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Abstract: One of the tools for optimal crop production is regular monitoring and assessment of
crops. During the growing season of fruit trees, the bloom period has increased photosynthetic
rates that correlate with the fruiting process. This paper presents the development of an image
processing algorithm to detect peach blossoms on trees. Aerial images of peach (Prunus persica)
trees were acquired from both experimental and commercial peach orchards in the southwestern
part of Idaho using an off-the-shelf unmanned aerial system (UAS), equipped with a multispectral
camera (near-infrared, green, blue). The image processing algorithm included contrast stretching of
the three bands to enhance the image and thresholding segmentation method to detect the peach
blossoms. Initial results showed that the image processing algorithm could detect peach blossoms
with an average detection rate of 84.3% and demonstrated good potential as a monitoring tool for
orchard management.
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1. Introduction

Idaho is popularly known for potatoes, but the state grows other specialty crops which include
peaches. Numerous types of peaches are grown in the southwestern part of Idaho, which is warmer as
compared to other regions. The state produces about 5300 tons of peaches [1]. In addition to peaches,
Idaho agriculture produces apples, pears, cherries, apricots, nectarines, plums and grapes. The specialty
crop industry in Idaho is thriving. However, the industry is currently facing the challenges of labor
shortage, increasing labor cost, and the pressure of a growing market. Because of these challenges,
fruit growers need to adopt new technologies that can aid in optimizing crop production.

One of these new technologies, known as precision agriculture, is an agricultural management
concept based on measuring crop variability in the field and responding to field issues [2].
Crop variability has both temporal and spatial components that need to be considered. The spatial
component is facilitated by the use of the global positioning system (GPS), which enables the farmer to
locate the precise location in the field. In combination with advanced sensors that could measure field
conditions such as moisture levels, nitrogen levels, and organic matter content, it allows the creation of
maps that show the spatial variability of the field.

Although precision agriculture has been used mostly for row crops such as corn and wheat,
studies have shown that the technology has been adopted for specialty crops which include fruit
trees [3]. One of the precision agriculture technologies that has been reported is remote sensing.
Remote sensing can be implemented using a satellite or aerial system [4]. The downsides of using
satellites are the cost for real-time, high-resolution images and the frequency of data collection, which
could affect the temporal aspect of crop production [5]. Another remote sensing method is using aerial
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systems, which can be classified as manned or unmanned. Similar to satellites, a manned aerial system
is costly, and it may not be economically feasible for smaller fields. However, with the proliferation
of cheap commercial unmanned aerial systems (UAS) such as the 3DR Iris and DJI Phantom series
(Figure 1), remote sensing using unmanned aerial systems can be very promising for fruit growers
with small acreages.
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normalized difference vegetation index (ENDVI), which is a combination of the near-infrared band, 
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A number of researchers have used unmanned aerial systems for civilian applications which
include power line detection, roadway traffic monitoring, wetland analysis, and agriculture.
Li et al. [6] developed an image processing algorithm for power line detection using Hough transform.
A pulse-coupled neural filter was used to remove background noise before applying the Hough
transform. Coifman et al. [7] investigated the use of UASs to monitor roadway traffic to facilitate
offline planning and real-time management applications. A feasibility study by Ro et al. [8], which
conducted a field experiment at a local interstate using UASs, concluded that UAS applications will
become popular in the transportation area in the near future. The use of UAS photogrammetry
provided a valuable and accurate enhancement to wetland delineation, classification, and health
assessment [9].

Another area that has received a lot of attention for UAS application is agriculture. One of the
examples of the use of unmanned aerial systems (UASs) for fruit trees is the crop monitoring and
assessment platform (C-MAP) developed at Northwest Nazarene University [10]. The C-MAP is
composed of an off-the-shelf UAS equipped with a multispectral camera. Figure 2 shows one of the
C-MAP UASs flying over an experimental apple orchard with different watering methods, a drip and
a sprinkler. An image processing algorithm was developed in this study to calculate the enhanced
normalized difference vegetation index (ENDVI), which is a combination of the near-infrared band,
green band, and blue band, and generated a false color image. The red color region has high ENDVI
while the blue color region has the lowest ENDVI values. The false color image clearly shows the
variability of the field caused by the difference in water input [11].

