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Abstract: Detection and segmentation of brain abnormalities using Magnetic Resonance
Imaging (MRI) is an important task that, nowadays, the role of AI algorithms as supporting
tools is well established both at the research and clinical-production level. While the
performance of the state-of-the-art models is increasing, reaching radiologists and other
experts’ accuracy levels in many cases, there is still a lot of research needed on the direction
of in-depth and transparent evaluation of the correct results and failures, especially in
relation to important aspects of the radiological practice: abnormality position, intensity
level, and volume. In this work, we focus on the analysis of the segmentation results of
a pre-trained U-net model trained and validated on brain MRI examinations containing
four different pathologies: Tumors, Strokes, Multiple Sclerosis (MS), and White Matter
Hyperintensities (WMH). We present the segmentation results for both the whole abnormal
volume and for each abnormal component inside the examinations of the validation set.
In the first case, a dice score coefficient (DSC), sensitivity, and precision of 0.76, 0.78, and
0.82, respectively, were found, while in the second case the model detected and segmented
correct (True positives) the 48.8% (DSC ≥ 0.5) of abnormal components, partially correct
the 27.1% (0.05 > DSC > 0.5), and missed (False Negatives) the 24.1%, while it produced
25.1% False Positives. Finally, we present an extended analysis between the True positives,
False Negatives, and False positives versus their position inside the brain, their intensity at
three MRI modalities (FLAIR, T2, and T1ce) and their volume.

Keywords: deep learning; magnetic resonance imaging (MRI); AI algorithms; tumors;
strokes; multiple sclerosis (MS); white matter hyperintensities (WMH); segmentation

1. Introduction
Brain abnormalities, ranging from tumors to strokes, multiple sclerosis (MS), and

white matter hyperintensities (WMH), present formidable obstacles to neurological well-
being. Tumors, whether benign or malignant, disrupt physiological brain function by
exerting compressive forces on adjacent tissues, thereby impeding proper neurologic signal-
ing. Strokes, precipitated by cerebral ischemia, engender severe consequences, including
paralysis, cognitive deficits, or mortality. Multiple sclerosis, an autoimmune disorder, leads
to the destruction of the protective myelin sheath covering nerve fibers, resulting in a wide
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array of neurological symptoms. White matter hyperintensities, often seen on MRI scans of
older adults, are associated with small vessel disease and can indicate an increased risk of
cognitive decline and stroke. Profound comprehension and effective management of these
cerebral aberrations are imperative for safeguarding neurological integrity and enhancing
patients’ quality of life [1–4].

To augment patient survival rates, early and accurate detection of brain abnormalities
is imperative. Early diagnosis often facilitates efficacious and sustainable therapeutic
interventions. However, detection and diagnosis of brain pathologies is not always trivial
because of the complex size and structure of the human brain, while they highly depend
on imaging equipment and the availability and expertise of the radiologist to identify,
detect, and classify the pathology. Presently, Magnetic Resonance Imaging (MRI) plays an
important role in the accurate diagnosis of several brain pathologies [5]. This noninvasive
and radiation-free imaging modality enables the detection and characterization of brain
tissue abnormalities. Tissue characterization is achieved due to the MRIs ability to combine
different techniques to depict different tissues with different contrast [6].

Artificial intelligence (AI) offers promising avenues to cope with brain abnormalities
by enhancing diagnosis, treatment, and management strategies. AI-powered algorithms
can analyze vast amounts of medical data, including brain imaging scans such as MRIs and
CT scans, to detect subtle abnormalities that might be missed by human observers [7,8].
This can lead to earlier and more accurate diagnoses, allowing for prompt intervention
and treatment. Current research has demonstrated that convolutional neural networks
(CNNs) can be proved highly efficient towards the detection and segmentation of brain
abnormalities [9,10]. Most notably, the U-net model [11] has been gaining popularity in
recent years thanks to its outstanding performances, especially for medical segmentation
tasks. The U-net architecture, with its encoder-decoder structure, allows for the segmenta-
tion of fine details in the image and robust handling of partial volume effects, which are
common in brain imaging. Pretrained U-net models have been widely used for segmen-
tation of brain abnormalities in medical imaging [12]. These models are trained on large
datasets of annotated images, such as Imagenet [13], and have achieved state-of-the-art
performance in various segmentation tasks. By utilizing the transfer learning method
and the pretrained weights, researchers can fine-tune the model for their specific task and
achieve high accuracy with minimal training data [14].

