
Academic Editors: Zhigang Zhu, John

Ross Rizzo and Hao Tang

Received: 27 November 2024

Revised: 28 December 2024

Accepted: 2 January 2025

Published: 4 January 2025

Citation: Yu, X.; Saniie, J. Visual

Impairment Spatial Awareness

System for Indoor Navigation and

Daily Activities. J. Imaging 2025, 11, 9.

https://doi.org/10.3390/

jimaging11010009

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Visual Impairment Spatial Awareness System for Indoor
Navigation and Daily Activities
Xinrui Yu and Jafar Saniie *

Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA;
xyu47@hawk.iit.edu
* Correspondence: saniie@iit.edu

Abstract: The integration of artificial intelligence into daily life significantly enhances the
autonomy and quality of life of visually impaired individuals. This paper introduces the
Visual Impairment Spatial Awareness (VISA) system, designed to holistically assist visually
impaired users in indoor activities through a structured, multi-level approach. At the foun-
dational level, the system employs augmented reality (AR) markers for indoor positioning,
neural networks for advanced object detection and tracking, and depth information for
precise object localization. At the intermediate level, it integrates data from these technolo-
gies to aid in complex navigational tasks such as obstacle avoidance and pathfinding. The
advanced level synthesizes these capabilities to enhance spatial awareness, enabling users
to navigate complex environments and locate specific items. The VISA system exhibits an
efficient human–machine interface (HMI), incorporating text-to-speech and speech-to-text
technologies for natural and intuitive communication. Evaluations in simulated real-world
environments demonstrate that the system allows users to interact naturally and with
minimal effort. Our experimental results confirm that the VISA system efficiently assists vi-
sually impaired users in indoor navigation, object detection and localization, and label and
text recognition, thereby significantly enhancing their spatial awareness and independence.

Keywords: indoor positioning; indoor navigation; object recognition; visually impaired

1. Introduction
According to the Global Vision Database 2019 Blindness and Vision Impairment

Collaborators, the year 2020 saw approximately 43.3 million people living with blindness,
and another 295 million people experiencing moderate to severe vision impairments.
Projections suggest a significant increase by 2050, with the blind population expected to
rise to 61.0 million, and those with moderate to severe vision impairments expanding to
474 million individuals [1]. In the United States alone, there were more than one million
blind people in the year 2015, and that number is projected to double in the year 2050 [2].
These statistics highlight an escalating global health concern that necessitates immediate
attention and action. There can be no overstatement about the importance of vision. It is a
fundamental sensory modality that underpins a myriad of daily activities, including but
not limited to navigation, fetching objects, reading, and engaging in other complex tasks,
all of which are integral to personal independence and quality of life [3–5].

While there is no single most important task above all others, navigating indoor spaces
poses a unique set of challenges for visually impaired individuals, often complicating
what many would consider routine activities [6]. Addressing this task, both individually
and collectively, is central to empowering visually impaired individuals to complete not

J. Imaging 2025, 11, 9 https://doi.org/10.3390/jimaging11010009

https://doi.org/10.3390/jimaging11010009
https://doi.org/10.3390/jimaging11010009
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com
https://doi.org/10.3390/jimaging11010009
https://www.mdpi.com/article/10.3390/jimaging11010009?type=check_update&version=2


J. Imaging 2025, 11, 9 2 of 37

only basic but also complex tasks with greater confidence and autonomy. Even before the
advent of computer vision, many methods, tools, and systems were developed to assist
the visually impaired in navigation. Some common examples include white canes, guide
dogs, and braille. However, without machine vision and AI technologies, these methods
were inherently limited. A white cane, for instance, while invaluable for immediate
spatial detection, offers a limited range and no identification capabilities [6]. Guide dogs,
often considered the best alternative to sighted assistance, offer companionship, increased
mobility, and sometimes even higher social status [7,8]. Yet, they come with high training
and acquisition costs, making them mostly unavailable for low-income individuals [9]. Also,
despite their ability to navigate complex environments, guide dogs cannot communicate
specific facility information to their handlers [10]. Braille has revolutionized access to
written information for the visually impaired, but it is confined to touching and needs to be
printed beforehand, limiting its capacity to deliver immediate and dynamic content [11].

With the rapid advancements in the field of computer and machine vision, the land-
scape of technologies to assist the visually impaired is undergoing a transformation. The
advent of text-to-speech (TTS) and speech-to-text (STT) technologies can greatly improve
the interfacing options for the visually impaired [12]. Coupled with the emergence of deep
learning algorithms, tasks such as object recognition, which were once challenging, are
now attainable and can be integrated into practical applications. Moreover, the progress in
embedded systems and system-on-chip (SoC) technologies heralds the advent of portable
and wearable smart devices tailored to the needs of the visually impaired [13]. However,
many existing systems, including AI-based ones, only specialize in a single aspect of
assistance, with the majority of the systems reviewed aiming to solve only one of three
tasks: object recognition, obstacle avoidance, and navigation [14,15]. As a result, a holistic
system that can seamlessly integrate various functionalities—from navigation assistance
to object and text recognition—can be greatly beneficial for visually impaired users. Our
proposed VISA system utilizes cutting-edge AI technologies, including advanced object
detection and spatial navigation algorithms, alongside user-friendly interfaces to assist
visually impaired users in overcoming the challenges associated with indoor activities. By
focusing on this area, the proposed VISA system aims to provide a comprehensive solution
that can be adapted and expanded to meet a wide range of needs and activities, ultimately
facilitating a more accessible and navigable environment for visually impaired individuals.
The integration of the tasks is shown in Figure 1.

Figure 1. Layered approach to holistic assistance for visually impaired individuals.

A system diagram of our Visual Impairment Spatial Awareness (VISA) system is
shown in Figure 2. We selected the NVIDIA Jetson Orin Nano as the core of the VISA
system due to its optimal balance of power efficiency, compact size, and good computing
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performance. We chose an Intel RealSense D435 RGB-D camera since its specifications
suit indoor navigational use and it has a compact size. While the Internet connection is
shown on the diagram, all essential functionalities are completed locally. More detailed
discussions regarding hardware selection and configuration are given in Sections 3–5.

Figure 2. VISA system diagram.

2. Review of Existing Indoor Navigation Technologies
Indoor navigation presents a unique set of challenges that are distinct from outdoor

navigation. GPS, which is commonly used for outdoor navigation, is often ineffective
indoors due to the lack of satellite signals. As a result, various indoor navigation systems
have been developed to assist visually impaired individuals in navigating indoor environ-
ments [16–19]. Those systems can be classified into two groups according to the reliance
on external components or pre-installed infrastructures: networked and self-contained.
The networked group consists of radio frequency identification (RFID), near-field commu-
nication (NFC), ultra-wideband (UWB), Bluetooth low energy (BLE), and infrared. The
self-contained group consists of single, stereo (dual), and RGB-D cameras, together with
lidar. It should be noted that fiducial markers like QR (quick response) codes [20] and AR
(augmented reality) markers, namely ArUco (Augmented Reality University of Cordoba)
markers [21], can be used in conjunction with cameras. The markers are passive, i.e., they do
not communicate with the system, and are thus still included in the self-contained group.

2.1. Networked Navigation Systems

RFID technology employs RFID tags and a reader device such as a smartphone.
Users of such a system need to carry an RFID reader as they navigate, while RFID tags
containing identification information are placed at locations of interest. Upon reaching a
specific location and reading the corresponding RFID tag, the read data facilitate further
information retrieval from a database and assist in accurately positioning the user within
a map [16]. While there are active RFID tags that supports maximum ranges of 40 m
to 1 km [22], passive RFID tags with a maximum range of 0.5 m to 10 m may see more
usage [23], as they do not require setting up a power supply infrastructure for the active
RFID tags.

NFC shares some common properties with RFID and can be considered part of the
RFID family in some cases. Most smartphones nowadays have built-in NFC reader modules,
saving the need a separate NFC reader device to be carried by the visually impaired user.
While there exist NFC based applications for the visually impaired [24], the technology
is severely hampered by the short range of NFC communication. In the best-case sce-
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nario, NFC is limited to operations within several centimeters, which makes any practical
applications challenging [16].

UWB technology uses radio waves with a very low energy level for short-range,
high-bandwidth communications over a relatively large portion of the radio spectrum.
An important advantage of UWB over RFID is that it does not need line-of-sight (LoS)
communication, making it usable in complex indoor environments. However, active
beacons are needed for UWB. UWB is also accurate enough even for indoor applications,
with an accuracy of 0.15 m at a 95% confidence interval. With an operating range of 90 m in
low-data-transfer mode, its range is sufficient for indoor navigation in large buildings. UWB
is applied in [25] to create an indoor navigation system called SUGAR (Sistema Universal de
Guiado Avanzado en Recintos cerrados, Universal Advanced Guidance System in Enclosed
Areas) for visually impaired users. The authors claimed that this system has high accuracy
and low installation complexity.

BLE is a power-conserving variant of Bluetooth, designed for short-range communica-
tion with low energy consumption. Similar to UWB, it can be used to create a network of
beacons for indoor navigation. Compared with passive RFID and NFC, it offers a larger
operational range of up to 75 m, thus requiring fewer beacons to cover the same area. An
indoor navigation system called GuideBeacon is presented in [26], which permits visually
impaired users to interact with pre-deployed Bluetooth-based beacons with their smart-
phones for indoor navigation. The system is able to locate the users accurately in areas
of interest.

