
Academic Editors: Pierre Gouton,

Saeid Minaei and

Vahid Mohammadi

Received: 28 November 2024

Revised: 15 January 2025

Accepted: 16 January 2025

Published: 20 January 2025

Citation: Kozhekin, M.V.; Genaev,

M.A.; Komyshev, E.G.; Zavyalov,

Z.A.; Afonnikov, D.A. Plant Detection

in RGB Images from Unmanned

Aerial Vehicles Using Segmentation

by Deep Learning and an Impact of

Model Accuracy on Downstream

Analysis. J. Imaging 2025, 11, 28.

https://doi.org/10.3390/

jimaging11010028

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Plant Detection in RGB Images from Unmanned Aerial Vehicles
Using Segmentation by Deep Learning and an Impact of Model
Accuracy on Downstream Analysis
Mikhail V. Kozhekin 1,2 , Mikhail A. Genaev 1,2, Evgenii G. Komyshev 1,2,3, Zakhar A. Zavyalov 4

and Dmitry A. Afonnikov 1,2,3,*

1 Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences,
630090 Novosibirsk, Russia

2 Kurchatov Center for Genome Research, Institute of Cytology and Genetics, Siberian Branch of Russian
Academy of Sciences, 630090 Novosibirsk, Russia

3 Department of Mechanics and Mathematics, Novosibirsk State University, 630090 Novosibirsk, Russia
4 GeosAero LLC, 440000 Penza, Russia
* Correspondence: ada@bionet.nsc.ru; Tel.: +7-(383)-363-4963

Abstract: Crop field monitoring using unmanned aerial vehicles (UAVs) is one of the most
important technologies for plant growth control in modern precision agriculture. One
of the important and widely used tasks in field monitoring is plant stand counting. The
accurate identification of plants in field images provides estimates of plant number per
unit area, detects missing seedlings, and predicts crop yield. Current methods are based
on the detection of plants in images obtained from UAVs by means of computer vision
algorithms and deep learning neural networks. These approaches depend on image spatial
resolution and the quality of plant markup. The performance of automatic plant detection
may affect the efficiency of downstream analysis of a field cropping pattern. In the present
work, a method is presented for detecting the plants of five species in images acquired
via a UAV on the basis of image segmentation by deep learning algorithms (convolutional
neural networks). Twelve orthomosaics were collected and marked at several sites in
Russia to train and test the neural network algorithms. Additionally, 17 existing datasets
of various spatial resolutions and markup quality levels from the Roboflow service were
used to extend training image sets. Finally, we compared several texture features between
manually evaluated and neural-network-estimated plant masks. It was demonstrated that
adding images to the training sample (even those of lower resolution and markup quality)
improves plant stand counting significantly. The work indicates how the accuracy of plant
detection in field images may affect their cropping pattern evaluation by means of texture
characteristics. For some of the characteristics (GLCM mean, GLRM long run, GLRM run
ratio) the estimates between images marked manually and automatically are close. For
others, the differences are large and may lead to erroneous conclusions about the properties
of field cropping patterns. Nonetheless, overall, plant detection algorithms with a higher
accuracy show better agreement with the estimates of texture parameters obtained from
manually marked images.
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J. Imaging 2025, 11, 28 https://doi.org/10.3390/jimaging11010028

https://doi.org/10.3390/jimaging11010028
https://doi.org/10.3390/jimaging11010028
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com
https://orcid.org/0009-0007-3639-8478
https://orcid.org/0000-0001-9738-1409
https://doi.org/10.3390/jimaging11010028
https://www.mdpi.com/article/10.3390/jimaging11010028?type=check_update&version=2


J. Imaging 2025, 11, 28 2 of 17

1. Introduction
Unmanned aerial vehicle (UAV)-based crop monitoring is one of the most important

technologies for controlling plant growth in modern precision agriculture [1,2]. The high
mobility of UAVs allows for the monitoring of large fields and the collection of data from all
areas. Due to the ability to use different sensors, this technology has found a wide range of
applications in agriculture [3,4] and field plant phenomics [5,6]. These applications include
estimation of the soil moisture content [7], weed detection [8], and assessment of the leaf
area index (LAI) and plant biomass [9,10]. Methods have been developed to monitor plant
nitrogen status [11] and plant height [12], to detect pathogens [13], and to evaluate plant
phenology in the field [14,15]. A promising approach is to employ data obtained from UAV
monitoring for the yield prediction of crops [16–18].

