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Abstract: The classification of brain tumors using MRI scans is critical for accurate diagnosis
and effective treatment planning, though it poses significant challenges due to the complex
and varied characteristics of tumors, including irregular shapes, diverse sizes, and subtle
textural differences. Traditional convolutional neural network (CNN) models, whether
handcrafted or pretrained, frequently fall short in capturing these intricate details compre-
hensively. To address this complexity, an automated approach employing Particle Swarm
Optimization (PSO) has been applied to create a CNN architecture specifically adapted for
MRI-based brain tumor classification. PSO systematically searches for an optimal configura-
tion of architectural parameters—such as the types and numbers of layers, filter quantities
and sizes, and neuron numbers in fully connected layers—with the objective of enhancing
classification accuracy. This performance-driven method avoids the inefficiencies of manual
design and iterative trial and error. Experimental results indicate that the PSO-optimized
CNN achieves a classification accuracy of 99.19%, demonstrating significant potential for
improving diagnostic precision in complex medical imaging applications and underscoring
the value of automated architecture search in advancing critical healthcare technology.

Keywords: Convolutional Neural Networks (CNN); Particle Swarm Optimization (PSO);
brain tumor image classification; optimal CNN architecture; medical image classification

1. Introduction
The rapid advancements in information and communication technologies, coupled

with the increasing capabilities of computing resources, have enabled significant progress
in the domains of artificial intelligence and machine learning. Among these advances,
convolutional neural networks (CNN) have emerged as essential tools for the processing
and classification of images [1]. Their ability to autonomously identify and extract salient
features from visual data [2] makes them valuable allies in various fields, including medical
image classification [3]. Beyond medical applications, CNN are widely used in areas such
as autonomous driving [4], where they assist in object detection and scene segmentation;
security [5], where they enhance facial recognition and surveillance systems; and in the
field of agriculture, where they aid in crop and livestock monitoring by analyzing aerial
images captured by drones [6]. These diverse applications demonstrate the versatility and
significance of CNN in solving complex, real-world problems across multiple domains.

While CNN have shown great promise in various applications, they are often criticized
for their “black box” nature, meaning their decision processes are not easily interpretable.
This lack of transparency can be particularly problematic in critical domains such as
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medical imaging, where understanding the rationale behind a model’s decisions is essential
for trust and safety. Moreover, CNN are vulnerable to adversarial attacks, where slight
modifications to input data can lead to misclassification, posing significant risks in practical
applications [7]. Addressing these challenges is crucial for enhancing the reliability and
safety of CNN-based medical imaging systems.

Magnetic resonance imaging (MRI) is a powerful, non-invasive tool frequently used
in diagnosing and monitoring brain tumors. Brain tumors refer to abnormal growths of
cells within the brain that can be either benign or malignant, with various types such as
gliomas, meningiomas, and pituitary tumors [8]. MRI produces high-resolution, detailed
images of the brain, enabling precise visualization of tumor characteristics, including
their location, size, and structure [9]. However, the complex and heterogeneous nature
of brain tumors makes manual interpretation of MRI images challenging [10]. CNN offer
a promising solution by automating the extraction of relevant features from visual data,
thereby assisting clinicians in brain tumor classification and diagnosis.

Designing an optimal CNN architecture for MRI-based brain tumor classification
presents substantial challenges [11]. This task requires an optimal configuration across
a large parameter space that includes network depth, filter counts, convolutional layer
dimensions, and numerous other hyperparameters. Designing these architectures man-
ually to achieve peak performance is often labor-intensive and can lead to suboptimal
outcomes. To streamline this process, evolutionary algorithms (EA) [12,13] have been
employed. By simulating natural selection, EA generate a population of candidate solu-
tions and improves them over successive generations using mechanisms like selection,
crossover, and mutation [14]. EA have proven effective across various complex optimiza-
tion problems, given their capacity to navigate large search spaces and yield high-quality
solutions. A widely used EA is the Particle Swarm Optimization (PSO) which models
collective behaviors observed in bird flocks or fish schools. In the context of CNN design,
PSO facilitates the efficient, iterative search for an optimal architecture by treating each
particle as a candidate solution. These particles refine their positions by balancing their
individual learning with insights from their neighbors, progressively converging toward
an optimal design [11,15,16]. Besides PSO, other evolutionary techniques, such as genetic
algorithms (GA), have been utilized to optimize CNN architectures [17,18]. Furthermore,
PSO has been applied to enhance medical image segmentation accuracy in brain tumors
and lung CT scans, achieving notable improvements in Dice and Jaccard indices [19–21].