Finally, infrared-based navigation systems also use the same reader–receiver setup
as is in BLE and UWB. However, it does need line-of-sight communication. One example
is [27], which uses 16 infrared transmitters in an indoor environment to send infrared
signals. The user wears a cap with an infrared receiver and processing unit, obtaining
positional information by analyzing received signals. It should be noted that there exists a
reversed setup, where the infrared beacons or emitters are placed on the user instead of
the surrounding environment, and receivers placed at different locations will receive the
emitted infrared signals to locate the user [28].

To summarize, networked systems harness external connections and infrastructure
to deliver extensive navigation solutions. Incorporating technologies such as RFID, NFC,
UWB, BLE, and infrared, they supply visually impaired users with positional information
for navigation. However, the dependency on external components presents notable disad-
vantages, including higher cost, potential connectivity issues, and problems involved in
setting up the infrastructure. These challenges may limit the applicability and effectiveness
of networked systems in certain environments, especially for systems that require active
distributed components. A comparison of different networked systems is included in
Table 1.

Table 1. Comparison of networked navigation systems for the visually impaired.

Name RFID NFC BLE UWB Infrared

Principle of
Operation Tag–Reader Tag–Reader Beacon–Receiver

(nLoS)
Beacon–Receiver

(nLoS)
Beacon–Receiver

(LoS)

Typical Range <1 m (passive)
>40 m (active) [22,23]

<20 cm (theoretical)
<10 cm (actual) [16] Up to 75 m [26] Up to 90 m [25] About 20 m [27]

Accuracy Moderate [16] Moderate High High Low [28]

Cost Low to Moderate Low to Moderate Moderate to High High Moderate

Notes
Active tags have

longer range [23], but
needs power supply

Very poor range
NFC-capable

smartphones can be
used [24]

Needs power supply;
lacks direction

information

Needs power supply;
lacks direction

information
Needs power supply
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Self-Contained Navigation Systems

Networked navigation systems often rely on pre-installed infrastructure such as RFID
tags or Bluetooth beacons. However, the installation of additional infrastructure may not
be feasible in all environments. In the development of assistive technologies for visually
impaired individuals, self-contained systems present a distinct approach to navigation,
diverging from the dependency on the external infrastructure characteristic of networked
systems. Self-contained systems are defined by their autonomy, carrying all necessary
hardware to perceive and navigate through spaces independently. They rely on onboard
sensors and processing to understand and interact with the environment. This section
explores different technologies used in self-contained systems, including single, stereo
(dual), and RGB-D cameras, as well as LiDAR, and their integration with passive fiducial
markers like AR markers and QR codes. A comparison of these technologies in terms of
operation principle, range, accuracy, cost, and facts worth noting is provided in Table 2.
Again, it should be noted that the systems that use fiducial markers are still included in this
category, primarily because the fiducial markers differ from other necessary infrastructure
components due to their passive nature, exceptional cost-effectiveness, and minimal to
total lack of maintenance requirements.

Single-camera systems offer a straightforward and cost-effective means to capture
visual data, though they are limited by a lack of depth perception. While it is possible to
perform monocular depth estimation with a single camera [29], the accuracy and reliability
of such depth estimation are mostly insufficient for indoor navigation. As a result, the
majority of indoor navigation systems with a single camera need to work in conjunction
with fiducial markers, like AR markers and QR codes. As shown in [30], the QR codes can
still be easily detected under low-light conditions and a 60% blurriness ratio, making these
systems suitable for application indoors and while moving. Examples using ArUco markers
exist as well [31,32]. ArUco markers, in comparison to QR codes, store less information and
offer fewer unique variants in their most commonly used formats. In return, with the same
physical size, they excel in being recognizable from greater distances and at wider angles
of incidence [32]. Another system uses a different type of AR marker to register the indoor
environment and acquire orientation information [33]. In terms of recognition distance
and angle of incidence, this type of AR marker occupies an intermediate position, offering
a balance between QR codes and ArUco markers. However, as the angle of incidence
becomes more extreme, the minimum size required for AR markers to remain recognizable
increases exponentially, which may hinder their deployment. It should be noted that there
exist single-camera systems that do not use fiducial markers, like in [34].

Stereo camera systems use dual cameras for depth perception. Mimicking human
binocular vision, these systems calculate the depth from the disparity between images
captured by two spatially separated cameras, significantly enhancing depth accuracy. One
early example is given in [35]. It uses an optical flow-based algorithm [36,37], which aims
to calculate the motion between two image frames, and does not rely on fiducial markers
for navigation. Still, it should be noted that although a stereo camera system can be used
for accurate depth measurement, the related hardware is sometimes expensive and not as
widespread as single-camera hardware [38]. With the improvements in modern electronics,
it is possible to use embedded systems as the core of such stereo camera systems [39], but
such systems are more widely used for obstacle detection [40–42] rather than navigation.

RGB-D cameras are imaging devices that capture both color information (RGB) and
depth data (D) for each pixel, providing a comprehensive three-dimensional view of the
environment. This dual capability provides a comprehensive understanding of spatial rela-
tionships, necessary for various applications, including navigation assistance for visually
impaired individuals. Over the past decade, there has been a significant amount of research
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focused on developing navigation systems that leverage RGB-D cameras. At first, there
were no RGB-D cameras dedicated to the task, so many studies were carried out using the
Microsoft Kinect Camera [43–47]. It is worth mentioning that AR marker-based navigation
can be used in conjunction with an RGB-D camera as well [47]. While the Kinect Camera
has good depth profiling capabilities within a few meters, it is about a foot long and not
convenient to be worn by a user. As more models of RGB-D cameras have been made avail-
able on the market, we have seen navigation assistants developed with different cameras.
In [48,49], researchers used Google Tango devices, which have built-in RGB-D cameras.
Researchers used an ASUS Xtion Pro in [50], and an Intel RealSense D435 was used for [51].
In general, more RGB-D cameras that are suitable for the task of indoor navigation have
been introduced in terms of size, weight, and power requirements. Also, some systems
have integrated depth information with deep learning algorithms, enhancing their abilities
to recognize different types of obstacles, thus leading to more efficient navigation [52].

Lidar (Light Detection and Ranging) devices utilize laser pulses to measure distances
to surrounding objects, creating precise 3D maps of the environment. This technology is
particularly effective for identifying small obstacles and accurate recognition. Its ability to
function effectively in a variety of lighting conditions, from bright daylight to complete
darkness, further underscores lidar’s versatility as a navigation aid. Numerous lidar-
based systems for autonomous driving have been developed and put to the test [53,54]. A
recent review paper [55] highlighted numerous studies that have explored the use of lidar
technology for indoor and outdoor navigation to assist the visually impaired. In addition
to conventional rotating lidar, there are systems that utilize a lidar sensor integrated into
a smartphone, eliminating the need for dedicated devices and reducing the amount of
additional hardware the user must carry [56]. Another system was developed with two
single-point lidar sensors, saving costs on typically expensive lidar components that contain
motors for 360-degree coverage [57]. It should be noted that rotating lidar is better suited
for wheeled platforms, and not suitable to be worn on a human user.

To summarize, self-contained systems stand out for their independence from external
infrastructure that uses active components. This autonomy ensures that visually impaired
users can depend on these technologies for guidance, regardless of the availability of
networked components. Moreover, the use of advanced imaging and sensing technologies
allows for a richer interpretation of the environment, facilitating more informed and safe
navigation decisions. Expanding on this, the adaptability of self-contained systems to
various environments without the need for connectivity or external data inputs highlights
their versatility and robustness. This capability is particularly important in areas where
network infrastructure is limited or non-existent, or cannot be installed, ensuring that the
benefits of assistive technologies are accessible to a broader range of visually impaired
individuals. Ultimately, the development and refinement of self-contained systems aim to
empower users with greater autonomy and confidence in navigating their surroundings,
significantly enhancing their quality of life. A comparison of different self-contained
systems is included in Table 2.

The exploration of self-contained versus networked systems highlights an important
consideration in the development of assistive technologies for visually impaired individ-
uals. While networked systems benefit from the scalability and specificity provided by
external infrastructure, self-contained systems offer unparalleled reliability and versatility,
essential attributes for enhancing the independence and mobility of visually impaired users.
As research in this field progresses, the integration of these systems and their technolo-
gies promises to drastically improve accessibility and spatial awareness for the visually
impaired community.
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Table 2. Comparison of self-contained navigation systems for the visually impaired.

Feature/Sensor Type Single Camera Stereo Camera RGB-D Camera Lidar

Principle of Operation Marker Recognition [29] Marker Recognition +
Depth Perception [35]

Marker Recognition +
Depth Perception ToF Sensor + SLAM [53]

Typical Range Depends on marker size
and type [30]

Depends on marker size
and type [30]

Depends on marker size
and type [47] Up to 90 m [53]

Accuracy Low to Moderate [31,32] Moderate Moderate [45,46] to
High [50,51] High [53]

Cost Low Low to Moderate Moderate High [57]

Notes
Needs fiducial markers

(also used for range
estimation) [31,32]

Needs fiducial markers Needs fiducial markers
No infrastructure needed;
rotating ones not suitable

for carrying [56]

3. Object Recognition and Localization
This section discusses the object recognition and localization module in our VISA

system, pivotal in assisting visually impaired users by enabling them to identify and pin-
point the location of everyday objects in their vicinity. At the heart of this exploration is
the deployment of a sophisticated RGB-D camera system, paired with the cutting-edge
capabilities of YOLOv8—a state-of-the-art neural network model renowned for its accuracy
and speed in object recognition tasks. This section aims to dissect the technical under-
pinnings of the object recognition and localization module, providing a comprehensive
overview of the module’s architecture, and the integration of depth sensing to augment
spatial awareness. A flowchart of the object recognition and localization processes is shown
in Figure 3.