The study by Zhang et al. [15] focused on brain tumor segmentation using several
U-net variations, achieving a Dice Similarity Coefficient (DSC) score of 0.87, demonstrating
superior segmentation performance compared to other methods. Gab Allah et al. [16]
employed a custom edge-based U-net and a public dataset containing three tumor types,
achieving an overall DSC of 88.8. Ferreira et al. [17] utilized a custom U-net with mod-
ern data augmentation techniques on a public tumor dataset, obtaining a DSC of 0.901.
Huang et al. [18] applied a transfer-learning-based custom CNN and compared it with sev-
eral U-net models for the segmentation of multiple sclerosis (MS), achieving a DSC of 0.66.
Similarly, Pooya Ashtari et al. [19] implemented a custom U-net for MS segmentation on a
public dataset, obtaining a DSC of 0.4. Yunzhe et al. [20] employed a multi-path CNN for le-
sion segmentation in both sub-acute and chronic strokes, achieving a DSC of 0.5 for smaller
lesions. Jiong Wu et al. [21] developed a modified U-net with skip connections, achieving a
DSC of 78.3 for White Matter Hyperintensities (WMH) segmentation. Guerrero et al. [22]
used uResNet to segment both strokes and WMH, reporting DSC values ranging from 0.4
to 0.9, depending on the pathology.

Current research in deep learning for brain disease segmentation can be significantly
advanced by focusing on the comprehensive evaluation of multi-pathology datasets and
the performance of associated models. A holistic approach that leverages standard MRI
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modalities, homogenous datasets, and clinically oriented assessments is essential to pave
the way for the clinical implementation of such techniques.

The primary goal of our research is to assess and evaluate the performance of a U-net
deep learning model for segmenting an MRI-based, multimodal, and multi-pathology
dataset while ensuring its relevance to everyday clinical practices. To achieve this, we have
developed and integrated the following key components:

• A hospital-originated dataset incorporating three MRI modalities (FLAIR, T2, and
T1ce) and four distinct pathologies: tumors, strokes, multiple sclerosis (MS), and white
matter hyperintensities (WMH).

• A U-net model enhanced with transfer learning techniques.
• An evaluation framework for analyzing the entire pathology volume.
• A novel approach for evaluating each individual abnormal component by examining

its spatial localization within the brain, intensity levels across modalities, and volume.

Our research aims to achieve a dual objective:

1. Identify the strengths and limitations of a modern U-net deep learning model, offering
opportunities for tailored applications based on specific pathologies.

2. Advance beyond conventional evaluation methods by introducing a transparent and
clinically consistent framework for validating segmentation models.

By aligning model development with clinical needs, this work seeks to enhance the
practical relevance and reliability of deep learning models for brain disease diagnosis
and treatment.

The rest of this paper is organized as follows: Section 2 details the materials and
methods used: Dataset description, Model description, and evaluation methods. Section 3
presents our results. The discussion and comparison with similar methods are presented in
Section 4. In Section 5, we focus on the Limitations and Future perspective of our work. We
conclude this paper in Section 6.

2. Materials and Methods
The methodology section outlines the dataset used (Section 2.1) and the preprocessing

steps (Section 2.2) taken to optimize its use with the U-net model. This is followed by a
detailed description of the model itself (Section 2.3)—a U-net model with transfer learning
enhanced InceptionV3 as encoder, as well as the hardware and software employed. Lastly,
we discuss the evaluation metrics and methods supporting both the overall volume analysis
and the single-component analysis approaches (Section 2.4).