The present study proposed enhancements to the psoCNN algorithm, introduced
in [22], to optimize CNN architectures for MRI-based brain tumor classification. By com-
bining CNN’s feature extraction abilities with PSO’s optimization approach, the model
aimed to achieve reliable diagnostic accuracy.

The key contributions of this work are the following:

• An initialization strategy is developed to predominantly configure particles with con-
volutional and pooling layers, ensuring that pooling layers are implicitly positioned
after each convolutional layer.

• The search space is refined to focus on determining the optimal number of convolu-
tional layers, their kernel sizes, as well as the ideal number of fully connected layers
and their respective neuron counts.

• Incremental training is applied, allowing particles to undergo progressively deeper
learning over time. This balances computational cost and performance while ensuring
thorough evaluation of the best models.

This paper is divided into six sections. The related work section reviews prior studies
and presents gaps addressed by this research. The Convolutional Neural Networks (CNN)
section introduces the concepts of these algorithms outlining their structure and challenges.
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The Particle Swarm Optimization (PSO) section explains the optimization algorithm and its
relevance to the problematic at hand. The application of PSO to CNN optimization section
describes the proposed approach and methodology. The experimental results section
presents findings and analyzes the effectiveness of the method. Finally, the conclusion
summarizes the study’s contributions and suggests future research directions.

2. Related Work
Recent advancements in brain tumor classification using MRI have explored a range

of methods, including manually designed CNN architectures, state-of-the-art pre-trained
models, and approaches based on evolutionary algorithms. For instance, one study em-
ployed a genetic algorithm to evolve CNN architectures tailored to identify different glioma
grades, achieving 90.9% accuracy in one case study and 94.2% accuracy in distinguishing
between glioma, meningioma, and pituitary tumors [23]. However, the method faced
challenges due to its expansive search space, which resulted in complex models. Another
approach integrated a novel CNN model for feature extraction with classical machine
learning algorithms, using Bayesian optimization to fine-tune hyperparameters [24] . This
hybrid model outperformed nine state-of-the-art CNN models, achieving an impressive
mean classification accuracy of 97.15%. Similarly, a different study combined a CNN with
an SVM classifier and tested it on two datasets, yielding 99% accuracy for binary classifica-
tion and 98% for multi-classification [25]. In a comparative analysis [26], a generic CNN
model and six pre-trained models were evaluated with various preprocessing techniques.
Among these, InceptionV3 stood out as the most accurate, achieving an average accuracy
of 97.12%, surpassing other models. Another study proposed an automated approach for
brain tumor classification using T1-weighted CE-MRI images, employing Bayesian opti-
mization to optimize CNN hyperparameters. The model achieved an impressive 98.70%
validation accuracy, surpassing well-known pre-trained architectures [27]. However, these
custom and state-of-the-art models raise questions about the optimality of their architec-
tures. Additionally, they may be overly complex for MRI-based brain tumor classification,
particularly when using pre-trained models designed for broader applications. The present
study focuses on identifying the optimal CNN architecture, ensuring it is well-suited for
the task while striking a balance between model complexity and performance.

3. Convolutional Neural Networks (CNN)
CNN have emerged as indispensable tool in the field of medical imaging, owing to

their exceptional ability to identify intricate patterns, particularly in brain tumor classifica-
tion tasks. The substantial applicability of these models, demonstrating their superiority
over alternative methods and highlight their potential to significantly improve diagnostic
accuracy [28]. CNN utilize a layered approach, where convolutional layers extract spatial
features by applying filters. Pooling layers reduce dimensionality while retaining essential
information, and fully connected layers at the end aggregate these features for classification.
In this design, convolution and pooling operations sequentially capture intricate image
details, which the fully connected layers at the model’s tail use to make final predictions
(Figure 1).

A CNN consists of interconnected neurons, each with specific weights and biases.
These neurons take inputs from prior layers and perform calculations that combine the
input values with the respective weights. CNN are designed with the assumption that
the input data are images, which allows the model architecture to incorporate certain
image-related features. The main types of layers within CNN include convolutional (C),
pooling (P), and fully-connected (FC) layers [29]. These layers are organized sequentially,
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such as each layer’s output serves as the input for the next. Mathematically, a CNN can be
defined as follows: 

Oj = X if j = 1

Oj = f j(Zj) if j > 1

Zj = gj(Oj−1, Wj)

(1)

Here, X represents the input image, which can be represented as a tensor encoding the
color channels and spatial size of the image, f j(·) is the activation function at the j-th layer,
gj(·) represents the operation using weights at the j-th layer, Zj is the result from applying
weights before activation, Wj denotes the weights at the j-th layer, and Oj is the output of
the j-th layer.

Figure 1. Architecture of a CNN.