In this paper, the application of CMAP is extended to the detection of blossoms of peaches using a
customized image processing algorithm. It has been reported that there is an increase of photosynthetic
activity during the bloom period, which correlates with the fruiting process [12]. Peaches follow a
linear pattern of crop development each year that allows the farmers to manage the fruit production
and make sure that the crop is progressing as it should. In addition, farmers scout the orchard during
the blooming season and use the observed amount of blooms with other parameters including crop
density and the number of leaves on trees to predict yield. Early prediction of yield helps growers in
marketing their products and in the packing operations [13]. The objectives of this study are: (1) to



J. Imaging 2017, 3, 2 3 of 10

expand the use of CMAP to detect peach blossoms; and (2) to develop an image processing algorithm
to detect peach blossoms.J. Imaging 2017, 3, 2 3 of 10 
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Figure 2. Monitoring of apple orchard using C-MAP. (a) UAS flying over an apple orchard; (b) False
color image showing water variability.

2. Materials and Methods

2.1. Target Field

The target fields in this study are an experimental peach orchard located north of Parma Idaho at
the University of Idaho Research and Extension Center and a peach orchard located north of Marsing
Idaho owned by Symms Fruit Ranch. Both orchards are located in the western part of the state of
Idaho. The Parma orchard contains a variety of peach types, whereas the Symms orchard contains
one type of peach (Prunus persica), which is the target crop in this study. The Parma orchard was
approximately two acres and although the orchard at Symms was much larger, approximately only
two acres were observed for the study.

2.2. Image Acquisition System

Two UASs were used in this study, both of which were DJI Phantom Quadcopters [14].
A DJI Phantom 3 Professional quadcopter was used to capture peach images in the RGB color
spectrum. The camera for the DJI Phantom 3 Professional uses a 1/2.3′′ complementary metal-oxide
semiconductor (CMOS) sensor with 12.4 megapixels (4000 × 3000). A DJI Phantom 3 Advanced
was used to capture multispectral images of the peach orchard. The camera for the DJI Phantom 3
Advanced also uses a 1/2.3′′ CMOS sensor with 12.4 megapixels (4000 × 3000) but the camera was
modified to capture near-infrared band centered at 750 nm, green band, and blue band. The two UASs
were used to capture images in both orchards. Both DJI Phantom quadcopters utilized a navigation
controller which could control the drone either manually or autonomously if interfaced with a tablet.
A tablet with the DJI Go application software was used to connect and interface with the controller
in order to calibrate the DJI drones and to allow for GPS and waypoint following during flights.
The captured image files were written on two SD cards inside the drones and then a computer with
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MATLAB software was used to access and download the image files from the cards in order to perform
image processing and analysis.

2.3. DroneDeploy

The software used on the tablet to collect the images was DroneDeploy [15]. DroneDeploy is a
cloud-based software compatible with DJI Phantom 3 drones which uses Google Maps and GPS to
construct a flight plan. Figure 3 shows the operation of the UAS using DroneDeploy. Once a drone is
calibrated with the DJI Go app, a flight plan can be created in the DroneDeploy app at any given place
as long as the device has Wi-Fi or a flight be loaded without Wi-Fi if the flights were pre-synced to
the device beforehand. Using the touch display of the tablet, DroneDeploy allows for the user to tap
and drag the boundaries of the flight zone overlaid over the desired region shown on Google maps.
The figure shows how DroneDeploy works with the DJI Phantom.
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Figure 4 shows a screen shot of DroneDeploy, where the region enclosed by the blue rectangle
is the desired field. DroneDeploy then plans the flight and calculates the position where to take the
images in order to obtain pictures that cover the whole field, which is shown as grey dots on the figure.
DroneDeploy also shows the coverage area, the number of images that will be taken, file size, and
flight time when planning a flight. Once a flight plan is set, the DroneDeploy application allows for
the user to adjust the altitude and the number of pictures the drone will take during the flight with
Frontlap and Sidelap selections (Figure 5). Once the flight is initiated, DroneDeploy will automatically
fly the drone along the given path and capture images at the given way points. Though the drone
flies autonomously, the drone can be immediately switched back into manual flight by flipping the
fight state switch on the controller. Once the images are taken, a computer accessing the DroneDeploy
website can be used to upload the images and create an orthomosaic picture of the captured images.
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2.4. Image Acquisition