2.1. Dataset Collection and Preparation

A total of 124 brain MRI examinations with abnormal findings were collected ret-
rospectively between 2021 and 2023 from the 2nd Department of Radiology at Eginition
University Hospital in Athens. The examinations were performed using a 3.0T Achieva
TX Philips MRI system (Philips Healthcare, Best, The Netherlands), equipped with an
eight-channel head coil. The imaging protocol included both conventional and advanced
techniques, with T2-weighted (T2), T2 Fluid Attenuated Inversion Recovery (FLAIR), and
Gadolinium-enhanced T1-weighted (T1ce) modalities selected for their relevance across the
pathologies of interest: tumors, strokes, multiple sclerosis, and white matter hyperintensi-
ties (WMH). Experienced MR physicists visually assessed all images for potential artifacts,
ensuring quality, while two experienced neuroradiologists provided diagnoses and ground
truth labeling using ITK-SNAP (v4.2.0) [23] software by consensus. All diagnoses were
cross-evaluated and confirmed using laboratory results and biopsy data to ensure accuracy
and reliability of the ground truth annotations. The dataset was divided into a training
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set of 100 patients, comprising 19,054 2D axial slices, and a validation set of 24 patients,
yielding 4320 2D axial slices. The final dataset distribution was achieved by excluding
slices that contained artifacts, unrelated pathologies, or significant deformations caused
by surgeries, therapeutic interventions, or external factors. Additional exclusion criteria
included poor image quality, incomplete scans, misaligned slices, and cases where motion
artifacts or improper contrast administration compromised diagnostic clarity.

2.2. Image Preprocessing

Image preprocessing and data augmentation play a vital role in the utilization of CNNs
in the medical domain and can efficiently boost performance, decrease data dimensionality,
computation complexity, and conversion time [24]. Initially, the original DICOM images
were converted to nifty files. Then, the skull was removed, and the axial plane was
cropped/filled to 256 × 256 dimensions. T2 and T1ce were registered to FLAIR, and all of
them were stretched to the 12-bit intensities range. The ground truths were smoothed to
decrease errors during manual labeling. Training images were augmented using horizontal
and vertical flips, ±90◦ range rotations, random zooming from 0% to 20%, shuffled, and
presented to the models as new ones. The validation set was not augmented or shuffled.
The three MRI modalities were subsequently stacked to act as inputs for the transfer
learning model that requires RGB images, as can be depicted in Figure 1.

Figure 1. The three MRI modalities registered and combined to act as inputs to U-net model.

2.3. U-Net Model—Transfer Learning

The U-net architecture is a popular choice for medical image segmentation due to its
symmetrical design, comprising two primary components: the encoder and the decoder.
The encoder functions as a feature extractor, capturing the contextual information in the
input images by progressively reducing their spatial dimensions while increasing the depth
of feature maps. This is achieved through successive convolutional and pooling layers [25].
The decoder, on the other hand, aims to reconstruct the segmentation map by up sampling
the encoded features back to the original resolution, determining the regions of interest for
segmentation. The decoder employs transposed convolutions (or up sampling layers) and
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concatenates features from corresponding encoder layers through skip connections, which
help preserve spatial details and improve segmentation accuracy (Figure 2).

Figure 2. Schematic illustration of U-net architecture with encoder and decoder parts. With green
dashed lines is outlined the Encoder part that in our implementation is replaced by the pre-trained
InceptionV3 CNN model. The yellow mask on the segmented output image is the segmentation mask
produced by our model as the final output.

In our implementation, we enhanced the U-net architecture by using InceptionV3 [26]
as the encoder, replacing its final layers with custom ones suited for segmentation tasks.
The InceptionV3 model, a deep convolutional neural network pre-trained on large-scale
datasets, offers several advantages as an encoder. It employs Inception modules, which
process the input data using multiple kernel sizes (e.g., 1× 1, 3× 3, and 5× 5 convolutions)
simultaneously, capturing features at various scales. Additionally, these modules integrate
information from both fine-grained details and abstract patterns, enabling a more robust
representation of the input data. By incorporating this powerful encoder into the U-net
framework, we leveraged its ability to capture complex spatial and contextual informa-
tion, thereby enhancing the segmentation performance of our model. In our case, we
initiated our model with pre-trained weights from ImageNet of almost 1.2 million natural
training images.

Our model was left to train under the hyper-parameters presented in Table 1. For the
training, testing, and overall implementation of the models, we used TensorFlow with Keras
API [27] and an NVIDIA GPU RTX 4090 24GB (NVIDIA Corporation, Santa Clara, CA, USA)
with 32 GB RAM, along with an Intel Xeon E5-1630v3 @3.70 Hz (Intel Corporation, Santa
Clara, CA, USA) with 32 GB RAM and Windows 11 (Microsoft Corporation, Redmond,
WA, USA) operating system.

Table 1. U-net model training hyper-parameters.

Image size 256 × 256 × 3

Training Epochs 100

Batch Size 32

Loss Function Dice loss + Cross-Entropy loss
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Table 1. Cont.