3.1. Convolutional Layer (C)

The C layer operates using small learnable filters which extend through the entire depth
of the input but are narrow in spatial dimensions. As these filters traverse the input, they
generate activation maps by calculating scalar products at each position, capturing important
features [30], as shown in Figure 2. These activation maps, unique to each filter, stack together
to form the output volume, allowing the network to learn specific spatial features. By training,
CNN develop filters that detect patterns within localized areas, known as receptive fields,
connecting only to limited input regions. Key hyperparameters— “number of filters”, “stride”,
and “padding”—help control the model’s complexity and output dimensions. Adjusting stride,
for instance, impacts the receptive field overlap, with smaller strides increasing overlap and
larger strides reducing it, thereby affecting the spatial resolution of activations. Similarly, zero-
padding around the input’s borders provides additional control over the output dimensions,
enabling CNN to achieve greater flexibility in capturing spatial patterns [31].

Figure 2. Convolution operation.

3.2. Pooling Layer (P)

Pooling layers [32], reduce the spatial dimensions of feature maps, lowering compu-
tational demands and helping to prevent overfitting by downsampling. By transforming
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input data into a condensed representation, pooling layers focus on essential features while
discarding less relevant information, thus reducing memory and computation requirements.
Two main pooling types, local and global, offer distinct benefits: local pooling captures
details within small regions, whereas global pooling compresses information into a scalar
that summarizes features over the entire feature map. Among popular techniques, max
pooling selects the maximum value within a region, preserving sharp and prominent fea-
tures, while average pooling smooths the data by computing an average, capturing broader
patterns but sometimes losing contrast. These pooling methods have core hyperparameters,
such as those associated with the C layer.

3.3. Fully Connected Layer (FC)

FC layers play a critical role in combining the features extracted from C and P lay-
ers, transforming them into a final output suitable for classification or regression tasks.
These layers are typically positioned towards the end of the network, where each neuron
is connected to every neuron in the preceding layer, forming dense connections. This
arrangement allows FC layers to capture complex relationships among features, but it also
significantly increases the number of parameters, potentially leading to high computational
costs and a tendency to overfit on small datasets. The number of neurons in each layer
is a crucial hyperparameter in tuning fully connected layers, as it directly influences the
model’s capacity to learn complex patterns.

3.4. Activation Function

To fully unlock the representational power of the previous layers, activation functions
are introduced between them. Without activation functions, these layers would only per-
form linear transformations, limiting the network’s ability to capture intricate relationships
in the data. They add the necessary nonlinearity, allowing the network to model more
sophisticated patterns and interactions. Placed after each layer, they transform the output
before it passes to the next, which directly impacts how well the network learns from data.

Historically, functions like Sigmoid and Tanh were commonly used; however, they
often led to vanishing gradients in deep networks. This limitation prompted the introduc-
tion of ReLU, defined as f (x) = max(0, x), a simple yet powerful function that addresses
the vanishing gradient issue for positive values, while requiring minimal computation. To
address ReLU’s limitations, particularly for negative input values, researchers have de-
veloped several variations, including Leaky ReLU, PReLU, and other advanced functions,
each designed to handle gradient issues more effectively and to improve overall network
performance [33].

3.5. Softmax Cross-Entropy Loss

The softmax cross-entropy loss function is central to image classification, especially
when handling multiclass problems [34]. As CNN generate predictions over multiple
classes, this loss function quantifies the difference between the predicted probability distri-
bution and the true distribution of the classes. It operates by applying the softmax function
to convert output logits into probabilities across multiple classes, with the loss calculated
based on the negative log likelihood of the correct class. By doing so, it ensures that each
output probability lies between 0 and 1 and that the total sums to 1. Mathematically, if we
denote the true label vector by y and the predicted probabilities by p, the cross-entropy
loss L is given by:

L = −
C

∑
i=1

yi log(pi) (2)
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where C represents the total number of classes, yi is 1 for the correct class and 0 otherwise,
and pi is the predicted probability for class i.

3.6. Training CNN

Optimizing CNN architectures requires careful integration of effective layer con-
figurations, regularization strategies, and efficient training processes to create models
that perform well and generalize effectively. Regularization is a key component in this
optimization process, addressing the challenge of overfitting and improving model robust-
ness [35]. Techniques like batch normalization stabilize the training process by normalizing
the inputs within each layer, which minimizes the internal covariate shift that often slows
down training. By maintaining a consistent input distribution, batch normalization allows
for faster and more stable convergence and supports the use of higher learning rates, further
accelerating the learning process. Dropout, another important regularization technique,
reduces overfitting by randomly deactivating a percentage of neurons during each training
iteration. This discourages the network from depending heavily on specific neurons, en-
couraging it to develop a more distributed, resilient representation of the data, especially
within FC layers. Training CNN effectively also requires robust optimization algorithms
alongside backpropagation which the processs of calculating the gradient of the loss func-
tion relative to each parameter. Optimizers such as Stochastic Gradient Descent (SGD) and
adaptive methods like Adam and RMSprop are essential for efficiently updating weights
and achieving convergence, as they balance learning rate adjustments and momentum to
navigate complex parameter spaces effectively [36].

