Bidirectional Reflectance Measurement and Reflection Model Fitting of Complex Materials Using an Image-Based Measurement Setup
Abstract
:1. Introduction
2. Method
2.1. Measurement Samples
2.2. BRDF Measurement and Reflection Model Fitting
2.3. Optimal Sampling Dataset
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Colorimetry; CIE15.2; CIE Standard; CIE Publication: Paris, France, 2004.
- Maile, F.J.; Pfaff, G.; Reynders, P. Effect pigments—Past, present and future. Prog. Org. Coat. 2005, 54, 150–163. [Google Scholar] [CrossRef]
- Klein, G.A. Industrial Color Physics; Springer Series in Optical Sciences; Springer: New York, NY, USA, 2010. [Google Scholar]
- Tomić, I.; Dedijer, S.; Novaković, D.; Jurič, I. Artificial neural networks for optimizing camera-based color measurements of prints enhanced with pearlescent pigments. Color. Technol. 2018, 134, 364–372. [Google Scholar] [CrossRef]
- McCamy, C. Observation and measurement of the appearance of metallic materials. Part I. Macro appearance. Color Res. Appl. 1996, 21, 292–304. [Google Scholar] [CrossRef]
- Eugène, C. MEASUREMENT OF “total visual appearance”: A CIE challenge of soft metrology. In Proceedings of the 12th IMEKO TC1 and TC7 Joint Symposium on Man, Science and Measurement, Annecy, France, 3–5 September 2008; pp. 61–65. [Google Scholar]
- Standard Practise for Multiangle Color Measurement of Interference Pigments; ASTM-E2539; ASTM Standard; American Society for the Testing of Materials: West Conshohocken, PA, USA, 2012.
- Standard Practise for Multiangle Color Measurement of Metal Flake Pigmented Materials; ASTM-E2194; ASTM Standard; American Society for the Testing of Materials: West Conshohocken, PA, USA, 2012.
- Nicodemus, F.E.; Richmond, J.; Hsia, J.J.; Ginsberg, I.W.; Limperis, T. Geometrical Considerations and Nomenclature for Reflectance; National Bureau of Standards; US Department of Commerce: Washington, DC, USA, 1977.
- Rong Lu, J.; Koenderink, J.; Kappers, A.M.L. Optical properties (bidirectional reflection distribution functions) of velvet. Appl. Opt. 1998, 37, 5974–5984. [Google Scholar]
- Marschner, S.R.; Westin, S.H.; Lafortune, E.P.F.; Torrance, K.E.; Greenberg, D.P. Image-Based BRDF Measurement Including Human Skin. In Proceedings of the Eurographics Workshop, Granada, Spain, 21–23 June 1999; pp. 139–152. [Google Scholar]
- Tominaga, S.; Tanaka, N. Estimating reflection parameters from a single color image. IEEE Comput. Gr. Appl. 2000, 20, 58–66. [Google Scholar] [CrossRef]
- Matusik, W.; Pfister, H.; Brand, M.; McMillan, L. A Data-Driven Reflectance Model. ACM Trans. Gr. 2003, 22, 759–769. [Google Scholar] [CrossRef]
- Sole, A.; Farup, I.; Nussbaum, P.; Tominaga, S. Evaluating an image-based bidirectional reflectance distribution function measurement setup. Appl. Opt. 2018, 57, 1918–1928. [Google Scholar] [CrossRef] [PubMed]
- Standard Practice for Specifying the Geometry of Multiangle Spectrophotometers; ASTM-E2175; ASTM Standard; American Society for the Testing of Materials: West Conshohocken, PA, USA, 2013.
- A Framework for the Measurement of Visual Appearance; CIE175; Technical Report; International Commission on Illumination: Vienna, Austria, 2006.