One of the important and common tasks in field monitoring is plant stand counting
in images obtained from UAVs [19]. The number of plants per unit area is closely related
to yield. The evaluation of these parameters can be performed at different stages of plant
development. At the early stages, it characterizes germination and allows for the planning
of subsequent agronomic measures to achieve the highest yield. The estimation of plant
numbers via ground observations is labor-intensive and time-consuming. Visual inspection
is prone to human error and subjectivity. Even the use of hand-held digital cameras allows
only small areas of fields to be inspected [20]. Methods based on RGB image acquisition
by means of a UAV are much more productive. As a rule, they include several basic
steps [6,21–23]: (1) the UAV flight and raw-image capture, (2) the stitching of raw images
into a single orthomosaic, (3) the development of a digital-image-processing method to
identify plants in the orthomosaic, and (4) subsequent analysis for the formulation of
recommendations to agronomists. The main efforts of researchers in the field of image
analysis are focused on step 3: techniques for fast and accurate plant identification [19,24].

Two types of methods are used for plant identification based on the analysis of digital
orthophoto images: those involving computer vision and those based on deep machine
learning [19]. The first type necessitates binarization/segmentation algorithms, which are
typically implemented via a combination of R, G, and B components to compute indices in
order to distinguish plant pixels from soil pixels [21,25–27]. During the postprocessing of
plant areas in the images, the separation of objects and the removal of noise (usually small
objects) take place. Several approaches are employed for these purposes: the evaluation of
an object’s shape/size features and machine learning algorithms [21], peak detection in
plant rows [26–28], and searching for statistical correlations [29]. The image objects filtered
by postprocessing are thought to correspond to plants, and their counting is then performed.

Deep learning methods are based on networks characterized by a multilayered ar-
chitecture where subsequent layers utilize the output of a preceding layer as an input to
extract features related to the analyzed objects [24,30,31]. These approaches enable the
automatic extraction of image features with regression or classification within a single
pipeline, trained simultaneously from end to end [32].

Deep machine learning techniques can solve three of the most frequent image process-
ing problems: image classification, image segmentation, and searching for objects in an
image [33–35]. The two latter approaches are used to count plants in UAV images [24,36].
When the segmentation problem is being solved by deep machine learning methods, no
data preprocessing or construction of various indices is required because it is used in
computer vision methods. Necessary plant parameters are extracted automatically.

For semantic segmentation, architectures based on convolutional neural networks
(CNNs) are currently used [37]: fully convolutional networks, convolutional networks with
graphical models, encoder–decoder-based models, and some others. These methods have
been successfully utilized in plant counting problems using different network topologies.
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Fully convolutional networks have been employed for plant identification in field images of
corn and strawberry [38] and for plant and weed identification [39]. U-Net-based topologies
have been used to count maize plants at an early developmental stage [40], to identify
plants in high-elevation ecosystems [41], and to recognize a maize plant in the field [42]. A
network with a SegNet architecture has been utilized to count bolls of cotton to estimate its
yield [43]. Note that semantic segmentation approaches require the further processing of
the neural network results in order to identify individual plants in the images [38]. They
are most suitable for counting plants at the early stages of development, while the contours
of individual plants in the images are not touching each other.

Instance segmentation methods are convenient for solving the problem of counting
plants in an image because they enable an investigator to select image regions correspond-
ing to different plants. These techniques are actively used in tasks of object extraction from
an image [37]. One of the most popular network architectures for instance segmentation
is Region CNN (R-CNN) [44] and its modifications. A Mask R-CNN network has been
used for counting the medicinal plants Lamiophlomis rotata in mountain landscapes [45]
as well as potato and lettuce plants [46]. Faster R-CNN networks have been employed
for the counting of maize, sugar beet, sunflower plants [47], corn plants [48], and potato
plants [49] in field images.

Object detection methods are also actively used for plant counting. In particular, these
are networks based on You Only Look Once (YOLO) architectures [50]. They have a higher
speed and have been applied to count cotton [51], sorghum [52], and maize [53] plants.
Several neural network architectures have been used for the detection of citrus trees in
images [54]. Detection and instance segmentation approaches tend to identify individual
plants more accurately, even if the plants touch each other. Nonetheless, they are more
computationally and memory-demanding [35].

It should be noted that the identification of plants in images is not the only purpose of
such projects for agronomists but serves as a basis for the subsequent assessment of crop
characteristics in order to select optimal agronomic treatments. The mean absolute error
and coefficients of correlation between a predicted number of plants and the true number
of plants give an estimate of the bias in plant density when machine learning algorithms
are applied [21]. Other characteristics include sowing uniformity [55] and row regularity
for weed identification [56–58].

One approach to the estimation of the uniformity of objects in an image is to use
texture features [59–61]. In crop analysis, texture parameters are employed in particular for
between- and within-crop-row weed detection [56,57]. Nevertheless, how the accuracy of
plant identification by machine learning affects the characteristics of plant arrangement
remains unclear.