Figure 3. Flowchart of object recognition and localization.
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3.1. Vision-Based Real-Time Object Recognition

The object recognition module is the linchpin of our VISA system, endowed with the
advanced capabilities of the YOLOv8 algorithm. This incarnation of the YOLO series [58]
is a state-of-the-art object detection model that has been trained on the COCO (common
objects in context) dataset, which encompasses an array of 80 object classes ranging from
everyday household items to complex environmental elements [59]. The model structure
of YOLOv8 is shown in Figure 4. This is drawn on the basis of [60].

Figure 4. YOLOv8 model structure [60].

To optimize real-time object recognition for visually impaired users, ensuring swift
and precise assistance in diverse environments, it is important to understand YOLOv8’s
architecture. To begin, we look into the three fundamental blocks of the architecture, namely
the backbone, neck, and head, which together facilitate the entire object recognition process.

The backbone block works as the feature extractor of the YOLOv8 model, and is the
first to perform operations on the input image. This block is tasked with identifying and
extracting meaningful features from the input image. Starting with the detection of simple
patterns in its first few layers, the backbone progressively captures features at various
levels, enabling the model to construct a layered representation of the input with sufficient
extracted features. Such detailed feature extraction is crucial for the understanding required
in object detection.

The neck block follows the backbone block, which acts as an intermediary between
the feature-rich output of the backbone block and the head block that generates the final
outputs. The neck block enhances the detection capabilities of the model by combining
features and taking contextual information into account. It takes feature extractions from
different layers of the backbone block, effectively creating layered feature storage. This
process allows the model to detect objects large and small. This section of the network
also works to streamline the extracted features for efficient processing, striking a balance
between speed and the accuracy of the model’s output.

The final block, the head, is where the results of the object detection process are
generated. Utilizing the layered features prepared by the neck block, the head block is
responsible for categorizing, producing bounding boxes, and assigning confidence levels
for each detected object. This part of the network encapsulates the model’s ability to not
only locate but also identify objects within an image, making it a vital block in the YOLO
architecture. Through the coordinated functioning of these three blocks, YOLO achieves its
objective of fast and accurate object detection.

In addition, the convolutional nature of YOLOv8 should be examined. The YOLO
architecture performs feature analysis on a local level, focusing on specific regions of an
image rather than analyzing it in its entirety. The method relies heavily on the repeated
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application of convolutions throughout the algorithm to generate feature maps, useful in
enabling efficient real-time operation.

YOLOv8 provides a total of five models with different numbers of model parame-
ters: YOLOv8n (Nano), YOLOv8s (Small), YOLOv8m (Medium), YOLOv8l (Large), and
YOLOv8x (eXtreme). Their corresponding model parameters are shown in Table 3. Based
on the trade-off between accuracy and efficiency, we chose YOLOv8s as the model to
be used in our VISA system. It has the second-fewest parameters at 11.2 million [58].
YOLOv8s represents an option in the YOLO lineage that is suitable for embedded systems
and edge computing, providing a model that is optimized for operational efficiency but
still sufficiently accurate. This balance is crucial for real-time applications such as our VISA
system, which runs on the NVIDIA Jetson Orin Nano—a platform known for its balance of
power and performance in edge computing scenarios. According to the research carried
out in [58] and our test result in Table 3, we conclude that YOLOv8s’ position is at the sweet
spot of the trade-off between inference time and performance. In other words, a simpler
network model like YOLOv8n leads to an unacceptable accuracy drop with no applicable
increase in FPS (frames per second), while a more complex model like YOLOv8m reduces
FPS noticeably with little improvement in accuracy. Such equilibrium ensures that our
VISA system can deliver the real-time object recognition necessary for the navigation and
interaction of visually impaired users, while not sacrificing recognition accuracy.

The COCO dataset, the training ground for YOLOv8s, is instrumental in the model’s
ability to discern a diverse set of objects. This large-scale dataset facilitates the model’s
learning and generalization capabilities, making it robust against the varied visual scenes
encountered in indoor environments. The training process involves exposing the model to
numerous annotated images, allowing it to learn the features and characteristics of different
objects, which leads to the reliable performance of our VISA system.

Implementing YOLOv8s within our assistive technology involved leveraging the pre-
trained model and adapting it to the system’s requirements. By integrating the model with
the RealSense camera, we crafted a real-time feedback loop that processes visual data to
inform and guide users. The module, thus, interprets the class information of recognized
objects, to be used for the object localization module and other modules in the VISA system.

Our empirical tests have demonstrated that YOLOv8s maintains its robust perfor-
mance in real-world scenarios pertinent to our VISA system. The tests involved running
the model through a series of indoor environments, capturing its detection capabilities, and
measuring the latency and accuracy of its responses. These tests confirmed the model’s
aptness for the intended use-case, ensuring that visually impaired users receive timely
and precise information about their surroundings. A comparison of different YOLOv8
models running on the Jetson Orin Nano platform is given in Table 3. The test confirms
our statement of the sweet spot for YOLOv8s, as it achieved great average FPS and low
power consumption, while not suffering from low accuracy. The object recognition results
are shown in Figure 5, which indicates accurate recognition of everyday objects indoors.

The YOLOv8s object recognition module is a testament to the advancements in ma-
chine learning and its applications in assistive technologies. By leveraging the cutting-edge
capabilities of YOLOv8s, our VISA system represents a significant step forward in provid-
ing visually impaired individuals with greater autonomy and a more profound interaction
with their environment. The module’s ability to process complex visual data in real time
opens new avenues for research and development in assistive technology, promising a
future where such systems are not just aids but integral parts of how individuals with
visual impairments engage with the world around them. Also, the information obtained by
the YOLOv8s object recognition system will be utilized by the object localization module,
namely recognized object classes and bounding boxes. An example is shown in Figure 5,
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where we overlay the object classes and bounding boxes onto the depth image. We shall
discuss the localization module in the next section.

Table 3. Performance comparison of YOLOv8 variants running on Jetson Orin Nano.

Model
Neural Network

Model
Parameters (M)

Average Frame
Time (ms) Average FPS

Board Power
Consumption

(W)

Wattmeter
Power

Consumption
(W)

YOLOv8n (Nano) 3.2 24.12 41.46 6.5 9.9
YOLOv8s (Small) 11.2 27.45 36.43 7.3 11.1
YOLOv8m (Medium) 25.9 62.63 15.97 8.6 12.8
YOLOv8l (Large) 43.7 102.17 9.79 9.5 14.2
YOLOv8x (eXtreme) 68.2 155.59 6.43 10.1 14.7

Figure 5. Object recognition results (left) and overlay on the depth image (right).

3.2. Object Localization and 3D Visualization

The object localization and 3D visualization module is a pivotal component of our
VISA system, designed to translate the object classification results and depth data into
locations of the objects in a three-dimensional space. This module uses the bounding boxes
and class names provided by the object detection module to generate spatial awareness,
enabling visually impaired users to engage with their environment more effectively. A
flowchart of the object localization module is shown in Figure 6.

The object localization module, as depicted in Figure 6, performs a series of steps to
identify the location of objects for visually impaired individuals within a 3D environment,
on a frame-by-frame basis. The inputs to this module include a depth frame from the
RGB-D camera and the corresponding object classification results, which include bounding
boxes around detected objects. The classification results act as a backdrop for correlating
additional information for other modules, such as the navigation module and the text-to-
speech module.

To begin processing, the module extracts the class ID and the bounding box coordinates
for each detected object. The class ID indicates the type of object, while the bounding box
coordinates define its location in the camera’s field of view.

A key step in this module is the accurate calculation of the average depth within
the bounding boxes. The RealSense D435 RGB-D camera utilizes the left image sensor
as the reference for the stereo-matching algorithm to generate depth data, resulting in a
non-overlapped region in the camera’s depth frames. This non-overlapped region (at the
left edge of the frame and objects) contains no depth data (all zeros). Examples of the
non-overlapped regions can be seen in the right part of Figure 5, shown as regions in deep
blue. The module masks out all such values within the depth frame that fall inside the
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object’s bounding box. By doing this, we ensure that the average depth represents the true
distance to the object.

Figure 6. Flowchart of the object localization module.

The average depth within the masked bounding box is then calculated, which provides
an estimation of how far the object is from the camera. This step is essential in determining
the distance to the object, which is necessary information for a number of different modules,
including but not limited to navigation, obstacle avoidance, and the human–machine
interface. It can be used to inform the user of the proximity of objects, enhancing their
spatial awareness and aiding in safe navigation.