Not Optimizer Adam

Learning Rate 0.00001

Model selection
Criteria Best validation DSC

2.4. Model’s Evaluation Metrics and Methods
2.4.1. Whole Abnormal Volume Evaluation

To evaluate the segmentation performance of our model in a consistent way, we run
two validation experiments. On the first one, which is usually met in the literature, the
extracted metrics are based on the Whole abnormal volume Evaluation inside an MRI
examination. The segmentation metrics were calculated as the average values across the
24 examinations of the validation set after comparing the reference Ground Truths (GTs)
with the automated detections of each examination. The selected metrics are the following:

• Dice Similarity Coefficient (DSC): The DSC measures the similarity between two
sets of data, often used to quantify the overlap between detected and ground truth
segmentations. It ranges from 0 (no overlap) to 1 (perfect overlap), providing an
indication of segmentation accuracy. The formula for DSC is:

DSC =
2× |A ∩ B|
|A|+ |B| (1)

where A is the detected segmentation, B is the ground truth and |·| denotes the size of
the set.

• Sensitivity, or Recall, is the proportion of actual positive cases correctly identified by
the model. A high sensitivity indicates a low false negative rate. The formula for
sensitivity is:

Sensitivity =
TP

TP + FN
(2)

where TP is the number of true positives and FN is the number of false negatives.

• Precision: Precision is the proportion of predicted positive cases that are correctly
identified. It reflects the model’s ability to minimize false positives. The formula for
precision is:

Precision =
TP

TP + FP
(3)

where TP is the number of true positives, and FP is the number of false positives.

2.4.2. Single Component Abnormal Volume Evaluation

On the other hand, the second method presents a deep analysis based on each in-
dividual abnormal component (Single Component abnormal volume Evaluation) inside
the examinations. The 24 examinations of the validation set contain 867 abnormal GTs
components. After discussion with our radiologists and following thresholds align with
established practices in segmentation benchmarks [28–30], we used the terms reference
GT (the ground truth as defined by the experts), Found GT where a reference GT overlaps
with enough detection pixels for producing DSC ≥ 0.5 (Figure 3a,b), Partially Found GT
for 0.05 ≤ DSC < 0.5 (Figure 3b,c), and Missed GT for DSC < 0.05 (Figure 3c). Respectively,
we defined the terms Good Detection, Partially Good Detection, and Missed Detection.



J. Imaging 2025, 11, 6 7 of 17

Figure 3. Schematic explanation for terms (a) Found GT, Good Detection, (b) Partially Found GT,
Partially Good Detection, and (c) Missed Detection and Missed GT. The detections are marked with
red, while the reference GTs are marked white.

The rationale for selecting “Found”, “Partially Found”, and “Missed” ground truth
labels based on Dice Similarity Coefficient thresholds is grounded in practices commonly
used in medical imaging and segmentation challenges:

• “Found” (DSC ≥ 0.5): A threshold of 0.5 is frequently used as a minimum for mean-
ingful overlap, as it indicates that at least half of the volume of a segmented region
matches the ground truth. This threshold has been applied in tumor segmentation
tasks, including challenges like BraTS (Brain Tumor Segmentation) and LiTS (Liver
Tumor Segmentation), to identify valid detections where segmentation reasonably
approximates the expert annotations [31,32].

• “Partially Found” (0.05 ≤ DSC < 0.5): The range from 0.05 to 0.5 accounts for partial
matches where detection may overlap the GT but insufficiently to qualify as a reliable
segmentation. This category acknowledges borderline cases that may provide some
utility, for instance, hinting at the presence of a lesion but failing in detailed segmentation.

• “Missed” (DSC < 0.05): A DSC below 0.05 indicates negligible overlap, typically
attributed to false negatives or detections that do not align meaningfully with the GT.
Such cases are considered failed attempts to segment the target correctly.

Finally, the use of these categories and thresholds enables a clear, clinically meaningful
evaluation of model performance by distinguishing between successful detections, areas
needing improvement, and outright failures. This level of granularity allows for tar-
geted refinements during model development and facilitates robust comparisons across
datasets and methodologies, ensuring that the evaluation aligns closely with practical
clinical expectations.