Here, a method is presented for detecting the plants of five species in images acquired
from a UAV on the basis of image segmentation via deep learning algorithms (CNNs).
Twelve orthomosaics were collected and marked at several sites in Russia to train and
test neural network algorithms. Additionally, 17 external datasets from the Roboflow
service were utilized to extend image sets. Finally, we compared several texture features
for manually assessed and neural-network-estimated plant masks.

2. Materials and Methods
2.1. Image Acquisition and Construction of Orthomosaics

The locations of the fields (Penza Oblast, Krasnodar Krai, and Stavropol Krai, Russia)
are given in Table S1 (Supplementary Materials). Image acquisition in each field was
performed within 1 day by means of three UAVs of the Geoscan 201 Agrogeodesia model
of the flying wing type (Figure 1). The UAVs are equipped with a Sony RX1R II RGB



J. Imaging 2025, 11, 28 4 of 17

camera (Sony Corporation, Tokyo, Japan) with a resolution of 42.4 Mpix. The flight altitude
was 50 m. Each UAV is capable of imaging 8000 ha per day. The flights and aerial image
acquisition were carried out by GeosAero LLC (Penza, Russia).
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Figure 1. A UAV launching from the launcher.

Orthomosaics were built from images using Agisoft Metashape Professional (https:
//www.agisoft.com (accessed on 1 October 2023)). The coordinate system was WGS:84
(EPSG:4326), and the file format was geotiff. Orthomosaics were obtained with a spatial
resolution of at least 2 cm/pix.

2.2. Image Datasets
2.2.1. Data from Russian Regions During 2019–2023

The main dataset included orthomosaic images of different crops at the early seedling
stage from several Russian regions.

The process of markup of these images was carried out in the QGIS Desktop software
(https://qgis.org (accessed on 1 October 2023)). Plant centers were manually marked, and
the resulting images were saved in vector format as a markup file (Figure 2). Because the
scale of the orthomosaics differed in some cases by almost a factor of 2, all orthomosaics
were resized to the same scale (1 pix = 1 cm) before analysis. This procedure was performed
using the resize() function of the Python Imaging Library by means of an appropriate
normalization factor. Because the input of the neural network has to be supplied with
a markup image in raster format, raster masks were generated from the vector data at
the same scale. The mask included the background (black color) and plant centers (white
circles with a radius of 4 cm).
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The list of 12 orthomosaic images is given in Table 1. The total area of the crop fields
in the orthomosaics was 23.494 ha, and the total number of plants was 610,067.

Table 1. Orthomosaic images of fields in Russian regions in 2019–2023.

Dataset Name Crop Location Imaging Date Inter-Row Distance, cm Resolution GSD cm/px Area, ha Number of Plants

Beet_marat_0 Sugar beet MARAT 2023.06.10 45 1.966 0.924 64,750
Beet_marat_1 Sugar beet MARAT 2023.06.10 45 1.966 0.924 74,394

Krasnodar Sugar beet IVANOVSK 2022.06.23 72 1.778 6.801 75,653
Krasnodar_1 Sunflower NOVOMINSK 2022.06.23 93 1.032 4.156 92,709

Stavropol_1_7 Sunflower VINODEL 2019.05.25 70 1.791 1.337 59,044
Stavropol_2_7 Potato VINODEL 2019.05.25 90 1.874 1.336 30,518
Stavropol_4_1 Potato VINODEL 2019.05.25 90 1.778 1.336 42,148
Stavropol_4_3 Potato VINODEL 2019.05.25 90 1.778 1.336 35,326
Stavropol_4_9 Potato VINODEL 2019.05.25 90 1.778 1.336 42,148
Stavropol_2_0 Potato VINODEL 2019.05.25 90 1.874 1.336 30,283
Stavropol_2_2 Potato VINODEL 2019.05.25 90 1.874 1.336 33,225
Stavropol_4_0 Potato VINODEL 2019.05.25 90 1.778 1.336 29,869

Thus, the acquired images provide a large amount of data for the training of deep
learning neural network algorithms.

2.2.2. Public Datasets

Additional image datasets were included in this work to extend training sets. They
were obtained from the Roboflow service (https://universe.roboflow.com (accessed on
25 November 2023)). The datasets were searched for keywords (crop name, growth stages,
field survey, and UAV) in November 2023. In the retrieved datasets, duplicates and images
of markup with insufficient quality were excluded. As a result, 14 datasets for five plant
species were selected: sugar beet, corn, sunflower, potato, and tobacco. The list of datasets
is summarized in Table S2 (Supplementary Material).

Some images were of a high spatial resolution, ~0.42 cm/pix [28] (marked with an
asterisk in Table S2). These images were used to build orthomosaics (UBONN_Sb1_2015,
UBONN_Sb2_2015, and UBONN_Sb3_2015), which were resized to a common scale and
marked as described above.