After calculating the average depth, the module computes the object’s relative location
based on the centroid of the bounding box and the previously determined average depth.
This step ascertains the object’s position in three-dimensional space relative to the camera,
providing spatial orientation in the form of the azimuth, the elevation, and the depth of
the object. A detailed description of the calculation for azimuth and elevation is given in
Section 3.2.1. Finally, a decision step checks if the current object is the last one in the list for
this frame. If not, the process loops back to handle the next object. If it is the last object, the
subroutine ends.

Upon completion, the module outputs the processed data, which include the distance
and relative location of all detected objects within the camera’s field of view. This output
can then be used to inform visually impaired users about their immediate surroundings or
to guide navigation systems in real time. It also serves as a foundation for translating the
results into other sensory modalities, such as audio feedback.

This entire process is optimized for real-time operation, acknowledging the necessity
for immediate feedback in an assistive context. The module is fine-tuned to work in concert
with the object detection module, ensuring that the visualizations it produces are both
current and relevant to the user’s immediate surroundings.

3.2.1. Azimuth and Elevation Calculations

For precise object localization and to obtain data for preventing collisions, it is essential
to compute the azimuth and elevation of objects identified within the field of view of an
RGB-D camera. This calculation necessitates knowledge of the camera’s field of view and
its resolution, specifications that depend on the camera model and can typically be found
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in its data sheet. The equation to ascertain an object’s azimuth, or its relative horizontal
positioning, employs the following parameters: θ = xα/W − α/2. Here, x is the horizontal
position of the geometric center of the region, in terms of the number of pixels from the left
edge of the image; α is the horizontal field of view of the depth camera in degrees; W is the
resolution of the image along the horizontal axis; and θ is the azimuth of the obstacle in
degrees, with 0 indicating dead ahead, a negative value indicating to the left, and a positive
value indicating to the right.

Similarly, the following equation can be used to determine the relative vertical position
(elevation) of an object: ϕ = yβ/H − β/2. Here, y is the vertical position of the geometric
center of the region, in terms of the number of pixels from the top edge of the image; β is
the vertical field of view of the depth camera in degrees; H is the resolution of the image
along the vertical axis; and ϕ is the elevation of the obstacle in degrees, with 0 indicating
dead ahead, a negative value indicating below the horizon, and a positive value indicating
above the horizon.

A graphical representation of the equations, illustrating the different variables, is
shown in Figure 7.

To enable easier understanding and a faster response, we use the rule of thirds to
divide the image plane into nine regions, and provide the location of the object in relation
to the visually impaired user in terms of the region it resides in. The rule of thirds is a
principle in photography and visual arts that divides the image plane into nine equal parts
to help compose visual elements in a balanced and aesthetically pleasing manner. This is
achieved by overlaying two equally spaced horizontal lines and two equally spaced vertical
lines on the image. The intersections of these lines and the areas they define create natural
points of interest and divide the space into distinct regions: upper left, upper center, upper
right, middle left, center, middle right, lower left, lower center, and lower right.

Figure 7. Graphical representation of azimuth and elevation calculation.

In the context of assisting visually impaired users through a real-time spatial awareness
system, this rule can be adapted to simplify the field of view into these nine manageable
regions. By doing so, the VISA system can communicate the location of an object more
intuitively. The location within the field of view is determined by the centroid of the
bounding box that identifies the object in the camera’s image plane. For example, if the
centroid falls within the upper left section of the grid, the VISA system would convey
“upper left” to the user. Similarly, if it is in the center, the user would be informed that
the object is “center”, and if in the lower right, the information provided would be “lower
right”. This method allows for a straightforward and effective way of conveying spatial
information, enabling visually impaired users to understand the whereabouts of objects in
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their immediate environment with greater ease. A graphical representation is shown in
Figure 8.

Figure 8. Graphical representation of region separation for intuitive object location.

3.2.2. 3D Visualization

The 3D visualization module embodies the synergy between advanced computer
vision techniques and user-centric design. By providing a dynamic, intuitive representation
of the environment, the module plays a critical role in empowering visually impaired users
to navigate and interact with their surroundings with unprecedented independence. This
module not only represents a technical achievement in the field of assistive technology but
also marks a significant step towards inclusive design that accommodates the needs and
preferences of all users.

To begin with 3D visualization, it is necessary to understand the location of the RGB-D
camera, relative to the visually impaired user wearing it. We chose to wear the RGB-D
camera like a headlamp, as shown in Figure 9. An assisting device to be carried by the
visually impaired individual an be worn on different parts of the body, and it is important to
pick the most suitable spot for the best efficiency and ease of usage. According to the review
in [61], for nearly half of the assistant systems for the visually impaired they reviewed, the
camera/detector was worn on the forehead or the eyes of the user. As we will show in the
discussion below, this is not a coincidence.

Figure 9. Testing configuration of the RGB-D camera worn like a headlamp.
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Mounting an RGB-D camera on the forehead of a user, akin to a headlamp, offers
distinct advantages for assisting visually impaired individuals in interacting with their
environment. This configuration ensures the camera is positioned at a similar height and
orientation to the user’s eyes, providing a field of view that closely mimics that of a sighted
person. This natural alignment means the camera can capture a perspective of the world
that is intuitively aligned with the user’s direction of interest, enhancing the relevance and
accuracy of the information it gathers.

The placement of the camera on the forehead enables users to effortlessly scan a wide
arc—up to 270 degrees—in front of them without the need to physically turn their body.
This capability is particularly beneficial in crowded or confined spaces where maneuver-
ability is limited. Users can navigate through these environments more efficiently, ensuring
a smoother and safer passage.

Additionally, the intuitive ability to look up and down with the camera simplifies the
process of bringing objects into the camera’s field of view for recognition. Whether it is
identifying products on shelves of different heights in a grocery store or reading signage
above eye level, the head-mounted camera adjusts seamlessly to the user’s natural move-
ments, ensuring that relevant objects are easily and quickly identified without requiring
manual adjustment of the device.

Turning the head to focus on a desired object or a fiducial marker centers it in the cam-
era’s field of view, significantly simplifying the process of orientation toward a destination
or item of interest. This head movement-based control mechanism allows for rapid and
precise targeting, which is especially useful for detailed tasks like scanning fiducial markers
for navigation within indoor spaces or selecting specific products for closer examination.

By aligning the camera’s perspective with the user’s head movements, the VISA system
enhances spatial awareness and facilitates more effective interaction with the environment.
This approach not only empowers visually impaired users with greater autonomy and
confidence but also streamlines the process of acquiring crucial information about their
surroundings, making activities like shopping, navigating complex indoor spaces, and
interacting with dynamic environments more accessible and engaging.

With the information on the setup of our camera, we can come up with a 3D visu-
alization of the objects within the field of view of the RGB-D camera. Starting from the
object localization results, the average depths corresponding to the recognized objects are
then mapped to the detected bounding boxes. Using the linked depth and bounding box
information, a thin 3D box perpendicular to the line of sight of the camera can be created in
3D space, representing the specific physical location of the object.

The final step involves reconstructing the object in 3D using the color information to
provide a comprehensive visualization. The pixels within the bounding box in the RGB
frame are overlaid on top of the 3D box model. In this visualization, the 3D models of the
objects can be interacted with by rotating the view or zooming in for more detail. Such
rotation is shown in Figures 10 and 11. In Figure 10, we can see the view of the RGB-D
camera and the recognized objects on an image plane. However, without annotations of
the distances of objects, we cannot understand the depth relationships among the objects.
In Figure 11, the entire view is rotated, and we can see the different distances of the objects
from the side of the camera. The rectangular pyramid with blue outlines in the two figures
indicates the field of view of the RGB-D camera, with the bottom of the pyramid indicating
the image plane exactly one meter away from the camera. The green lines connecting the
objects and the camera indicate the azimuth, elevation, and distance of each object.

In the context of assisting visually impaired individuals, this 3D visualization could be
translated into auditory feedback, providing users with an understanding of the environ-
ment around them and enhancing their spatial awareness. For instance, the VISA system
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could describe the size, shape, and relative position of objects, or use audio cues to indicate
the direction and distance of items in a store.

Figure 10. Three-dimensional visualization of environment, head-on perspective.

Figure 11. 3D visualization of environment, sideways perspective.

The VISA system was tested in an indoor environment, simulating the task of finding
a specific item (a remote) on the floor. Starting with the remote within the field of view
but not in the center, blindfolded users could orient their heads toward the remote within
two to three seconds upon hearing the information about recognized items. Then, with the
distance information provided, it was easy for the users to touch the remote in another two
to three seconds. The VISA system ran at no fewer than 10 FPS for the entire duration. The
setup is shown in Figure 12.
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Figure 12. The testing setup of a TV remote on the floor next to a chair for the user to retrieve.

4. Indoor Positioning and Navigation
This section embarks on a detailed exploration of the navigation module, a cornerstone

of the VISA system designed to enhance the mobility of visually impaired users within
indoor environments. Central to this section is the innovative use of ArUco marker recogni-
tion integrated with depth information obtained from an RGB-D camera. This combination
not only revolutionizes the way places are recognized and utilized for navigation, but
also ensures safe passage by accurately detecting and avoiding obstacles. This section
meticulously unpacks the technical underpinnings of the navigation system, from the initial
capture of spatial data to the processing and interpretation of these data to guide users
effectively. It delves into the algorithms and methodologies that enable precise and reliable
ArUco marker recognition, discusses the challenges of navigating complex indoor spaces,
and evaluates the VISA system’s performance in real-world scenarios. By providing a
comprehensive overview of the navigation module’s development and capabilities, this
section sets the stage for understanding how advanced technology can significantly im-
prove the autonomy and safety of visually impaired individuals as they navigate through
their daily lives.