2.4.3. Volume, Positional, and Intensity Analysis

We conducted three additional experiments to further evaluate our model’s behavior
in relation to the volume, position, and intensity levels of the abnormalities. For volume
assessment, we compared the model-generated volumes at both the whole examination
level and for individual abnormal components against the corresponding ground truth
volumes. For positional analysis, we examined the location of each abnormal component
relative to the center of the brain.

Lastly, to evaluate the impact of intensity levels across the three modalities, the in-
tensity difference was calculated by comparing the average intensity of each abnormal
component with the average intensity of a healthy Volume of Interest (VOI) within the
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brain’s white matter for each examination (Figure 4). The intensity difference (ID) is
defined as:

ID =
Abnormal Intensitymean − Healthy VOI Intensitymean

Healthy VOI Intensitymean
× 100% (4)

where Abnormal Intensitymean is the mean intensity of the abnormal component and Healthy
VOI Intensitymean is the mean intensity within the healthy VOI in the brain’s white matter.

Figure 4. Two different patient examination slices from FLAIR modality from the validation dataset.
(Left): Whiter matter hyperintensity GT is depicted with yellow color and the Healthy Reference VOI
with red. (Right): Tumor GT is depicted with green and the Healthy Reference VOI with red.

We utilized the Python libraries Pandas [33] and Matplotlib [34] for extracting and
visualizing our results.

3. Results
3.1. Whole Abnormal Volume Evaluation

The segmentation metrics were computed as the average values across the 24 valida-
tion set examinations by comparing the automated detections with the reference ground
truths. Metric results and their statistics, namely, DSC, Sensitivity, and Precision, are
presented in Table 2.

Table 2. DSC, Sensitivity, and Precision results and statistics.

DSC Sensitivity Precision

Mean 0.76 0.78 0.82

STD 0.18 0.20 0.16

Median 0.80 0.85 0.88

25 Quant. 0.74 0.75 0.82

75 Quant. 0.89 0.91 0.91

Min. 0.14 0.08 0.23

Max. 0.92 0.97 0.97

The mean values of DSC, Sensitivity, and Precision are 0.76, 0.78, and 0.82, respectively.
In Figure 5a, where the detected and reference GTs volumes are compared, it can be

observed that volume-wise the model produces similar detections to the ground truths,
with a high correlation of ρ = 0.975. The quality of the detections can be further investigated
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by grouping the validation set by volume into three subsets as depicted in Figure 5b.
Our model, for the examinations that contain abnormal volumes higher than 10 cm3,
produces metric numbers close to 0.9. However, for smaller volumes, there is a 10–15%
performance drop.

Figure 5. (a) Graphic illustration of the correlations among Ground Truth Volumes (cm3) and
Detected abnormal Volumes (cm3). Each bullet represents a patient MRI exam from the validation set.
(b) Grouped analysis for the examinations that contain less than 10 cm3, 10 cm3–100 cm3, and bigger
than 100 cm3 of abnormal volume. The orange line is the mean value and the white circles are
the outliers.

Further investigation of different DSC thresholds—for 0.05 to 0.95 DSC with a step of
0.05—(Figure 6a) reveals an almost linear correlation between the Found GT components
and the Good Detections number. It is worth mentioning that in the 0.05–0.5 threshold
range, the distance between points is doubled compared to the 0.5–1.0 threshold range.
This leads to the indication that the model presents a higher detection rate at low DSC
levels compared to the higher ones. On the other hand, on the relevant volume graph
(Figure 6b), almost 85% of the GT volume is promptly detected at DSC levels as high as
that of 0.80, highlighting the strong influence of the biggest components.

Figure 6. Graphical illustration of the (a) total Found GT components versus the Detected Compo-
nents; (b) Found GTs Volume versus the Detections’ Volume for different Dice Coef. Thresholds.
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3.2. Single Component Volume Evaluation

The 24 examinations of the validation set contain 867 abnormal GTs components,
from which the model found correct 423, partially good 235, and missed 209 of them.
Subsequently, of the 963 produced components as detections, 422 were good, 299 were
partially good, and 242 were missed with little to no overlap with ground truth (Table 3).

Table 3. (Top) Component base results regarding the Found Ground Truths, the Partially found
Ground Truths, and the Missed Ground Truths for the 24 examinations of the validation set; (Bottom)
Component base results regarding the Good Detections, the Partially Good Detections, and the
Missed Detections for the 24 examinations of the validation set.