The rest of the images were converted to a scale of 1 pix = 1 cm. Note that information
on spatial resolution was not available for most of the additional images with a lower
resolution. Therefore, information about row spacing for different crops was employed to
determine an image scale (Table S3, Supplementary Material). The added images contain
plants marked by rectangles. Plant centers were identified as the centers of rectangles and
marked with a circle having a radius of 4 cm in these images. Weed plants were excluded
from these datasets. Based on this marking, a raster mask for each image was generated.

Thus, in this study, the total image sample consisted of 7456 field images in which
362,230 plants of five agricultural crops were marked.

2.2.3. Data Stratification

The data were collected in Russia (Table 1) and the additional data
(Table S2, Supplementary Material) were stratified into four datasets. Three datasets
(HQ1, HQ2, and HQ3) consisted of orthomosaics; most of them were obtained in Russia in
2019–2023 via a unified acquisition protocol. They have an initial spatial resolution of at
least 2 cm/pix, and their labeling was performed manually. They represent high-quality
markup images. The fourth dataset (LQ) includes individual frames acquired with the help
of UAVs or ground-based imaging. It contains public images from the Roboflow service
without the additional manual correction of plant centers in the markup files. These four
datasets were balanced in terms of the number of images. The list of included datasets is
given in Table 2.

https://universe.roboflow.com
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Table 2. Image stratification into four datasets.

Dataset Name List of Images Number of Plants Number of Images

HQ1 Beet_marat_0, Stavropol_4_1, UBONN_Sb1_2015, Krasnodar, Stavropol_1_7,
Stavropol_2_0 281,325 1102

HQ2 Stavropol_4_3, UBONN_Sb2_2015, Krasnodar_1, Stavropol_2_2 170,629 721
HQ3 Beet_marat_1, Stavropol_2_7, Stavropol_4_9, UBONN_Sb3_2015, Stavropol_4_0 186,173 459

LQ
BW_C_2021, DSC_SbCSf_2023, FYXDDS_C_2023, HZH_C, NWE_C_2022,

NWE_Sb1_2022, NWE_Sb2_2022, NWE_Sf_2022, SEV_Sb_2022, UFMS_C_2023,
URLTBK_P_2024, USM_T_2023, VW_C_2022, VW_Sf_2022

334,170 7453

2.3. Neural Network Architecture and Learning Algorithms

In the analysis, each image was divided into 512 × 512 px tiles using the Random-
Crop(512,512) function of the PyTorch 2.0.1 package. Tile images served as the input for a
neural network. The U-Net architecture with the ResNet-18 encoder [62] was chosen as a
baseline model. The network structure is shown in Figure 3 and includes an encoder part
and a decoder part. The encoder consists of convolution layers, with each layer performing
convolution operations, normalization batch, ReLU activation functions, and subsampling
operations. The output of the encoder has a dimensionality of 512 × 16 × 16. The U-Net
decoder is composed of upsampling (backpropagation), convolution layers, concatenation
with the corresponding encoder layers, and normalization. The outputs of each decoder
layer are concatenated with corresponding encoder layers of the same dimensionality; the
last decoder layer has a dimensionality of 512 × 512, corresponding to a single-channel
segmentation mask. Additionally, encoders with ResNet-34 and ResNet-50 architectures
were used. They have different numbers of layers and a larger number of parameters. The
characteristics of the encoders are given in Table S4 (Supplementary Material).
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Figure 3. The architecture of the U-Net network used in this work for plant identification.

The Adam adaptive optimizer [63] was utilized to fit network parameters. The learning
rate decreased linearly from 10−4 to 10−6 with a batch size of 8. To optimize model weights,
the combined loss function DiceCE was used. It is defined as the sum of Cross Entropy [62]
and Dice [64]. Cross Entropy evaluates the quality of a classification. Dice computes a
measure of similarity between a predicted mask and the true segmentation mask.

In the training process, we carried out the procedure of image augmentation using the
Albumentations library [65]: rotate an image by a random angle in the range from 0 to 90◦

(method Rotate()), randomly change the scale by a value below 30% (method Random-
Scale()), randomly change brightness and contrast (methods RandomBrightnessContrast()
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and RandomGamma()), and perform random vertical and horizontal mapping (methods
HorizontalFlip() and VerticalFlip()). Data processing was implemented in Python 3.12 and
the Pytorch 2.0.1 framework.

The network model was trained for 100 epochs. The best model was selected based on
the metrics computed for a validation sample.

Finally, after image segmentation, plant contours were determined in the predicted
mask images by the cv2.findContours() method from the OpenCV library [66]. Segmented
objects whose area was smaller than a given threshold were excluded as possible noise.