4. Particle Swarm Optimization
PSO is a nature-inspired, population-based algorithm that simulates the collective

behavior observed in groups of animals, such as flocks of birds, schools of fish, and insect
swarms. Introduced by Eberhart and Kennedy in 1995 [37], PSO models how these groups
coordinate to find resources, with each individual adjusting its movement by learning from
both its own experience and the collective insights of the swarm. The algorithm has since
evolved to address a wide range of complex optimization challenges. Researchers have
developed numerous PSO variants and adaptations, targeting specific application needs
and exploring different parameter settings, topology configurations, and multi-objective
capabilities [38]. This algorithm remains popular in engineering, machine learning, and
other fields for its adaptability, efficiency in parallel computing, and quick convergence
to optimal solutions. However, current research tends to emphasize application and
enhancement, with foundational theoretical studies lacking, restricting its full potential.

In PSO, each particle within the swarm represents a possible solution, with its move-
ment through the solution space governed by iterative updates to both its position and
velocity. The particle’s velocity at each iteration reflects a balance between the particle’s
own historical experience and the collective experience of the swarm. The velocity up-
date involves adjusting how fast and in which direction the particle is moving, and it is
calculated by combining its current velocity with adjustments based on two factors: the
particle’s best-known position, referred to as the personal best (pBest), and the best-known
position found by any particle in the swarm, known as the global best (gBest). This velocity
update can be expressed mathematically as:

vi(t + 1) = ωvi(t) + c1r1(pBesti − xi(t)) + c2r2(gBest − xi(t)) (3)

where ω represents the inertia weight, which determines the influence of the particle’s
prior velocity, encouraging continuity in its motion. The parameters c1 and c2, often called
the cognitive and social coefficients, control the particle’s tendency to be guided by its
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own previous successes (cognitive factor) or by the success of the swarm as a whole (social
factor). Random variables r1 and r2, uniformly distributed between 0 and 1, introduce
stochasticity, allowing for a broader exploration of the solution space. After updating the
velocity, the particle moves to a new position by adding this velocity to its current position:

xi(t + 1) = xi(t) + vi(t + 1) (4)

This process continues iteratively, with particles refining their search paths based
on ongoing updates from both individual and collective feedback. This cycle repeats
until a stopping condition, such as reaching an optimal solution threshold or achieving a
predefined number of iterations, is satisfied.

5. Application of PSO to the Optimization of CNN Architecture
The core structure of the proposed psoCNN algorithm is illustrated in Figure 3. This

framework accepts input data related to the optimization and classification task, including
the training dataset and hyperparameters for CNN architecture generation, such as the
maximum allowable number of layers at initialization. The algorithm determines the global
best particle (gBest) by using PSO to select the most effective layers within the swarm,
eliminating the need for manual fine-tuning of each layer’s hyperparameters. Through
this approach, high-quality layers from prior generations are retained in the optimization
process, rather than being reinitialized with every iteration. Although particles undergo
reassessment during each iteration, well-performing layers are preserved, enabling valuable
features to carry over from one generation to the next.

Figure 3. Flowchart of the algorithm starting with parameter initialization, swarm creation, and
fitness evaluation. Each particle iteratively updates its position and velocity using pBest and gBest,
until the maximum number of iterations is reached.

This algorithm adheres to the PSO structure and consists of six core steps: efficient
CNN encoding, initialization of the swarm, assessment of each particle’s fitness, evaluation
of differences between particles, computation of velocities, and particles’ update. The
following sub-sections describe these steps in more detail, emphasizing the initialization
and fitness evaluation improvements that contribute to enhanced performance.
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5.1. Particle-Based Encoding Scheme

One of the key challenges in adapting a PSO algorithm to identify optimal CNN
architectures lies in designing an encoding strategy, which involves representing CNN
architectures in a structured and quantifiable format. This structured representation allows
the algorithm to interpret the particle’s position and facilitates effective velocity updates
during the optimization process. In this encoding format, each particle directly repre-
sents CNN layers without the need for numerical transformation, using a straightforward
structure. The encoding is organized as a list of lists, where each sub-list corresponds to
one specific layer, with details on its hyperparameters. In this framework, convolutional
and max pooling layers are integrated, treated as a single combined operation rather than
independent layers. Each convolutional layer (C) is paired with a max pooling operation,
consistently using a kernel size of 2 × 2 and a stride of 2 × 2. This ensures a simplified and
uniform structure for layer encoding. The attributes for convolutional layers include the
number of filters, filter size, and stride, while the pooling operation is implicitly applied
as part of the convolutional layer. Fully connected (FC) layers are also represented in the
encoding, specifying the number of neurons. As illustrated in Figure 4, this encoding
scheme constructs the CNN model by interpreting each particle component sequentially
from left to right, adding each layer as specified. Importantly, this encoding does not store
weight values, hence the incorporation of a brief retraining phase to compute the accuracy
of each particle.