Found GTs
(True Positives)

Partially
Found GTs

Missed GTs
(False Negatives)

Total
GTs

DSC ≥ 0.5 0.05 ≤ DSC < 0.5 DSC < 0.05

#N % GTs % GT
Volume #N % GTs % GT

Volume #N % GTs %
GT volume

423 48.8 95.6 235 25.1 3.9 209 24.1 0.5 867

Good Detections Partially Good
Detections

Missed Detections
(False Positives)

Total
Detections

DSC ≥ 0.5 0.05 ≤ DSC < 0.5 DSC < 0.05

#N %
Detections

%
Detected
Volume

#N %
Detections

%
Detected
Volume

#N %
Detections

%
Detected
Volume

422 43.9 97.2 299 31.0 1.8 242 25.1 1.0 963

As can be depicted in Table 3, the Found GTs and the Missed GTs count for 48.8%
and 24.1% of the total GT components and for 95.6% and 0.5% of the total GT volume,
respectively. Similarly, the Missed Detections account for 25.1% of the detections and for
1.0% of the detected volume. As expected, there is a clear pattern pointing out that the
model can detect bigger components and thus most of the total abnormal volume.

3.3. Single Component Position Evaluation

Concerning the positional analysis, the distribution of the center of mass for the
abnormal components across the three axes is depicted in Figure 6, and it reveals patterns
for the model’s behavior with respect to the components’ positions inside the brain. As can
be observed in the density graphs of Figure 7a–c, the Found GT components are mostly
located ±20 mm, among +30 mm and −40 mm, and around +20 mm distance from the
brain center at the X, Y, and Z axes, respectively. Similarly, the Partially Found GTs are
located around the ±20 mm points on the X axis, mostly around the +20 mm point on
the Y axis, and around the 20 mm point on the Z axis. The Missed GTs are concentrated
mostly around −20 mm points on X and Y axes and around 20 mm points on Z axis. On
the contrary, the Missed Detections are mostly located around +20 mm points on the X
and Y axes and around 0 mm points on the Z axis. As can be noticed in Figure 7d, the
concentrations of the GTs and detections are mostly found on the left, on the upper, and on
the rear part of the brain, with the exception of the Missed Detections that are observed on
the left, on the upper, and on the front part of the brain. In more detail, there are 6% more
Missed Detections on the left part of the brain compared to the right part, 22% more on the
upper part against the lower part, and 10% more on the front part compared to the rear.



J. Imaging 2025, 11, 6 11 of 17

Figure 7. Distribution of the abnormal GT components and abnormal detections for (a) the axial
plane (X-Y), (b) the coronal plane (X-Z), and (c) the sagittal plane (Y-Z). (d) The percentage difference
of the concentration of detections and GTs for the X, Y, and Z axes and their relevant positions around
the brain center. For anatomical reference the←,→, ↑, ⊙, ⊗ stand for right, left, upper, front and
rear parts of the brain.

3.4. Single Component Intensity Evaluation

The influence of the intensity levels against the single abnormal components’ volume
for the three MRI modalities is described in Figure 8. The model is able to produce Found
GTs of almost every volume, Partially Found GTs up to 2 × 102 mm3, Missed GTs smaller
than 200 mm3, and Missed Predictions up to 100 mm3. According to Figure 7, the intensity
difference of the majority of the Found GTs has a range of approximately 30% to 55% for
FLAIR, 10% to 50% for T2, and −20% to 10% for T1ce. The Partially Found GTs present a
range of 20% to 60% for FLAIR, 10% to 55% for T2, and −20% to 15% for T1ce. Similarly,
Missed GTs are located in the intensity range of 10% to 45% for FLAIR, 0% to 50% for
T2, and −20% to 10% for T1ce. Finally, the model Detections of 25% to 65%, 0% to 70%,
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and −30% to 20% intensity range for FLAIR, T2, and T1ce, respectively. The complete
distribution for all the single components can be found in Supplementary Figure S1.

Figure 8. KDE plots of the Abnormal Component Volumes versus their intensity difference compared
to the healthy reference VOI for (1) FLAIR (2) T2 (3) T1ce modalities.

4. Discussion
In this study, we aimed to evaluate the performance of a pre-trained U-net segmen-

tation model on multi-pathology MRI examinations, focusing on its ability to identify
and characterize abnormalities based on volume, spatial position, and intensity. The
analysis included assessing the model’s accuracy in segmenting both overall abnormal
volumes and individual pathological components within the dataset. This work also intro-
duces a novel and systematic framework for evaluating segmentation models in clinically
diverse scenarios.