Several experiments were conducted to evaluate the influence of network structure
and a combination of datasets in the training/validation and test samples on the accuracy
of plant recognition (Table 3). In experiments code-named “HR,” validation and testing
were based on high-resolution images. In the RN18-LR experiment, low-resolution external
images served as the training sample. Experiments RN34-HR-LR and RN50-HR-LR3 dif-
fered (from the two other experiments) in that encoders with a larger number of parameters
were used: ResNet-34 and ResNet-50 (Table 3).

Table 3. A description of the experiments conducted during the analysis.

Experiment Training Sample Validation Sample Test Sample Encoder Architecture

RN18-HQ HQ1 HQ2 HQ3 ResNet-18
RN18-LQ LQ HQ2 HQ3 ResNet-18

RN18-HQ-LQ HQ1+LQ HQ2 HQ3 ResNet-18
RN34-HQ-LQ HQ1+LQ HQ2 HQ3 ResNet-34
RN50-HQ-LQ HQ1+LQ HQ2 HQ3 ResNet-50

2.4. Evaluating Accuracy of Plant Identification

The IoU (intersection over union) metric was employed to assess segmentation quality
for true X and predicted Y contours:

IoU =
X ∩Y
X ∪Y

.

To evaluate the quality of model performance, we used Pearson’s correlation coefficient
r, Spearman’s correlation coefficient rs, mean absolute error MAE, and mean absolute
percentage error MAPE, which were calculated via the formulas

MAE =
1
n∑n

i=1|xi − yi|,

MAPE =
100
n ∑n

i=1
|xi − yi|

yi

where xi and yi are the number of plants in the ith orthomosaic fragments obtained by
manual markup and a neural network, respectively; n is the number of such tiles. We
utilized non-overlapping tiles of 20 × 20 m in size.

2.5. The Downstream Analysis of the Processed Orthomosaics

The evaluation of several texture characteristics was carried out as the downstream
analysis of the crop image masks obtained either manually or by neural networks. These
characteristics are dependent on a mutual arrangement of plants in the images, its regularity,
proximity, and other factors. Second-order texture characteristics that are determined on
the basis of the Gray Level Co-occurrence Matrix (GLCM) and Gray Level Run-length
Matrix (GLRM) [67–69] were chosen for the analysis.

Initially, we evaluated 10 characteristics; however, most of them turned out to be
highly correlated. Therefore, four texture features were selected for our analysis: GLCM
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mean, GLCM correlation, GLRM long run, and GLRM run ratio. They are defined in Table
S5 (Supplementary Material). Eight main directions were used to calculate texture features
for neighboring pixels (GLCM features) and for a series (GLRM features): up, down, left,
right, and four diagonal directions [70].

Texture characteristics were estimated for images of the test sample obtained in Rus-
sia (dataset HR3 except for UBONN_Sb3_2015, Table 2). Nonoverlapping tiles of size
1000 × 1000 px from orthomosaics were employed to evaluate texture characteristics. Sta-
tistical associations were evaluated between true mask tiles (manual markup) and tiles
marked by a neural network. Statistical analysis was performed with the help of the numpy
library of the Python language.

3. Results
3.1. The Evaluation of the Accuracy of Plant Identification in Different Experiments

Changes in the loss function and IoU for plant identification in training and validation
samples during training are shown in Figure 4 for four experiments.
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Figure 4. The learning curves of the models corresponding to the experiments: (a) RN18-LQ; (b) RN18-
HQ-LQ; (c) RN34-HQ-LQ; and (d) RN50-HQ-LQ. On the X-axis, the ID numbers of epochs during
training are plotted. The Y-axis shows parameters characterizing the magnitude of error obtained
with the training and validation samples (see the panels in the top-right corner of the graphs). Blue
curve: change in the loss function on the training sample; green curve: change in the loss function
on the validation sample; yellow curve: change in the IoU metric on the training sample; red curve:
change in the IoU metric on the validation sample.

As presented in the graph in Figure 4a, only on a low-resolution image sample (RN18-
LQ) network topology does the training ResNet-18 network yield high-amplitude fluctua-
tions in the loss function and IoU at the initial stage of the training process. The variation
in these parameters stabilized around epoch 75 (Figure 4a). In an experiment with the
same network architecture and both high- and low-resolution data as the training sample
(RN18-HQ-LQ, Figure 4b), the loss and IoU stabilized at 50 epochs. For the RN34-HQ-LQ
experiment (Figure 4c), where a network architecture with a larger number of parameters
was used, ResNet-34, the loss, and IoU stabilized at epoch 35. The use of the ResNet-50
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network architecture and low- and high-resolution images in the training process showed
a smooth change in accuracy characteristics without substantial spikes (Figure 4d).