Figure 4. An encoded CNN architecture with two convolutional layers: the first with 16 kernels of
size 5 × 5 and the second with 32 kernels of size 3 × 3, each followed by 2 × 2 max pooling. The
architecture ends with two fully connected layers containing 128 and 4 neurons.

5.2. Swarm Initialization

The swarm initialization process begins by generating N particles, where each particle
represents a CNN architecture with a randomly configured set of layers. The architectures
can have between three and a maximum number of layers, with the first layer always set to
a C layer and the final layer to a FC layer. To preserve the structural integrity of the CNN,
FC layers are restricted to the end of the architecture, avoiding their placement between C
layers. The C layers are initialized with randomly selected numbers of kernels and kernel
sizes, and every C layer is immediately followed by a max pooling layer with predefined
window sizes and stride values. The FC layers at the end of the network are assigned a
random number of neurons. All layers employ the ReLU as the activation function. To
ensure functional CNN architectures, the process also manages the placement of pooling
layers to avoid reducing the output dimensions below 7 × 7. Additionally, particles are
initialized with a balanced structure, where approximately two-thirds of the layers are
either convolutional or pooling layers, and one-third are fully connected layers, allowing
for both effective feature extraction and classification capabilities.

5.3. Fitness Evaluation

Fitness evaluation refers to the process of assessing the performance of each particle by
converting it into a CNN model and training it for an initial number of epochs. The accuracy
of each CNN is then evaluated on a validation set, aiming to identify the architecture with
the highest performance. This process utilizes the Adam optimizer for efficient convergence,
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applies a dropout rate of 20% just before the final FC layer to prevent overfitting. Weight
initialization follows the standard configuration in PyTorch [39]. However, a significant
bottleneck arises as every particle must be trained on the full dataset, making this evaluation
phase time intensive. The algorithm is designed specifically to discover the most effective
CNN architecture rather than focusing on fine-tuning its weights. Initially, each particle
undergoes training for a preset number of epochs, and with each iteration, the training
duration is increased by one epoch to refine accuracy measurements. For a comprehensive
evaluation of the gBest obtained, a final retraining phase is conducted using an extended
number of epochs to solidify the performance assessment.

5.4. Computation of Difference Between Particles

To compute a particle’s velocity and subsequently update its position, a specific opera-
tor is employed to measure the symbolic difference between two particles. This process,
depicted in Figure 5, involves a detailed comparison between particles labeled as P1 and P2.
Initially, the layers of each particle are separated into two categories: convolutional/pooling
(C/P) layers and fully connected (FC) layers, as demonstrated in Figure 6.

These two categories of layers are then assessed individually to identify any structural
differences. The comparison is made relative to P1 by examining the C/P and FC layer
groups independently. For C/P layers, differences are assessed from left to right, whereas
for FC layers, the comparison proceeds from right to left. If the layer types match between
P1 and P2, the difference is zero. If they differ, the difference is determined by P1’s layer
type. When P1 contains fewer layers than P2, a difference of −1 is assigned, suggesting
the removal of a layer from P2. Conversely, if P1 has more layers, a difference of +L is
indicated, where L represents P1’s layer type, suggesting the addition of a layer to P2.

Figure 5. Calculation of the difference between two particles.

Figure 6. Separating FC layers from other layers.

5.5. Particle Velocity Computation

The velocity operator calculates two main differences: (gBest-P) and (pBest-P). To
decide which difference to apply to each layer, the operator employs a threshold value, Cg

along with a random number generator. For each layer, it compares the random number to
Cg; if the number is below Cg, the layer difference from (gBest-P) is chosen, whereas if the
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number is above Cg, the layer difference from (pBest-P) is selected instead, as depicted in
Figure 7. This decision process repeats for every layer, allowing Cg to control the particle’s
resemblance to either gBest or pBest. As Cg approaches 1, the particle’s structure aligns
more closely with gBest. A unique scenario arises during the final iterations if (gBest-P)
equals (pBest-P). In this case, the operator decides between adopting gBest or pBest directly,
based on the value of Cg, as shown in Figure 8.