4.1. Whole Abnormal Volume Evaluation Assessment

Comparing our results with established methods (Table 4) from previous research
demonstrates consistency in the model’s performance characteristics. The mean DSC of
0.76 aligns well with expectations derived from analogous studies, reaffirming the reliability
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and robustness of the U-net architecture in segmenting abnormal structures across diverse
datasets and experimental setups. Comparing further our model with the previous studies,
we noticed the similarities in segmenting large and medium size abnormalities and the
performance drop when it comes to small size volumes.

Table 4. Detailed comparison table between previous studies with similar characteristics. * SD:
Small Volume Detections; MD: Medium Size Detections; LD: Large Size Detections. Categories are
following the limits of Figure 5b.

Model Pathology Modalities DSC Score

Zhang et al. [15] Preprocessing methods +
U-net Tumors T1, T2, FLAIR,

T1ce 0.87

Gab Allah et al. [16] Edge-U-net Tumors T1ce 0.88

Ferreira et al. [17] U-net + Data
Augmentation with GANs Tumors T1, T2, FLAIR,

T1ce 0.90

Huang et al. [18] Transfer learning + CNN MS FLAIR, T1ce 0.66
Pooya Ashtari et al. [19] Pre-U- net MS FLAIR 0.4

Yunzhe et al. [20] Multi-path CNN Strokes T1, FLAIR 0.5
Wu et al. [21] SC U-net WMHs T1, FLAIR 0.78

Guerrero et al. [22] uResNet Strokes,
WMHs T1, FLAIR 0.4–0.69

Our method
Transfer learning +

InceptionV3 encoder +
U-net

Strokes,
WMHs, MS,

Tumors
T2, FLAIR, T1ce Mean:

0.76
SD *:
0.74

MD *:
0.87

LD *:
0.91

Delving deeper into Table 4, it is essential to consider the clinical context of each
dataset and pathology. Tumors are typically larger in size, strokes can vary widely in
dimensions, while MS lesions and WMHs are generally smaller and diffusely distributed
within the brain. These differences account for the varying performance levels observed
across different models, particularly in cases involving pathological volumes of diverse
sizes. This underscores the importance of factoring in lesion-specific characteristics when
evaluating segmentation algorithms [35–37].

Visual inspection of example slices from examinations exhibit varying performance
levels. Figure 9, a randomly selected patient examination from the entirety of the validation
dataset, offers additional insights into our model’s segmentation quality. More precisely,
the examination’s DSC equals 0.85. Despite the high DSC, it can be clearly depicted that
micro-abnormalities of great importance are either missed or under-segmented.

4.2. Single Component Abnormal Volume Evaluation Assessment

The observations and results of the strengths and limitations of the U-net model’s
performance led to the necessity of further analysis in the field of Single-Component
Abnormal Volume.

The results of Table 3 showed that 99% of the total abnormal volumes were successfully
detected. Thus, this 1% of the volume that was lost due to missed detections accounts
for nearly 200 micro abnormalities, a number that holds immense clinical importance. In
clinical practice, micro strokes and early-stage tumors often manifest as abnormalities of
very small sizes, posing challenges in their detection and diagnosis. For instance, in the case
of strokes or micro ischemic WHM, the size can vary but is often characterized by affecting a
small volume of brain tissue, generally less than 15 milliliters in volume [38]. Furthermore,
regarding early-stage brain tumors, their size may range from a few millimeters to a few
centimeters in diameter [39]. Moreover, some tumors maybe even smaller, measuring only
a few millimeters across [40]. These tumors are often detected incidentally or during routine
imaging studies such as MRI or CT scans. Our model missed 25% of the GT abnormalities
and produced 25% empty detections. This underscores the importance of focusing on



J. Imaging 2025, 11, 6 14 of 17

improving the model’s performance in detecting smaller abnormalities, as these can have
significant clinical implications for patient survival rate and treatment planning.

Figure 9. White matter hyperintensity patient examination slice from the validation dataset. The
Produced Detection is depicted in red, while the Ground Truth (GT) is depicted in white.