Table 4 summarizes the accuracy assessment metrics for the experiments described
in Table 4. The table contains the average values of the metrics for the five orthomosaics
included in the test sample. As one can see in the table, the use of low-resolution data and
the ResNet-50 encoder yielded the best results (experiment RN50-HQ-LQ): the Pearson’s
coefficient of correlation between the number of plants determined manually and the
predicted number of plants was greater than 0.98. The parameters MAPE and MAE for
the best model were the smallest. The model is able to segment sunflower, potato, and
sugar beet plants at an early stage of growth, regardless of light and other conditions.
Nonetheless, Spearman’s correlation coefficient and IoU were not the greatest for the
RN50-HQ-LQ experiment. In terms of rs, it was ranked #2 and in terms of IoU #3 by value.

Table 4. Accuracy measures for different experiments and images from the HR3 sample. The best
parameter value in a column is shown in bold, and the worst value is underlined.

Experiment Epoch Number for the Best Model MAE MAPE, % r rs IoU

RN18-HQ 79 96 6.22 0.9816 0.9363 0.3753
RN18-LQ 50 127 7.90 0.9850 0.9597 0.3166

RN18-HQ-LQ 79 105 5.57 0.9883 0.9600 0.3693
RN34-HQ-LQ 76 95 5.84 0.9878 0.9489 0.3600
RN50-HQ-LQ 83 78 5.20 0.9885 0.9571 0.3688

A comparison of the accuracy parameters between RN18-HQ and RN18-LQ revealed a
difference between the cases of HQ and LQ data used for training. RN18-HR yielded better
estimates for MAPE, MAE, and IoU. In the RN18-LQ experiment, these parameters showed
lower performance (note that the test dataset contained HQ data only). On the other
hand, both correlation coefficients were smaller in the RN18-HR experiment and larger in
RN18-LQ. This finding implies that using the LQ dataset decreases the accuracy of finding
a plant center (a lower value of IoU in all experiments). Nevertheless, the larger number of
images in this dataset (Table 3) decreased the variance for the estimate of the number of
plants in the image (higher correlation coefficients). Of note, using both the HQ and LQ
datasets in training (experiment RN18-HQ-LQ) yielded better plant count estimates (MAE,
MAPE, r, and rs) but a lower IoU value in comparison with the RN18-HQ experiment.

Examples of plant images for different crops and manual and automatic markups
are shown in Figure 5. The agreement between automatic and manual markups is high.
Nonetheless, some errors could be detected in the masks obtained by means of neural
networks: some contours for plants were found to be elongated due to the merging of
neighboring plant contours; in some cases, small contours appeared between plants.

Table 5 shows the results of accuracy estimation for the best model (RN50-HQ-LQ)
for orthomosaics from the test sample. For most images, accuracy is approximately the
same (MAPE 1–6%), except for plant recognition for the Stavropol_4_9 orthomosaic. The
latter showed lower performance (MAPE above 12%). This could be explained by a larger
proportion of touching plants in the images obtained from this field (Figure 5e).

Table 5. Accuracy metrics of the best model for the RN50-HQ-LQ experiment with orthomosaics
from test samples. The best parameter value in a column is highlighted in bold, and the worst is
underlined.

Orthomosaic Image MAE MAPE, % R rs

Beet_marat_1 66 1.27 0.9734 0.9464
Stavropol_2_7 18 2.30 0.9995 0.9870
Stavropol_4_9 223 12.75 0.9880 0.8790
UBONN_Sb3_2015 4 3.19 0.9987 0.9950
Stavropol_4_0 79 6.51 0.9828 0.9781
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Figure 5. Examples of RN50-HQ-LQ model performance on the test sample for different crops
and high-resolution orthomosaics. (a) Sugar beet, Beet_marat_1; (b) sugar beet, UBONN_Sb3_2015;
(c) potato, Stavropol_2_7; (d) potato, Stavropol_4_0; (e) potato, Stavropol_4_9. Images in rows from
left to right: original (Field); manual plant marking (Mask); automatic marking by the RN50-HQ-
LQ network.

We evaluated the performance of the algorithms on a desktop PC with the following
configuration: CPU, Intel® CoreTM i5-8265U @ 1.60 GHz (Intel Corporation, Santa Clara,
CA, USA); GPU, NVIDIA GeForce RTX 2080 12 G (Nvidia Corporation, Santa Clara,
CA, USA); GPU environment, CUDA 11.2; OS, Windows 10; software, Python 3.12; and
framework, Pytorch 2.0.1. The performance was tested for files larger than 3 GB with
an image size of 50,000 × 50,000 px. The estimated computational performance of the
RN50-HQ-LQ network is enough to process a large amount of data within a reasonable
time, at least 50 ha per hour on the desktop PC with the GPU.