- Guarnera, D.; Guarnera, G.; Ghosh, A.; Denk, C.; Glencross, M. BRDF Representation and Acquisition. Comput. Gr. Forum 2016, 35, 625–650. [Google Scholar] [CrossRef] [Green Version]
- Cook, R.L.; Torrance, K.E. A Reflectance Model for Computer Graphics. ACM Trans. Gr. 1982, 1, 7–24. [Google Scholar] [CrossRef]
- Ward, G.J. Measuring and Modeling Anisotropic Reflection. SIGGRAPH Comput. Gr. 1992, 26, 265–272. [Google Scholar] [CrossRef]
- Langovoy, M.; Schmähling, F.; Wübbeler, G. Numerical comparison of sampling strategies for BRDF data manifolds. Measurement 2016, 94, 578–584. [Google Scholar] [CrossRef]
- Nielsen, J.B.; Jensen, H.W.; Ramamoorthi, R. On Optimal, Minimal BRDF Sampling for Reflectance Acquisition. ACM Trans. Gr. 2015, 34. [Google Scholar] [CrossRef]
- Aittala, M.; Weyrich, T.; Lehtinen, J. Two-shot SVBRDF capture for stationary materials. ACM Trans. Gr. 2015, 34, 110:1–110:13. [Google Scholar] [CrossRef]
- Sole, A.; Farup, I.; Tominaga, S. An image based multi-angle method for estimating reflection geometries of flexible objects. In Color and Imaging Conference; Society for Imaging Science and Technology: Springfield, VA, USA, 2014; Volume 2014, pp. 91–96. [Google Scholar]
- Sole, A.S.; Farup, I.; Tominaga, S. An image-based multi-directional reflectance measurement setup for flexible objects. In Measuring, Modeling and Reproducing Material Appearance 2015; Segovia, M.V.O., Urban, P., Imai, F.H., Eds.; International Society for Optics and Photonics: Bellingham, WA, USA, 2015; Volume 9398, p. 93980J. [Google Scholar] [CrossRef]
- Sole, A.; Farup, I.; Nussbaum, P. Evaluating an image based multi-angle measurement setup using different reflection models. Electron. Imaging 2017, 2017, 101–107. [Google Scholar] [CrossRef] [Green Version]
- Höpe, A.; Hauer, K.O. Three-dimensional appearance characterization of diffuse standard reflection materials. Metrologia 2010, 47, 295. [Google Scholar] [CrossRef]
- Sole, A.; Farup, I.; Tominaga, S. Image based reflectance measurement based on camera spectral sensitivities. Electron. Imaging 2016, 2016, 1–8. [Google Scholar] [CrossRef]
- Debevec, P.E.; Malik, J. Recovering High Dynamic Range Radiance Maps from Photographs. In Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles, CA, USA, 11–15 August 2008; ACM Press/Addison-Wesley Publishing Co.: New York, NY, USA, 1997; pp. 369–378. [Google Scholar] [CrossRef]
- Palmer, J.; Grant, B.G. The Art of Radiometry; SPIE Press Bellingham: Washington, DC, USA, 2010; ISBN 978-0-8194-7245-8. [Google Scholar]
- CIE. International Lightning Vocabulary 4th edn CIE Publication 17.4; CIE Publication: Paris, France, 1987. [Google Scholar]
- Li, H.; Foo, S.C.; Torrance, K.E.; Westin, S.H. Automated three-axis gonioreflectometer for computer graphics applications. Opt. Eng. 2006, 45, 043605. [Google Scholar] [CrossRef] [Green Version]
- Nelder, J.A.; Mead, R. A Simplex Method for Function Minimization. Comput. J. 1965, 7, 308–313. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sole, A.; Farup, I.; Nussbaum, P.; Tominaga, S. Bidirectional Reflectance Measurement and Reflection Model Fitting of Complex Materials Using an Image-Based Measurement Setup. J. Imaging 2018, 4, 136. https://doi.org/10.3390/jimaging4110136
Sole A, Farup I, Nussbaum P, Tominaga S. Bidirectional Reflectance Measurement and Reflection Model Fitting of Complex Materials Using an Image-Based Measurement Setup. Journal of Imaging. 2018; 4(11):136. https://doi.org/10.3390/jimaging4110136
Chicago/Turabian StyleSole, Aditya, Ivar Farup, Peter Nussbaum, and Shoji Tominaga. 2018. "Bidirectional Reflectance Measurement and Reflection Model Fitting of Complex Materials Using an Image-Based Measurement Setup" Journal of Imaging 4, no. 11: 136. https://doi.org/10.3390/jimaging4110136
APA StyleSole, A., Farup, I., Nussbaum, P., & Tominaga, S. (2018). Bidirectional Reflectance Measurement and Reflection Model Fitting of Complex Materials Using an Image-Based Measurement Setup. Journal of Imaging, 4(11), 136. https://doi.org/10.3390/jimaging4110136