4.3. Positional Analysis Assessment

It is important to note that the size of a brain abnormality alone does not necessarily
indicate its severity or aggressiveness [41]. Other factors, such as the location within the
brain, are also critical considerations for accurate and early detection [42]. Indeed, our
results indicated that the location of abnormalities within the brain plays a pivotal role
in the model’s performance in detection. Specifically, abnormalities situated in certain
regions, such as the deep white matter or around ventricles, were more conducive to
accurate detection by the model. This is evident in the positional analysis of Figure 6,
where concentrations of Found GTs or Partially Found GTs components are observed in
the aforementioned areas within the brain. Conversely, in Figure 6, regions such as the
cerebellum, gray matter, or cortex boundaries presented more prevalent missed detections.
The observed patterns suggest that the model’s performance may be influenced by factors
such as tissue density, structural complexity, and proximity to anatomical landmarks.
Abnormalities located in regions with relatively uniform tissue characteristics, such as the
deep white matter, may present clearer contrasts against surrounding tissue, facilitating
their detection by the model. Furthermore, the results of Figure 6 attest to the conclusion
that Found or Partially Found GTs follow the reference GTs distribution with less than 5%
differences in all axes, while the Missed Detections behave conversely and appear mostly
in the rear and right part of the brain. Our model is missing abnormalities mostly in the
left hemisphere and closer to the center-rear part of the brain. Thus, this is arising an
immense need for creating datasets with reference GTs with equal distribution in the brain
and models that could segment homogeneously over the brain.

4.4. Intensity Analysis Assessment

The findings reveal distinct patterns in the intensity differences of Found GTs, Partially
Found GTs, Missed GTs, and Missed Detections across FLAIR, T2, and T1ce modalities,
as can be depicted in Figure 7. Notably, Found GTs exhibit intensity differences within
specific ranges for each modality characteristic of each abnormality type.
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Notably, Found GTs tend to exhibit intensity differences within high contrast ranges
for each modality, characteristic of each abnormality type [43]. For example, tumors or
tumors like Multiple Sclerosis typically present high contrast in the entirety of our three
modalities. Of particular interest is the observation that Missed GTs are often located in
FLAIR areas where the intensity difference with healthy tissue is low or in T1ce areas where
the intensity difference with healthy tissue is high. Furthermore, the intensity ranges of
Missed Detections extend to negative values, particularly in T2 and T1ce modalities. This
phenomenon suggests that hypointense regions may be more difficult to detect by the
model, probably because they deviate from typical intensity patterns observed in healthy
tissue. This underscores the model’s capacity to identify abnormalities based on intensity
variations, albeit with limitations in certain modalities and regions.

5. Limitations—Future Perspectives
While our model demonstrated high performance on this clinical custom dataset, it

still exhibits limitations in detecting smaller abnormalities. To address this, we plan to
expand our dataset by including a broader range of small-sized pathologies, incorporating
advanced imaging modalities, such as DTI or PET, to complement standard MRI sequences,
and to add, both for training and validation, publicly available datasets. Additionally, we
aim to enhance our model by incorporating additional layers and specialized functions to
improve its performance, particularly in the outer regions of the brain and for abnormalities
with larger intensity variations.

Furthermore, we intend to conduct a more in-depth analysis of our model’s behavior
by generating detailed detection and segmentation results for each pathology separately.
This will allow us to develop more specialized and tailored tools for clinicians, enhancing
the model’s utility in clinical practice.

6. Conclusions
In conclusion, our study comprehensively analyzed the performance of a pre-trained

U-net segmentation model on multi-pathology MRI examinations, with a specific focus
on identifying patterns related to abnormal component volume, position, and intensity.
Through meticulous evaluation using both the common evaluation metrics and focusing on
each abnormal component, we highlighted both the strengths and weaknesses of the model,
offering valuable insights for its application in clinical settings. As bottom line, we suggest
that in addition to the commonly reported statistical metrics such as DSC score, sensitivity,
and precision, researchers should also provide detailed information on the exact number
and volume of detected and missed components, their spatial distribution within the brain,
and their behavior relative to the intensity levels of the utilized modalities. Incorporating
these factors will align AI models more closely with clinical intuition, facilitating their
seamless integration into routine medical practice.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jimaging11010006/s1, Supplementary Figure S1: Scatter plots of the
Abnormal Component Volumes versus their intensity difference compared to the healthy reference
for (1) FLAIR (2) T2 (3) T1ce modalities.
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