Figure 7. Velocity calculation of a single particle.

Figure 8. Particle velocity calculation when gBest and pBest are the same.

5.6. Particle Position Adjustment

After calculating a particle’s velocity, the update particle operator is then applied to
modify the particle’s configuration. This adjustment process, shown in Figure 9 entails a
comparison between the particle’s current velocity and its existing position. The operator
handles the C/P and FC layer blocks individually, ensuring that updates are made only to
the position components where velocity is non-zero. Through this mechanism, particles
have the flexibility to evolve over time—either contracting by removing layers or expanding
by adding layers to the particle’s architectural structure.
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Figure 9. Updating the architecture of a particle.

6. Experimental Results
6.1. Dataset

For this study, we utilized a publicly available MRI dataset from Kaggle [40], compris-
ing 7023 brain MRI images sorted into four categories: glioma, meningioma, pituitary, and
no tumor. This dataset integrates images from several sources, including Figshare [41], the
SARTAJ dataset [42], and Br35H [43], with non-tumor images primarily sourced from
Br35H. Figure 10 presents sample images from each class, while Figure 11 illustrates the
distribution of these images across each category.

(a) Glioma (b) Meningioma (c) No tumor (d) Pituitary

Figure 10. Samples from the dataset.

Figure 11. Data distribution.

6.2. Algorithm Parameters

The parameters utilized in this study fall into three main categories: those associated
with PSO configuration, those related to the initialization of CNN architectures and those
governing the evaluation process for individual particles. The parameters specific to the
PSO process, summarized in Table 1, define essential aspects such as the termination
criteria, the size of the swarm, and the rate (Cg) at which particles converge towards the
global best (gBest). A larger swarm or increased iteration count improves the probability of
achieving optimal solutions, albeit at a higher computational cost.
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Table 1. PSO Parameters.

Description Value

Number of iterations 10
Swarm size 15
Cg 0.5

The CNN initialization parameters are presented in Table 2. These parameters spec-
ify the range of configurations possible for the CNN architectures generated within the
swarm. Each particle’s architecture is initialized by randomly selecting values within these
predefined limits.

Table 2. CNN Architecture Initialization Parameters.

Description Value

Max number of filters 40
Max filter size 7 × 7
Max neurons in FC layer 140
Max number of layers 9

Finally, the parameters for particle evaluation and final best particle training are
detailed in Table 3. These parameters include the starting number of epochs used during the
evaluation phase of individual particles and the extended training of the best-performing
architecture after optimization concludes.

Table 3. Particle Training Parameters.

Description Value

Starting epochs for particle evaluation 1
Epochs for final best particle training 40

6.3. Results

The algorithm’s results are presented in this sub-section, highlighting the progression
of the gBest model’s accuracy over iterations. As shown in Figure 12, the training accuracy
increases from 75.04% in the initial iteration to 97.32% by the tenth iteration. Similarly,
the validation accuracy improves from 83.07% to 96.72% over the same period. This
progression reflects the algorithm’s effectiveness in exploring and optimizing architectural
configurations. The architecture founded by the algorithm, detailed in Table 4, utilizes a
first convolutional layer with 5 × 5 kernels and a second layer with 3 × 3 kernels. This
architecture comprises a total of 12,851,556 trainable parameters, enabling effective feature
extraction and classification. The training process was carried out using a mini-batch of
32 images.

Before initiating the training of the final gBest particle, 5% of the dataset was set
aside for testing and prediction purposes. This testing set was created by sampling 81.3%
of the 5% from the training data and 18.7% from the validation data. This procedure
ensured that the class distribution in the testing subset aligned with the original proportions
of the training and validation data. The gBest particle model completed its training
within 20 epochs. The training process resulted in a steady reduction in training loss,
starting from 0.68 and decreasing to 0.024 by the final epoch. Correspondingly, the training
accuracy improved from 74.97% at the beginning to 99.18% at the end. The validation loss
exhibited an initial value of 0.492, fluctuating throughout the epochs, and concluded at
0.184. Similarly, the validation accuracy increased from 81.2% to 96.8%. These trends are
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illustrated in Figure 13, which shows the progression of loss over the epochs, and Figure 14,
which displays the accuracy trends for both training and validation data.

1 2 3 4 5 6 7 8 9 10
0.7

0.8

0.9

1

Iteration

A
cc

ur
ac

y

Training Accuracy
Validation Accuracy

Figure 12. Progression of the gBest model’s accuracy through iterations.

Table 4. The optimal CNN architecture identified through the algorithm.