4.1. Node Map Generation for Indoor Environment

The development of the node map for indoor navigation is based on the positioning
of ArUco markers, which serve as both locational markers and data reservoirs within the
built environment. This network of nodes, underpinned by fiducial marker recognition
technology, is essential for guiding visually impaired users through indoor spaces by
encoding spatial information in an accessible and reliable manner.

The creation of the node map involves a survey of the indoor environment to determine
the placements of necessary navigational nodes. If a drawing of the building is available, it
will save time and effort in creating the node map. These nodes include decision points like
corridor intersections, room entrances, and other significant landmarks that a user might
need to locate or navigate around. By methodically mapping these points, we create a
structured framework that reflects the physical layout and accessibility of the environment.
An example of node generation is shown in Figure 13 and Table 4. A more detailed example
in a real building is shown in Figure 14.
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Figure 13. Node map generation example.

Table 4. ArUco marker database sample.

Node ID Node Name Possible Paths Coordinates

1 Room A 2 [0, 0]
2 Entrance 1, 3, 4 [8, 0]
3 Room B 2 [16, 0]
4 Hall 2, 5, 6, 8 [8, 8]
5 Elevator 4, 7 [0, 8]
6 Women’s Restroom 4 [16, 8]
7 Room C 5, 8 [0, 16]
8 Room D 4, 7, 9 [8, 16]
9 Men’s Restroom 8 [16, 16]

Each node in the network is designated with one or more ArUco markers. These
markers are matched with essential information, such as the node’s identifier and relevant
metadata, including local environment descriptions. This might encompass details about
adjacent rooms, directions to nearby facilities, or warnings about potential hazards. Such
markers can be printed easily or even hand-drawn, and can be applied on doors, floors, or
even ceilings with no permanent alteration to the indoor environment, as seen in Figure 15.
When recognized by our VISA system, the ArUco markers yield precise locational data,
allowing the user to orient themselves and chart a course to their desired destination.

Figure 14. Visualization of the node map generation for Siegel Hall 3rd Floor. Room numbers are
marked in black texts. The nodes are presented in the figure in a sequence.
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Figure 15. Simulated example of ArUco marker placement indoors.

The interaction with ArUco markers is facilitated by the assistive device’s integrated
camera and image processing software, which scans and decodes the ArUco markers in
real time. Upon recognition, the navigation module instantaneously updates the user’s
location within the digital representation of the indoor space and proceeds to compute
navigational routes. This computation takes into account the current configuration of
the nodes and dynamically adjusts to any alterations within the environment, such as
temporary obstructions or changes in the layout.

The visualization in the figure provided illustrates the practical implementation of
such a node system. Here, the nodes are interconnected, forming a comprehensive map that
not only directs the user from point to point but also informs them of their surroundings.
This approach facilitates an intuitive understanding of the space and enhances the user’s
ability to navigate it independently.

The integration of the node map with other system components, specifically the
object recognition and localization module, is a pivotal aspect of the design. The object
recognition and localization module informs the user about immediate obstacles and items
of interest. The navigation module ties these elements together, providing the user with
both micro-level detail and macro-level orientation within the indoor environment.

In summary, the node map is a fundamental element of our indoor navigation module,
embodying the synergy of ArUco marker technology, spatial mapping, and user-centric
design to empower visually impaired individuals with enhanced mobility and spatial
awareness. Its implementation within the module showcases an innovative approach to
indoor navigation, advancing the state of assistive technologies for visually impaired users.

4.2. ArUco Marker Recognition

This section delves into the ArUco marker recognition module, a pivotal component
of the indoor navigation module designed to enhance the autonomy of visually impaired
individuals. ArUco markers serve as effective node designators within the indoor environ-
ment, providing users with precise locations of places and facilitating seamless navigation.
Its implementation leverages advanced image processing techniques to detect and decode
ArUco markers in real time, employing the camera system to capture visual inputs. Upon
recognizing an ArUco marker, the VISA system matches relevant location data, enabling the
dynamic generation of vocal guidance for the user. This method not only ensures accurate
marker identification but also integrates smoothly with the VISA system’s depth-sensing
capabilities, offering a comprehensive solution for obstacle avoidance and pathfinding. The
ArUco marker recognition process is optimized for efficiency, ensuring minimal latency
and high accuracy in various lighting conditions, thereby empowering visually impaired
users with a reliable means of indoor navigation.
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The maximum distance at which an ArUco marker can be effectively recognized is
a critical factor for indoor navigation. An empirical equation exists for scanning distance
using cameras on common smartphones [62], d = 250 l/R. Here, d is the maximum
scanning distance, l is the side length of the ArUco marker in meters, and R is the number
of rows or columns in the ArUco marker.

As the equation suggests, we can trade information for recognizability. By using a
code with fewer rows and columns like ArUco markers, we can reduce the number of
rows and columns to 6, thus increasing the maximum scanning distance to more than
10 m assuming l = 0.3 m. This distance calculation allows the VISA system to dynamically
adjust the granularity of navigation instructions based on the user’s proximity to the next
node. Such dynamic feedback is crucial for facilitating smooth and intuitive navigation,
significantly enhancing the spatial awareness of visually impaired individuals within
indoor environments.

4.3. Indoor Positioning Using ArUco Marker Recognition

In the domain of indoor navigation, the strategic deployment of ArUco markers
integrated with depth sensing technology has emerged as a cornerstone for developing
indoor positioning systems. This section delves into the innovative application of ArUco
markers for indoor positioning, an essential component of the VISA system for visually
impaired individuals. Through a detailed analysis of the underlying graph structure and
algorithms, we illustrate how the VISA system accurately determines the camera’s (and
thus the user’s) position and orientation within an indoor environment.

The basis of our positioning system is encapsulated in a graph structure that represents
the spatial layout of indoor environments using ArUco markers. Each ArUco marker within
this graph is associated with a tuple comprising the marker’s coordinates and a normalized
vector indicating the marker’s orientation. For instance, in an example graph, the markers
are identified by integers (e.g., 4, 8, and 996), with each node’s spatial coordinates and
orientation vectors provided. This is shown in Table 5.

Table 5. Graph structure for indoor positioning.

Node ID Coordinates Direction

4 (60, −5) (0, −1)
8 (45, −90) (0, 1)

996 (10, −15) (1, 0)

The coordinates represent the physical location of each ArUco marker in the indoor
space, whereas the direction vectors indicate the orientation of the ArUco markers. This
orientation is required to deduce the camera’s direction in the indoor environment.

The core of our indoor positioning system lies in the dynamic recognition of ArUco
markers and the interpretation of their spatial information to ascertain the camera’s location
and facing direction. Recognized markers are logged into a list, which aggregates the ID,
the rotation matrix based on the angle of incidence, and the distance from the camera for
each detected marker.

The coordinates of the user can be calculated, based on the incidence angles of the
recognized markers and their distances. Furthermore, the horizontal direction of each
marker relative to the camera is computed using a function that translates the centroid’s
horizontal coordinate of a marker into an angle of incidence based on the camera’s field of
view (FOV) and resolution. The calculated angle aids in determining the marker’s position
relative to the camera’s central axis, thereby facilitating a nuanced understanding of the
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camera’s orientation within the space. The calculation of the user’s coordinates is shown in
the equation below:

C⃗user = V⃗m + dR(θ)V⃗d, (1)

where C⃗user is the vector determined by the coordinates of the user (x, y), V⃗m is the vector
determined by the coordinates of the marker, d is the measured distance, V⃗d is a normalized
vector representing the direction that the marker is facing, and R(θ) is the rotation matrix

based on the angle of incidence θ, R(θ) =

[
cos θ − sin θ

sin θ cos θ

]
.

For a total of n ArUco markers within the field of view, we have the equation below:

C⃗user =
1
n

n

∑
i=1

(
V⃗mi + diR(θi)V⃗Di

)
(2)

Similarly, we can calculate the normalized vector representing the user’s direction,
literally where the user is facing, using the equation below, where R(θ′) is the user’s
direction rotation matrix based on the angle of the marker relative to the user’s direction θ′,

R(θ′) =

[
cos θ′ − sin θ′

sin θ′ cos θ′

]
:

V⃗d,user = −R(θ)R(θ′)V⃗d (3)

A visualization of the calculations is shown in Figure 16.

Figure 16. Visualization of coordinates calculation for visually impaired users.

As can be seen in the equations above, the depth information and the directional data
of recognized markers are used to compute the user’s estimated position and orientation.
Notably, the function incorporates adjustments for the camera’s position based on the
markers’ orientation and distance, exemplifying a reverse-engineering approach to infer
the camera’s perspective from the markers’ spatial data. Finally, it should be noted that
the positioning accuracy increases with a reduction of in incidence angle, so it is advanta-
geous to place more ArUco markers to reduce the incidence angles of detected markers.
This methodology underscores the adaptability of the VISA system to varying indoor
environments, a testament to its potential as a reliable navigational aid.

