 0.4
Methods TP FP TP FP TP FP

3D CNN 1056 172 1056 162 1050 174
3D autoencoder 1050 166 1052 163 1044 167

3D ResNet 1106 172 1100 166 1102 167

Quantitative results indicate that all three different deep neural architectures combined
with the prediction accumulator achieved better blink detection results than the prior state-
of-the-art methods, with the 3D ResNet classifier slightly outperforming the other ones.
The usage of the prediction accumulator provides us with the ability to handle video
subsequences and to be more robust than seeing subsequences once. The application of a
simple threshold and watershed algorithm could be used with any other blink classifier,
whether it is a deep learning approach (neural network) or a simple feature-based classifier,
like a support vector machine (SVM), allowing for fast signal processing while providing
competitive and effective blink detection results.

As already stated, our dataset comprises 17 Caucasian participants from 5 different
countries. Five of the participants wore glasses. Under our clinical settings, video ac-
quisition was performed with the participants placed at approximately 10–15 cm from
the camera, who were illuminated by two NIR light sources. We plan to substantially
increase the number of participants in our future work; however, we do not expect the
race distribution to change. Thus, the proposed system is not currently tested for different
races nor different camera-to-face distances and orientations. Current experimentation has
demonstrated that the proposed system, and especially the eye detection/cropping mod-
ule, is relatively sensitive to camera-to-face distances. Our future work will also include
modifications of the proposed system to classify blinks as complete or incomplete.
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