The images collected for this study were taken between the dates of 8 March 2016 and
20 April 2016. The pictures were taken every week except for the two weeks of bloom in which
images were taken multiple days in a week. All data collection flights were dependent upon weather
and solar conditions due to the impact they might have on the flight ability of the drones. All of
the flights were completed between the times of 8 a.m. and 2 p.m. and were normally conducted
with little to no wind. Although the conditions were clear skies, about half the images obtained were
taken in cloudy weather. Sample images taken from the color camera and the modified camera are
shown in Figure 6. Figure 6b shows a sample image acquired from the experimental field using the
modified camera.

J. Imaging 2017, 3, 2 5 of 10 

 

 
Figure 4. Tablet screenshot of DroneDeploy. 

 

Figure 5. Image acquisition and stitching using DroneDeploy. 

2.4. Image Acquisition 

The images collected for this study were taken between the dates of 8 March 2016 and 20 April 
2016. The pictures were taken every week except for the two weeks of bloom in which images were 
taken multiple days in a week. All data collection flights were dependent upon weather and solar 
conditions due to the impact they might have on the flight ability of the drones. All of the flights were 
completed between the times of 8 a.m. and 2 p.m. and were normally conducted with little to no wind. 
Although the conditions were clear skies, about half the images obtained were taken in cloudy weather. 
Sample images taken from the color camera and the modified camera are shown in Figure 6. Figure 6b 
shows a sample image acquired from the experimental field using the modified camera.  

 
Figure 6. Sample images acquired at peach orchards. (a) Sample RGB image of peach blossom; (b) 
Sample multispectral image of peach blossom. 

2.5. Image Processing and Analysis 

The acquired images were processed and analyzed using MATLAB and its Image Processing 
Toolbox. The focus of this paper is the processing of images from the multispectral images. The image 

Set flight plan and 
altitude

Set the sidelaps and 
frontlaps 

Fly drone and collect 
images

Load images to 
DroneDeploy for 
orthomosaicking 

Figure 6. Sample images acquired at peach orchards. (a) Sample RGB image of peach blossom;
(b) Sample multispectral image of peach blossom.



J. Imaging 2017, 3, 2 6 of 10

2.5. Image Processing and Analysis

The acquired images were processed and analyzed using MATLAB and its Image Processing
Toolbox. The focus of this paper is the processing of images from the multispectral images. The image
processing involved the separation of the three bands and analyzing the color distribution. For the
analysis of the color distribution, pixels of the peach blossoms and pixels of the ground (weeds) were
manually selected and the pixel values of the three bands (NIR, green, and blue) were determined.
The pixel values of the peach blossoms and the ground were plotted to show their distribution. Figure 7
shows the pixel value distribution of the blossom and the ground. Although we could easily draw a
line and separate the peach blossom and ground, there is still some overlap between them. A contrast
stretching operation was made on each band to improve the color difference between the blossom
and the background [16]. Figure 7 shows the color distribution when the contrasts of each band were
stretched. The near-infrared versus the blue band shows the separation between the two clusters.
By using a very rudimentary thresholding process, the blossom could easily be segmented.
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2.6. Peach Blossom Detection

Figure 8 shows the image processing algorithm to detect the peach blossom. The first step is to
stretch the three bands individually and then combine them. A simple thresholding operation for
the near-infrared and blue bands is used for the segmentation of the blossom from the background.
The thresholded image g(x,y) is obtained as follows:

g(x, y) =

{
1 i f fblue(x, y) > 128 and fNIR(x, y) > 128

0 i f fblue(x, y) ≤ 128 and fNIR(x, y) ≤ 128
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Figure 8. Image processing algorithm for blossom detection.