Layer (Type) Output Shape Param #

ZeroPad2d-1 [32, 3, 228, 228] 0
Conv2d-2 [32, 16, 224, 224] 1216
ReLU-3 [32, 16, 224, 224] 0
MaxPool2d-4 [32, 16, 112, 112] 0
ZeroPad2d-5 [32, 16, 114, 114] 0
Conv2d-6 [32, 32, 112, 112] 4640
ReLU-7 [32, 32, 112, 112] 0
MaxPool2d-8 [32, 32, 56, 56] 0
Linear-9 [32, 128] 12,845,184
ReLU-10 [32, 128] 0
Dropout-11 [32, 128] 0
Linear-12 [32, 4] 516

Total params: 12,851,556. Estimated Total Size (MB): 817.83
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Figure 13. Progression of gBest training and validation loss.

After training, the model was evaluated using the test data, yielding a test loss of
0.137 and a test accuracy of 97.72%. The model’s classification performance was further
analyzed using a confusion matrix, presented in Figure 15. The confusion matrix offers a
comprehensive understanding of a model’s classification performance by illustrating the
correspondence between actual and predicted labels. It emphasizes essential components
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of classification results and serves as the basis for evaluating metrics such as precision,
recall, F1 score, and Matthews Correlation Coefficient (MCC), which are summarized in
Table 5 for each class.
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Figure 14. Progression of gBest training and validation accuracy.

Figure 15. The gBest confusion matrix.

Table 5. Evaluation metrics calculated from the confusion matrix for each class.

Class TP FP FN TN Precision Recall F1 Score Accuracy MCC

Glioma 78 1 3 269 0.9873 0.9629 0.9750 0.9886 0.9677
Meningioma 81 6 1 263 0.9310 0.9878 0.9585 0.9800 0.9462
No Tumor 97 1 3 250 0.9897 0.9700 0.9798 0.9886 0.9719
Pituitary 87 0 1 263 1.0000 0.9886 0.9943 0.9971 0.9924

TP = True Positive; FP = False Positive; FN = False Negative; TN = True Negative Precision = TP
TP+FP ;

Recall = TP
TP+FN ; F1 Score = 2×Precision×Recall

Precision+Recall ; Accuracy = TP+TN
TP+TN+FP+FN Matthews Correlation Coefficient

(MCC) = TP×TN−FP×FN√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

.
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6.4. Discussion

The gBest confusion matrix provides a detailed insight into the classification of differ-
ent tumor types. For Glioma, the model correctly identified 78 cases, with 3 false negatives
and 1 false positive, suggesting a strong ability to detect this type of tumor. Meningioma
classification was slightly less precise, with 81 correct identifications, 1 false negative, and 6
false positives, indicating a minor trade-off in precision. The model excelled in identifying
No Tumor cases, with 97 correct classifications, only 3 false negatives, and 1 false positive,
reflecting its high reliability in this category. Pituitary tumor classification was nearly
flawless, with 87 correct identifications and only 1 false negative.

The model’s performance metrics, including precision, recall, and F1 scores, demon-
strate its robust capabilities. The Glioma classification exhibits high precision and recall,
signifying a low rate of errors in identifying this tumor type. The Meningioma classifi-
cation shows a high recall but slightly lower precision, suggesting the model effectively
identifies most Meningiomas while producing a few additional false positives. The No
Tumor classification boasts near-flawless precision and recall, underscoring the model’s
robust ability to accurately detect the absence of tumors. The Pituitary tumor classification
is virtually perfect, with 100% precision and high recall, indicating exceptional accuracy in
this specific category. These results underscore the success of using PSO in searching for the
optimal architecture, leading to a highly successful and generalizable model. This method
proved to be efficient in identifying a well-suited configuration, thereby yielding acceptable
performance in our context. The integration of automated optimization techniques not only
streamlines the architecture selection process but also ensures that the model is tailored
effectively to the task at hand.

Table 6 provides a comparative performance analysis of the proposed model and a sim-
ilar model that employed a Genetic Algorithm for MRI brain tumor classification [23]. The
proposed method consistently achieves higher accuracy across all tumor types. For glioma
classification, the proposed approach achieves an accuracy outperforming the GA-based
approach (Table 6). Similarly, the accuracy for meningioma classification improves in the
proposed approach. The most significant improvement is observed in pituitary tumor
classification, where the proposed method exceeded the GA-based approach.

Table 6. Comparison of Classification Accuracy: PSO-Optimized versus GA-Optimized Approaches.