The algorithm’s efficacy is demonstrated through its ability to average multiple marker
detections, thereby mitigating the impact of potential outliers and ensuring a smooth and
accurate positioning experience. This feature is particularly beneficial in densely popu-
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lated indoor settings, where markers are abundant and viewpoints may vary significantly.
A real example is shown in Figure 17. In this test, the size of the ArUco markers is
190 mm × 190 mm. It can be seen that the ArUco marker with ID 8 can be recognized at a
distance of 3.5 m under indoor lighting conditions when the user is walking at a slow pace.
With larger ArUco markers, our ArUco marker recognition module can reliably recognize
the markers at a longer distance, making the ArUco markers suitable for indoor positioning
in larger buildings with fewer markers. Also, it can be seen that the object recognition
module and the ArUco marker recognition module are running at the same time.

Figure 17. Indoor positioning using one ArUco marker in Siegel Hall 310C. Green arrow indicates
direction user is facing.

In summary, the indoor positioning system leveraging ArUco markers presents an
efficient and cost-effective solution to the challenges of real-time navigation for visu-
ally impaired individuals. By intricately analyzing the spatial information encoded in
ArUco markers, the VISA system offers precise and responsive feedback on the user’s
location and orientation, thereby enhancing their spatial awareness and mobility within
indoor environments.

4.4. Path Planning Based on Node Map

In the context of enhancing indoor navigation for visually impaired users, path plan-
ning plays a pivotal role in ensuring seamless and safe movement through environments.
Leveraging the foundational groundwork laid by the node map generated in Section 4.1,
this section delves into the methodologies and algorithms pivotal for crafting dynamic and
efficient navigation paths.

The core of the path planning mechanism involves dynamically calculating the most
efficient route from the user’s current location to their desired destination. This is achieved
by integrating the precise location data obtained from ArUco marker recognition, as out-
lined in Section 4.2, with the detailed node map. The path planning algorithm meticulously
analyzes the spatial layout, identifying optimal pathways while considering the shortest
physical distance.

To navigate the complexities of indoor environments, the VISA system employs
Dijkstra’s algorithm [63]. This algorithm is renowned for its efficiency in finding the
shortest path between points in a graph, making it ideal for real-time navigation purposes.
Its implementation takes into account the physical distance, ensuring the selected path is
the shortest for visually impaired users. The procedures of the Dijkstra’s path calculation
algorithm are given below.

1. Initialization:
Assign an initial distance of infinity to all nodes, except the starting node, which is set
to 0. Mark the starting node as the current node.
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2. Unvisited Set:
Mark all nodes as unvisited. Create a set containing all unvisited nodes, called the
“unvisited set”.

3. Destination Check:
Check if the destination node has been visited.
If yes, proceed to the end and retrace the steps to find the optimal path.
If no, continue to the next step.

4. Select the Current Node:
Select the unvisited node with the smallest distance as the current node.

5. Neighbor Check:
Inspect the neighbors of the current node.

6. Distance Update:
For each neighbor, check if the path through the current node offers a shorter distance.
If yes, update the distance for that neighbor.

7. Neighbor Completion Check:
Check if all neighbors of the current node have been visited.
If no, repeat the neighbor check for the next neighbor.
If yes, mark the current node as visited and remove it from the unvisited set.

8. Loop:
Repeat steps 4 through 8 until the destination node is visited.

9. Path Retrace:
Once the destination node is visited, retrace the steps to determine the optimal path
from the start to the destination.

10. End:
Conclude the process. The shortest path and its distance are now identified.

An essential aspect of the path planning process is its adaptability to real-time changes
within the environment. The indoor spaces traversed by the visually impaired user can be
dynamic, with the potential for alterations in layout due to moved furniture or the presence
of temporary obstacles like people or carts. The VISA system continuously monitors the
environment for changes, adjusting the proposed navigation path as necessary to maintain
its viability and safety. This is further discussed in Section 4.3.

The efficiency and reliability of the proposed navigation paths are assessed through
comprehensive simulations and real-world testing. These evaluations focus on metrics
such as navigation time, the accuracy of the path with respect to the destination, and user
feedback regarding the ease of following the suggested path. This iterative evaluation
process ensures continuous improvement of the path planning algorithm, aiming to enhance
the overall user experience in navigating indoor environments.

4.5. Obstacle Avoidance Based on Depth Information

To further enhance the navigation capabilities of visually impaired individuals in
indoor environments, obstacle avoidance functionality needs to be implemented in our
VISA system. This section describes the integration of object recognition and localization,
utilizing YOLOv8s for recognition and using depth information from depth cameras for
localization, as detailed in Section 3, to identify and circumnavigate obstacles effectively.

The VISA system’s obstacle avoidance mechanism operates on two fronts. Firstly,
it uses the results of object recognition and localization to identify obstacles within the
user’s path, leveraging the depth information to gauge the distance and dimensions of
these obstacles accurately. This allows for the dynamic adjustment of the navigation path
to avoid these obstacles, ensuring safe passage for the user.
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Secondly, the VISA system employs a direct analysis of the depth frame, focusing on a
grid of sampling points to monitor the space in front of the user. By evaluating the distance
data from these points, the VISA system can detect sudden changes in depth that signify
the presence of an obstacle. When a sampling point indicates a distance shorter than a
safety threshold, the VISA system issues a warning to the user, enabling them to stop or
change direction. Instead of using a predetermined threshold, the threshold is calculated
based on the rate of closure of pixels in the region of interest on the depth image. The
region of interest is chosen so that regions that are not in the predicted path will be ignored.
The regions chosen are the top middle, the center, and the lower center regions in Figure 8.
The closure rate can be determined using Equation (4). Examples of different closure rates
are shown in Figure 18.

R =

(
1

W×H ∑W×H
i=1 Di,previous

)
−

(
1

W×H ∑W×H
i=1 Di,current

)
∆t

(4)

Figure 18. Collision forecast based on projected location for different closure rates.

The variables in the equation are defined as follows:

1. R is the rate of closure, representing the speed at which the observer is moving
towards or away from the object or scene in focus, measured in meters per second.

2. Di,current represents the depth of the ith pixel in the current depth frame.
3. Di,previous represents the depth of the ith pixel in the previous depth frame.
4. W and H are the horizontal and vertical resolutions of the region of interest, respec-

tively, indicating the number of pixels along each dimension.
5. ∑W×H

i=1 Di,frame is the summation of depths of all pixels in a given region of interest,
where frame can be either current or previous.

6. ∆t is the change in time between the capture of the current and previous depth frames,
typically measured in seconds.
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Following the calculation of the closure rate, we can calculate the safety threshold.
To calculate the safety threshold distance based on the time to collision (TtC), we use the
concept that the time to collision can be determined by dividing the current distance to the
object by the rate of closure, assuming the rate of closure remains constant. This concept
allows us to establish a safety threshold by determining how much distance is considered
safe given a certain amount of time before a potential collision occurs.

The equation to calculate the Time to Collision (TtC) and the safety threshold distance
is given by TtC = Dcurrent/R. Here, Dcurrent is the current distance to the object (calculated
as the average depth of the pixels in the current frame), and R is the rate of closure. To
establish a safety threshold, we decide on a minimum safe TtC (denoted as TtCsafe ), and
rearrange the equation to solve for the safety threshold distance: Dsafe = R×TtCsafe. The
variables in the safety threshold distance equation are defined as follows:

1. Dcurrent represents the current distance to the object or scene in focus. It is calculated
as the average depth of all pixels in the current depth frame, providing an estimate of
how far the observer is from a point of interest or obstacle.

2. R is the rate of closure between the observer and the object or scene. It quantifies the
speed at which the distance to the object is decreasing (or increasing if moving away),
measured in meters per second. A positive rate indicates that the observer is moving
towards the object, while a negative rate suggests they are moving away.

3. TtC stands for Time to Collision. This variable estimates the amount of time remaining
before a collision occurs with the object or scene, assuming the current rate of closure
R remains constant. It is calculated by dividing the current distance Dcurrent by the
rate of closure R.

4. TtCsafe is the predefined minimum safe Time to Collision. This value represents the
desired buffer time that should be maintained to prevent collisions, allowing sufficient
time for corrective actions to be taken. It is a safety parameter set based on the specific
requirements of the navigation module or user preferences.

5. Dsafe denotes the safety threshold distance, which is the critical distance that must
be maintained from an object or scene to ensure safety, given the predefined TtCsafe.
It is determined by multiplying the rate of closure R by the minimum safe Time to
Collision TtCsafe, yielding the distance at which preventive or corrective measures
should be initiated to avoid a potential collision.

Through the combination of these strategies, the VISA system provides a robust solu-
tion for obstacle detection and avoidance, significantly enhancing the safety and efficiency
of indoor navigation for visually impaired individuals. This approach not only lever-
ages the advanced capabilities of AI and depth sensing technologies but also emphasizes
the importance of real-time adaptability and user feedback in creating a comprehensive
navigational aid with obstacle avoidance functionality.

5. Human–Machine Interface for Visually Impaired Users
In the realm of assistive technologies for the visually impaired, effective HMI is

paramount. The need for intuitive, responsive, and accessible communication channels
cannot be overstated, as they directly impact the user’s ability to interact with the envi-
ronment, perform tasks, and engage in different activities. Thus, we provide a detailed
description in this section, dissecting the various components that constitute the VISA
system’s human–machine interface, focusing on both input and output mechanisms that
cater to the specific needs of visually impaired users.