3.2. The Influence of Plant Identification Accuracy on Subsequent Analysis

A downstream analysis of the plants in orthomosaics via the evaluation of the texture
features was performed next. The plant masks obtained manually and predicted by the
networks of the best (RN50-HQ-LQ) and lower (RN18-HQ) performance were used for
texture analysis.

A comparison of the mean values for the estimates of the four texture features among
different orthomosaics and markups is presented in Table S6 (Supplementary Material).
First of all, this table indicates that there are noticeable differences (all of them statisti-
cally significant) in mean texture parameters (for the manually marked images) between
Beet_marat_1 and the other three datasets. For example, the mean value of the GLCM
mean parameter for the Beet_marat_1 dataset is 14.36, while for the other datasets it ranges
from 4.5 to 6.5. Similar differences were noted in the other parameters. This is because
the Beet_marat_1 dataset has a row spacing of 45 cm, whereas for the other orthomosaics,
it is 90 cm (see Table 1). Thus, the estimated texture characteristics may characterize the
cropping patterns in the images.

A comparison of the mean values of the features obtained from manually and auto-
matically labeled masks for different datasets revealed that, for the predicted masks, the
differences are significant in most cases. Nonetheless, deviations of the mean values of
texture features for the more accurate mapping, RN50-HQ-LQ, were overall smaller as com-
pared to the less accurate one, RN18-HQ. For example, for the GLCM mean parameter for
the Beet_marat_1 data (14.36), the differences in the estimates between the manually made
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mask and RN50-HQ-LQ (14.15) are insignificant, whereas in comparison with RN18-HQ
(15.00), the differences are significant. Note that for the predicted masks and features based
on the length of the gray level series (GLRM longRun and GLRM runRatio), the estimates
of the mean based on the manual masks and the predicted ones differ by a factor of almost
2, while the differences in the predicted masks among different datasets are small. This
is probably because, unlike the manual marking, in which plant centers are marked with
circles that do not touch each other, the marking obtained with the help of neural networks
gives elongated areas for plants that often touch each other (Figure 5e). Errors of this kind
are more common for the less accurate RN18-HQ network.

The characteristics of the linear relationship between the manual markup (mask) and
the predicted markups are shown in Figure 6. The figure suggests that the estimates ob-
tained with neural networks—compared to the manual approach—have systematic biases
(the slope and intercept differ from 1.0 and 0, respectively). The correlation coefficients for
parameters and datasets in some cases are close to 1.0. In other cases, they deviate strongly
from 1.0, even to the point of not being significant (RN18-HQ predictions, the Beet_marat_1
dataset; Figure 6d).
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Figure 6. A comparison of crop texture characteristics estimates between markup obtained by the
manual approach (X axis) and markup obtained by neural network algorithm (Y axis). The names of
characteristics are shown at the top of the figure. (a) Stavropol_2_7, prediction by the RN50-HQ-LQ
method; (b) Stavropol_2_7, prediction by the RN18-HQ method; (c) Beet_marat_1, prediction by the
RN50-HQ-LQ method; (d) Beet_marat_1, prediction by the RN18-HQ method.
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Examples of the masks of some tiles having strong deviations of the GLCM mean
parameter for the predicted masks are shown in Figure S1 (Supplementary Material). This
figure presents characteristic errors in the marking of orthomosaics by the neural network:
the shape of markers differs from the circular one, touching contours are observed, and
some markers deviate from a row’s direction. These errors are more pronounced for the
markup obtained by the RN18-HQ neural network. Apparently, such errors lead to the
deviation of the texture parameters described above.

Visual analysis of the examples of mask images and the results of neural network
prediction (Figure S1) demonstrates that for the network with a lower quality of prediction
(RN-18-HQ), the images contain more noise (in comparison with a more accurate algorithm,
RN50-HQ-LQ). In particular, this noise results from the inclusion of small objects between
regularly spaced plant centers. Because of the noise, the RN-18-HQ images appear less
homogeneous and regular. This appears to lead to significantly greater distortions in the
estimation of the texture characteristics by the RN-18-HQ model (Figure 6). Note also
that for the Beet_marat_1 dataset, the plant spacing is smaller than for Stavropol_2_7.
This may further amplify the effect of noise when evaluating the texture characteristics
(images become less homogeneous). For example, for Stavropol_2_7 images, the less
accurate RN-18-HQ network gives estimates of textural characteristics with rather high
values of correlation coefficients when compared to the mask, and for the RN-18-HQ and
Beet_marat_1 dataset, the correlation coefficients lose significance. In general, it can be
assumed that the result of the comparison of texture features is influenced on the one
hand by the accuracy of prediction (the presence of noise) and, on the other hand, by the
specificity of the plant arrangement pattern (in particular, the distance between rows).