This segmentation process detects the blossom from the multispectral image. Figure 9 shows the
image processing results. After the thresholding operation, a morphological size filtering process was
used to remove “salt and pepper” noise. The overlaid image demonstrates the high success rate of
detecting the blossom from the image.
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The success rate of the blossom detection algorithm was evaluated using 20 randomly selected
test images. The peach blossoms in the test images were manually identified and an evaluation mask
was created for each test image. The success rate was calculated as follows:

success rate =
number o f blossom pixels f rom blossom detection algorithm

number o f blossom pixels f rom test image mask
× 100%
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3. Results and Discussion

The results from the peach blossom detection algorithm showed that the blossoms were properly
segmented from the raw multispectral image, with an average detection success rate of 84.3%. One of
the reasons for the effective blossom detection is the use of the modified multispectral camera.
With the modified filter of the camera, objects with high chlorophyll will have high reflectance
in the near-infrared and green bands, but low reflectance in the blue band. In the image, the weeds
have a red-brown hue because of the high chlorophyll content as compared with the other objects
in the image. The colors of the peach blossoms are composed of a white and light pink hue. Some
of the blossoms have a hue similar to that of the branch and some part of the ground. It can also
be observed in Figure 7 that the light color of the blossom shows the high amount of near-infrared,
green, blue values as compared to the weeds. Furthermore, the contrast stretching operation helped
the thresholding process by increasing the separation of the pixel values between the blossoms and
the ground specifically in the blue band. The contrast stretching did not affect the distribution in the
near-infrared band. On the other hand, the morphological size filtering operation may have affected
the detection success rate by removing small blossom pixels that were considered noise. However, the
noise filtering operation was required to remove noise pixels.

Using the binary image of the blossom detection algorithm, the blossom density could be generally
approximated by doing a series of calculations. Knowing the approximate height above the blossoms
at which the pictures were taken, and having the images from the drone being flown over a known
2 m × 2 m square PVC pipe at that height, the density of the blossoms could be obtained. Processing
this image as shown in Figure 10, the number of square meters per pixel was found for that given
height, which could then be applied to the binary peach blossom detection images, yielding an
approximate density of the blossoms in square units. Using the flying height of 10 m, the size of the
PVC square, and the image spatial resolution of 4000 × 3000 pixels, the approximate coverage area
was 600 square meters. When the density of the peach blossoms was correlated to the square units, the
result would not be perfect, but as long as the height of the images was consistent across all images,
a correlation to fruit yield could be attempted.
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Figure 10. Image processing process for pixel density calculation.

Since the peach trees are planted at about 3 m intervals, the trees in the images were separated by
creating a grid over the image and putting the trees in individual boxes. Figure 11 shows the result of
this grid as well as the resulting peach segmentation over the image. The blossom density from each
tree can then be estimated by doing a pixel count in each box.
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Although such a process of tree segmentation could not be done for every image and would
be very inaccurate, future work of this study will involve the detection of individual trees by way
of boundaries. Using the boundaries, the blossom density of each tree would then be directly and
accurately calculated. A blossom density map can then be produced, which could be used to aid yield
estimation and other subsequent orchard management operations. The farmer could also use the
blossom density map to provide a temporal analysis of the orchard blossoms.

4. Conclusions

An image processing algorithm was developed to detect blossoms on peach trees. The image
acquisition system used an on-the-shelf UAS, the DJI Phantom 3. The UAS camera was modified to
allow near-infrared, green, and blue bands. Images from experimental and commercial peach orchards
were used as target fields. The DroneDeploy software was used to plan the flight path, collect the
images, and for image mosaicking. The image processing analysis showed that contrast stretching
of the images’ three bands enhanced the color of the blossoms from the background. A very basic
thresholding segmentation method was used to segment the blossoms. Initial results showed that the
blossoms can be detected using the thresholding operation with an average detection rate of 84.3%.
Future study will involve the improvement of blossom density calculation and the development of an
algorithm for exact tree segmentation.
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The following abbreviations are used in this manuscript:

C-MAP Crop monitoring and assessment platform
ENDVI Enhanced Normalized Difference Vegetation Index
GPS Global positioning system
NGB Near infrared, Green, Blue
NIR Near infrared
PVC Polyvinyl chloride
RGB Red, Green, Blue
UAS Unmanned aerial system
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