We commence with an in-depth analysis of the text-to-speech module, which serves
as the auditory channel for conveying essential information and feedback to the user.
Following this, we examine the speech-to-text module, highlighting its role in interpreting
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user commands and enabling a natural, voice-driven interaction with the VISA system. The
discourse then extends to character and object recognition using Google Lens, illustrating
how advanced visual recognition technologies can empower users to understand and
interact with their surroundings more effectively.

Through the exploration of these key areas, this section aims to underscore the impor-
tance of a robust, user-centered human–machine interface in the development of assistive
technologies. In the last part of this section, we compare our VISA system with existing
items and systems to assist the visually impaired, in terms of practicality and functionality.

5.1. Text-to-Speech Module

The text-to-speech (TTS) module represents a cornerstone of the interactive system
designed to empower visually impaired individuals by facilitating the translation of tex-
tual information into audible speech. This module plays a pivotal role in enhancing the
autonomy and navigational capabilities of the user, by providing real-time, audible feed-
back about their immediate environment, recognized objects, and navigation cues. The
implementation of the TTS module leverages the pyttsx3 library, a cross-platform tool that
interfaces with native TTS engines on Windows, macOS, and Linux, offering a high degree
of compatibility and customization.

The pyttsx3 library was chosen for its robustness, its ease of integration, and the quality
of its speech output. The initialization of the TTS engine is straightforward, facilitating
rapid deployment and real-time interaction with the user. The engine is configured to
operate in a separate threading model to avoid blocking the main execution thread, thus
ensuring that speech output does not interfere with the continuous processing of sensory
data and object recognition tasks.

The TTS module is used for multiple tasks of the VISA system, including:

1. Announcing detected objects and their locations relative to the user.
2. Reading ArUco markers identified in the environment, providing contextual informa-

tion and navigation assistance.
3. Issuing warnings for obstacle avoidance.
4. Reading text from the recognition results of Google Lens.
5. Interacting with user voice commands or reciting them for confirmation.

To optimize the user experience, the TTS module was customized in several key
aspects. The speech rate and volume were adjusted to ensure clarity and audibility, consid-
ering the diverse environments in which the VISA system may be used. Furthermore, the
selection of voices was tailored to cater to user preferences and accessibility requirements,
enhancing the naturalness and engagement of the interaction.

The integration of the TTS module within the broader system architecture is seam-
less, with APIs facilitating the dynamic generation of speech output based on real-time
data from the object recognition and localization modules, as well as user inputs pro-
cessed through the speech-to-text module. This integration underscores the modular
design of the VISA system, where the TTS module functions as an essential interface for
human–machine communication.

To summarize, the text-to-speech module serves as a must-have component of the
VISA system, embodying the commitment to providing visually impaired users with a
comprehensive, intuitive, and accessible navigational aid. Through careful selection of
technologies, customization to meet user needs, and seamless integration with the VISA
system’s architecture, the TTS module significantly contributes to the overarching goal of
enhancing the autonomy and quality of life of visually impaired individuals.
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Threading in the Text-to-Speech Module

In the implementation of the text-to-speech (TTS) module within our VISA system,
threading is a key technique to enhance the VISA system’s responsiveness and usabil-
ity, particularly for visually impaired users requiring real-time auditory feedback. The
utilization of the threading library in Python facilitates the execution of multiple opera-
tions concurrently, thereby ensuring that the VISA system’s main computational processes
remain uninterrupted by TTS operations.

The primary motivation behind employing threading for the TTS module stems from
the necessity to maintain seamless system performance while executing potentially blocking
operations such as speech synthesis. Given the VISA system’s objective to provide instant
feedback based on real-time environmental data and user interactions, it is imperative that
these feedback mechanisms do not hinder the VISA system’s core functionalities, including
object detection, navigation, and user command processing.

In the system code, threading is utilized to initiate speech synthesis tasks in parallel
with the main application processes. This is achieved by encapsulating the TTS functionality
within a separate thread, effectively isolating it from the primary execution flow. The
specific implementation involves the creation of a speak text thread, which serves as the
entry point for the TTS operations. Upon the need for a TTS module, the thread is dedicated
to executing the speech synthesis task, thereby allowing the VISA system to continue its
operation without waiting for the speech output to complete. The use of the speech thread-
running flag ensures that only one instance of speech synthesis is active at any given
time, preventing overlapping speech outputs and managing the queue of speech requests
effectively. A flowchart for threading in our VISA system is shown in Figure 19.

Figure 19. Flowchart for threading in VISA system program.

The adoption of threading in the TTS module introduces several benefits:
Non-blocking Operations: By offloading speech synthesis to a separate thread, the

VISA system can continue to process sensory inputs, detect objects, and respond to user
commands without delay, ensuring a fluid user experience.

Improved Responsiveness: The VISA system can provide immediate auditory feed-
back to user actions or environmental changes, a crucial aspect for navigation and interac-
tion in real-time scenarios.

Enhanced System Stability: Isolating the TTS operations in a separate thread reduces
the risk of system slowdowns or crashes that could result from the synchronous execution
of resource-intensive tasks.
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The strategic use of threading in the TTS module significantly contributes to the
overall performance and user experience of the VISA system. By enabling the concurrent
execution of speech synthesis alongside critical system processes, threading ensures that
the VISA system remains responsive and effective in providing real-time assistance to
visually impaired users.

5.2. Speech-to-Text Module

The speech-to-text (STT) module constitutes an essential component of the human–machine
interface within our VISA system designed for visually impaired individuals. This mod-
ule facilitates an intuitive and efficient means for users to interact with the VISA system
through voice commands, significantly enhancing the VISA system’s accessibility and
usability. Leveraging advanced speech recognition technologies, the STT module converts
spoken language into text, enabling the VISA system to understand and act upon user
commands in real time.

The STT functionality is implemented using the speech recognition library, known
for its versatility and support for multiple speech recognition services, including Google
Speech Recognition. This choice aligns with the VISA system’s need for reliable and
accurate speech-to-text conversion, ensuring that user commands are interpreted correctly
under various conditions.

The STT module can be invoked upon recognizing a QR code in the field of view of
the camera. The user just needs to place the QR code close to the RGB-D camera to issue
commands, with no need for other I/O devices. Upon the start of STT service, the audio is
captured and forwarded to the speech recognition service, which processes the audio and
returns the corresponding textual representation. This process is encapsulated within the
STT function, illustrating the module’s operation, as shown in Figure 20.

Figure 20. Flowchart for speech-to-text module.

The STT module is seamlessly integrated into the broader system architecture, en-
abling users to issue voice commands that control various system functionalities, such as
navigation commands, requests for information about nearby objects, or commands to
repeat the last spoken feedback. The VISA system’s ability to interpret these commands
accurately and provide the appropriate feedback or action is paramount to its effectiveness
as an assistive tool.

The following commands related to object recognition can be issued by the user:

1. List: The VISA system lists all recognized objects in the field of view. Example:
“Detected objects are: chair, remote”.
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2. Look for [Object Class]: The VISA system looks for a specific class of the item in the
field of view, and announces its location upon recognition. A [Looking] flag is set,
indicating the VISA system is now in item search mode. Reset all other flags. Example:
“Remote center, zero point eight meters”.

3. Locate: The VISA system looks for ArUco markers in the field of view and announces
its corresponding place upon recognition. Example: “Entrance, middle center, zero
point six meters”.

4. Go to [Node Name]: The VISA system uses Dijkstra’s Algorithm to determine the
path to the place announced by the user, and provides instructions based on results
from the positioning module. A [Navigating] flag is set, indicating the VISA system is
now in navigation mode. The system now automatically announces AruCo markers
it recognizes, providing the user with positional information. Reset all other flags.
Example: “Turn left ninety degrees for SPAM shelf, one meters”.

5. Stop: Reset all flags, exiting from looking mode or navigation mode.
6. Upload: Upload the current color frame to Google Lens and read the results.
7. Upload Recognized [Object Class]: The VISA system will upload the images within

bounding boxes corresponding to the said object class. Read the results.

Implementing an effective STT module within the VISA system presented several
challenges, primarily related to achieving high accuracy and responsiveness under varying
acoustic environments. Background noise and variations in speech patterns can signifi-
cantly affect the module’s performance. To mitigate these issues, the VISA system employs
noise reduction techniques to enhance recognition accuracy.

Moreover, the reliance on external speech recognition services introduces concerns
regarding latency and availability. The VISA system addresses these by optimizing the
audio capture and transmission process, and by incorporating fallback mechanisms to
ensure continued functionality even when the primary service is unavailable. For example,
a timeout is implemented in our VISA system, preventing constant waiting for speech in
case of erroneous invoking of the STT module.

To summarize, the speech-to-text module provides a natural and accessible interface
for visually impaired users to interact with our VISA system. Through the careful selection
of speech recognition technologies, the module contributes to the VISA system’s overall
goal of enhancing the autonomy and mobility of visually impaired individuals.