Thus, the effect of estimation accuracy on the subsequent analysis of recognized plant
masks strongly depends on which texture parameters are estimated. Nevertheless, overall,
for a prediction by a more accurate network, the deviation of mean values of texture
features appears to be closer to the deviation obtained via manual partitioning.

4. Discussion
In this work, a method was developed for counting plants in field images obtained

from a UAV. The neural network approach was used to solve the problem of image segmen-
tation based on the U-Net architecture and the ResNet encoder. The algorithm was tested
on several agricultural crops and manifested high accuracy. The estimates of plant-counting
accuracy for the best model proved to be comparable to the accuracy of both computer
vision-based and deep-learning-based techniques. Computer vision-based approaches
achieve relative root mean square error (RRMSE) values between 2 and 4%, depending on
the field and crop (maize and sunflower) [25]. When maize plants were counted at different
growth stages, RRMSE accuracy estimates of 2–6% were achieved in that study, and more
accurately for an earlier stage of plant development. For later stages, when plants begin
to touch each other, the accuracy of this method drops severalfold [71]. When plants are
counted in images by means of the U-Net neural network, MAPE estimates range from
4% to 16%, depending on the field and crop [40]. Using the RiceNet neural network to
count rice shoots results in MAE values ranging from 3 to 4 [72].

It has been shown that image spatial resolution affects the performance of neural
network deep learning algorithms for various tasks [73–76]. Spatial resolution is critical
for an analysis of field images obtained from UAVs for plant counting [23,25,77] and
sizing [46]. In the present work, images of different resolutions as well as plant markup
quality were employed for the training and testing of neural network algorithms. The HQ
set was acquired by a UAV camera via a uniform protocol; the images were assembled into
orthophotos followed by manual markup. The LQ set represented fragmented images of
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fields at different resolutions, whose markup was determined by the recalculation of the
positions of the centers of the frames marking the plants. Using only the HQ set for training
allows for the more accurate localization of plants in an image. By contrast, using the LQ
set, due to the larger number of images, enables us to obtain higher correlations between
true and predicted plant counts. Therefore, combining these data for training—despite
the differences in resolution and markup quality—significantly improves the accuracy of
plant recognition.

Errors in plant identification in the field images inevitably cause biases in crop density
and plant spacing estimation [21,55]. The present work illustrates how the precision of plant
detection in field images may affect their regularity estimates by means of several texture
characteristics. For some characteristics and datasets, the correlation of estimates between
images marked manually and images marked automatically is high (GLCM mean, GLRM
long run, GLRM run ratio, Stavropol_2_7 dataset). For others, the differences are large and
may lead to erroneous conclusions about the properties of field cropping patterns. Thus,
overall, methods with a higher accuracy of automatic plant prediction and counting should
give estimates of texture parameters close to those derived from manually marked images.

5. Conclusions
Segmentation method using deep learning algorithms was developed for detecting

and counting plants of five species in RGB images acquired from a UAV. Several CNN
models based on the U-Net architecture with different encoders (ResNet-18, ResNet-34,
ResNet-50) were implemented. They were trained using orthomosaics with high quality
markup obtained at several locations in Russia and additional datasets of various spatial
resolutions and markup quality from the Roboflow service. The performance of several
neural networks and training datasets was evaluated. The advantage of usage both the
high- and low-quality marked images in neural networks training was demonstrated.
This strategy yielded better plant count estimates but a lower performance of the plant
location in the images (IoU). Several texture features characterizing cropping patterns
were estimated and compared for manually evaluated and neural-network-estimated plant
masks. For some of the texture characteristics (GLCM mean, GLRM long run, GLRM run
ratio) the estimates between images marked manually and automatically are close. For
others, the differences are large and may lead to erroneous conclusions about the properties
of field cropping patterns. In general, plant detection algorithms with a higher accuracy
show better agreement with the estimates of texture parameters obtained from manually
marked images.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jimaging11010028/s1, “Supplementary Material.pdf” contains
the following Supplementary Materials: Table S1. The field location of the crop image dataset from
Russia (2019–2023); Table S2. Public datasets from Roboflow used for the analysis (accessed on
25 November 2023); Table S3. The row spacing (for different crops) used in the work to mark up
images from the additional datasets (not ours); Table S4. Description of the ResNet neural network
architectures for models RN18, RN34, and RN50; Table S5. Description of the texture characteristics;
Table S6. Estimates of the four texture characteristics for various datasets and markups; Figure S1.
Examples of field image markups for tiles with a large deviation of the GLCM mean parameter
between the manual approach and the RN50-HQ-LQ network model with the Beet_marat_1 dataset.
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