Approach Class Accuracy

GA + CNN [23] Glioma 0.9652
Meningioma 0.9449
Pituitary 0.9739

PSO + CNN Glioma 0.9886
Meningioma 0.9800
Pituitary 0.9971

In addition to these performance improvements, independent trials and observations
on the dataset revealed that the characteristics of MRI brain tumor images do not require
overly complex models for effective classification. This insight prompted a reduction in
the range of hyperparameters explored during the algorithm optimization process. By
focusing on identifying simpler models, the proposed method was able to achieve a balance
between complexity and performance, resulting in a model that not only outperformed
the GA-based approach in terms of accuracy but also offered a streamlined design. As
shown in Table 7, our proposed CNN achieved the highest validation accuracy with a
moderate number of parameters, outperforming more complex models. This indicates that
leveraging PSO for architecture optimization is an effective strategy for identifying optimal
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solutions with reduced complexity, particularly in cases where the image data does not
demand intricate models for accurate classification.

Table 7. Comparison of the proposed CNN with other Models [24] based on number of parameters
(Millions) and validation accuracy.

CNN Model Number of Parameters Validation Accuracy

DarkNet19 20.8 0.9295
DarkNet53 41.6 0.9380
DenseNet201 18.9 0.9316
EfficientNetB0 5.3 0.9551
InceptionV3 23.9 0.9174
NasNetMobile 4.4 0.9003
ResNet50 25.6 0.9509
ResNet101 44.6 0.9544
Xception 22.9 0.9224
Generic CNN 10.9 0.9566
Proposed CNN 12.85 0.9680

To assess the performance of the gBest model, we extended our experiments to the
BTD-MRI dataset, which is publicly available on Kaggle [44]. This dataset comprises two
subsets: one containing 1500 MRI images labeled as “no” (indicating the absence of tumors)
and the other containing 1500 images labeled as “yes” (indicating the presence of tumors).
We allocated 80% of the dataset for training and reserved the remaining 20% for testing. The
model was trained using a batch size of 64, a dropout rate of 0.25, and 20 epochs. During
training, the model achieved a loss of 0.0156 and an accuracy of 99.62%. When evaluated
on the test set, it recorded a loss of 0.0839 and an accuracy of 98.17%. The performance
results are further illustrated by the confusion matrix shown in Figure 16.

Figure 16. Confusion matrix illustrating the gBest model’s classification accuracy and error distribu-
tion on the BTD-MRI test set.

Table 8 presents a comparison of various techniques used for the classification of MRI
brain tumor images. It details the methods employed, the datasets used, the number of
classification categories, the top-performing models, and their validation accuracies. The
techniques include methods such as genetic algorithms, state-of-the-art CNN models opti-
mized with machine learning techniques, and CNN Bayesian hyperparameter optimization.
Each method shows significant performance, with accuracies that vary depending on the



J. Imaging 2025, 11, 31 17 of 19

dataset and the complexity of the classification task. However, it is important to note that
the gBest model identified by the proposed algorithm represents an initial step in optimiz-
ing the CNN architecture. Further refinement and optimization would be necessary to
improve the model’s performance and provide a more comprehensive basis for comparison
with other methods.

Table 8. Comparison of the proposed method with previous studies.

Reference Method Dataset Classes Best Model Accuracy (%)

Ref. [23] GA + CNN Figshare [41] 3 CNN 94.2
Ref [24] State of the art CNN-optimized ML Combination [40] 4 EfficientNetB0-SVM 97.93
Ref. [27] CNN HPO Figshare [41] 3 CNN 98.70
Ref. [26] CNN with TL Combination [40] 4 Inception V3 97.12
Ref. [45] DL-based model BTD-MRI [44] 2 TumorResNet 99.33
Ref. [46] Spectral Data Augmentationbased Deep Autoencoder BTD-MRI [44] 2 SDA-DA CNN 97
This work Proposed Method Combination [40] 4 gBest model 96.8
This work Proposed Method BTD-MRI [44] 2 gBest model 98.17

7. Conclusions
The main findings of the present study indicate that PSO can successfully automate

the CNN design process, achieving improved performance in classifying MRI images of
brain tumors. These results suggest that PSO has potential applications in optimizing CNN
architectures for various medical imaging tasks.

Nevertheless, the approach has certain limitations. The used algorithm relies on
hyperparameters of the initialized architectures, which may restrict the exploration of
alternative solutions. Addressing this limitation by incorporating mechanisms to adjust hy-
perparameters dynamically during optimization and adhering to established architectural
conventions during initialization may improve the algorithm’s flexibility and performance.

Future research could build upon this study by incorporating additional computational
resources to facilitate broader evaluations and testing on diverse datasets and tumor types
to assess generalizability. Investigating hybrid optimization techniques that combine PSO
with other algorithms could further enhance performance. Additionally, extending the PSO
framework to optimize other neural network types, such as Recurrent Neural Networks
(RNNs) or Long Short-Term Memory (LSTM) networks, may provide insights into its
applicability beyond CNN architectures.
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