6. Case Study: Grocery Shopping
A comprehensive test in a simulated grocery store was conducted with satisfactory

results. In the test, the individual can utilize the vocal cues provided by the VISA system,
navigate in the simulated environment, pick up the desired items from the correct shelf,
confirm selection, and proceed to the checkout/exit. An example layout of part of a grocery
store is shown in Figure 21. An example of shelf recognition using ArUco markers, picking
up merchandise, and using Google Lens to recognize the merchandise in this store is shown
in Figure 22. A list is provided below, looking into the different aspects of using the VISA
system to assist in grocery shopping.
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Figure 21. Grocery store simulation environment for navigation and product fetching. The nodes
and the shelves are numbered in a sequence.

1. Challenges in Grocery Shopping
Visually impaired individuals face significant challenges in grocery shopping, such as
navigating store layouts, identifying products, and accessing product details. Existing
solutions often focus narrowly on either navigation or product identification, requir-
ing costly infrastructure like RFID tags. Few systems address both functionalities
comprehensively [64].

2. ArUco Markers for Navigation
ArUco markers provide a cost-effective and flexible solution for store navigation.
Placed strategically throughout the store, they enable the creation of a node map that
integrates with the VISA system. These markers guide users dynamically, offering
positional updates and optimized route calculations.

3. Object Recognition and Localization
The VISA system leverages YOLOv8 for real-time object recognition, enabling users
to identify products and obstacles within their environment. Depth data enhance
this capability by providing spatial localization of objects. For detailed product
identification, Google Lens delivers specific insights, such as nutritional information
and pricing.

4. Obstacle Avoidance and Shelf Recognition
The VISA system employs depth-based algorithms for dynamic obstacle avoidance,
ensuring safe navigation in crowded environments. By recognizing shelves and their
contents through ArUco markers and YOLOv8, the system facilitates efficient product
retrieval. Google Lens enhances the user experience by reading detailed product
labels and logos.

5. Human–Machine Interface (HMI)
The system’s HMI incorporates speech-to-text (STT) and text-to-speech (TTS) technolo-
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gies. Users can issue voice commands to navigate, identify products, and interact with
the system. TTS provides real-time feedback, confirming user actions and delivering
navigational guidance. This seamless interaction reduces cognitive load, making the
shopping experience intuitive and accessible.

6. System Integration and Testing
The VISA system integrates its modules—navigation, object recognition, obstacle
avoidance, and HMI—into a cohesive framework. Testing in a simulated grocery
store demonstrated the system’s effectiveness. Users successfully navigated aisles,
identified products using ArUco markers and Google Lens, and completed shopping
tasks independently.

7. Conclusions
The VISA system redefines accessibility for visually impaired individuals in grocery
shopping. By addressing navigation, product identification, and human–machine in-
teraction holistically, it promotes independence, inclusivity, and convenience, making
daily tasks more achievable.

Figure 22. Example of shelf recognition using ArUco markers, picking up merchandise, and using
Google Lens to recognize the merchandise.

7. System Comparisons
In this section, we perform a conceptual comparison of the practicality and func-

tionality of the VISA system with other techniques. The compared techniques include
white canes, guide dogs, typical smart canes with ultrasonic or other forms of collision
avoidance [65–67], the Seeing AI smartphone app developed by Microsoft [68], and typ-
ical smart glasses with object recognition [69–71]. The Seeing AI’s app’s counterpart,
Lookout—Assisted Vision developed by Google, has similar performance [72,73]. The
results are shown in Figure 23 for a practicality comparison and in Figure 24 for a
functionality comparison.

For the practicality comparison, we scored each system or technique from 0 to 5 based
on six attributes, namely affordability, interaction, intuitiveness, ease of use, reaction
time, and versatility. Similarly, for the functionality comparison, we scored each system
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or technique from 0 to 5 based on six attributes, namely navigation, object recognition,
collision avoidance, reading printed texts, reading handwriting, and grocery shopping. A
higher score indicates better performance in the specific attribute. For instance, white canes
receive an affordability score of 5, owing to their simple construction and low cost, whereas
guide dogs are assigned an affordability score of 1, reflecting their accessibility to only a
small group of individuals due to their high cost.

The proposed VISA system offers a balanced and practical solution for visually im-
paired individuals, addressing the limitations of conventional techniques across both
practicality and functionality metrics. As can be seen in the figures, for practicality, our
VISA system sits behind white canes and APPs only in terms of affordability; for function-
ality, our VISA system is superior to all other techniques, with only guide dogs being equal
in terms of collision avoidance, and APPs in terms of reading texts.

Figure 23. Radar chart comparing the VISA system’s practicality with that of other techniques.

In terms of practicality, the VISA system demonstrates a well-rounded balance when
compared to conventional solutions such as white canes, guide dogs, smart canes, Seeing
AI, and smart glasses. As shown in the radar charts, VISA excels in interaction, ease of use,
and versatility, making it more accessible and user-friendly than many other alternatives.
Traditional tools like white canes are affordable but lack versatility and intuitiveness,
while guide dogs offer strong interaction and intuitiveness but are expensive and require
significant training resources. Advanced electronics like smart canes and glasses often
provide better interaction and versatility, but neither is intuitive to use. Smart glasses have
the added disadvantage of a high price tag. To summarize, the VISA system strikes a strong
balance, offering top performance in all five of the other fields while remaining affordable
for daily use.

From a functionality perspective, the VISA system competes effectively with conven-
tional solutions, particularly in grocery shopping, navigation, and object recognition. It
outperforms all other systems in these areas, and only trails slightly behind AI-powered
systems such as Seeing AI in tasks requiring handwriting recognition or complex scene
interpretation. Also, for collision avoidance, which is one of the key tasks in assisting the
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visually impaired and has been extensively researched, our VISA system still outperforms
all the other systems except for guide dogs. To summarize, the VISA system effectively
bridges the gap in conventional single-task systems by providing robust functionality
for common daily tasks like grocery shopping, navigating indoor spaces, and reading
printed text.

Figure 24. Radar chart comparing the VISA system’s functionality with that of other techniques.

8. Conclusions
This paper introduces the VISA system, a holistic solution designed to assist visually

impaired users with various indoor activities using a multi-level approach. Most existing
systems and tools in this domain are single-task-focused and unable to address the diverse
tasks faced by visually impaired individuals in complex indoor environments. Conse-
quently, a holistic solution capable of handling multiple tasks can significantly enhance the
independence of visually impaired users in such settings. By leveraging recent advance-
ments in computer vision, deep learning, embedded systems, and edge computing, we have
successfully developed the VISA system to fulfill the key objectives of a holistic solution.

In summary, the VISA system serves as a comprehensive aid for visually impaired
users, providing a suite of functionalities to assist them in their daily activities. By detecting
and recognizing common objects within the field of view of the RGB-D camera, the VISA
system provides users with a list of nearby objects without requiring physical contact.
By conveying direction and distance information of recognized objects, our VISA system
enables the user to locate and retrieve items efficiently. By providing navigational cues and
auditory warnings, our VISA system helps users reach their indoor destination and avoid
obstacles with minimal effort. Moreover, using Google Lens allows users to accurately
identify items and read a variety of textual media, such as product labels, handwritten notes,
and printed documents. Integrating all the aforementioned functionalities and utilizing
their generated information, we deliver holistic assistance that empowers visually impaired
users to accomplish a broader scope of tasks with increased efficiency and safety. With
experimental results from tests in different environments simulating real-world scenarios,
we conclude that our VISA system is easy to use and can assist visually impaired users in
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nearly all aspects of their daily life, particularly in finding objects, navigating indoor spaces
while avoiding obstacles, discerning items of interest, and reading both handwritten and
printed text. These findings underscore the potential of our VISA system as an essential
aid for the visually impaired. Comparing with existing systems and solutions, our VISA
system stands out in terms of all-round effectiveness, versatility, ease of interaction, and
vision-related tasks such as object recognition and reading texts.

Throughout this paper, we have demonstrated the effectiveness of the VISA system in
indoor environments for everyday activities. However, this system can be expanded and
integrated with further advancements in AI. One potential expansion for the VISA system
is to provide contextual information about the surrounding environment. While this task
is challenging for object recognition algorithms, ongoing advancements in AI technology
will enable the VISA system to deliver increasingly refined and intuitive assistance to
visually impaired users. For instance, the integration of Large Language Models (LLMs) for
picture-to-text translation could allow users to access richer and more detailed information.
Additionally, improvements in algorithms and software are possible for the VISA system.
Notable examples include a more optimized source code adapted to the Jetson Orin Nano
architecture, and an improved depth estimation algorithm based on histogram clustering.
Lastly, while the current VISA system may be limited in assisting with outdoor activities,
integrating a GPS- and roadmap-based outdoor navigation subsystem could further expand
the range of tasks that the VISA system can handle.
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Abbreviations
The following abbreviations are used in this manuscript:

VISA Visually impaired spatial awareness
AR Augmented reality
HMI Human–machine interface
TTS Text-to-speech
STT Speech-to-text
SoC System-on-chip
GPS Global positioning system
LoS Line of sight
nLoS Non-line of sight
RFID Radio frequency identification
NFC Near-field communication
UWB Ultra-wideband
BLE Bluetooth low energy
RGB-D Red–green–blue-depth
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QR Quick response
ArUco Augmented Reality University of Cordoba
COCO Common objects in context
FPS Frames per second
LLM Large language model
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