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Abstract: Handwritten character recognition is currently getting the attention of researchers because
of possible applications in assisting technology for blind and visually impaired users, human–robot
interaction, automatic data entry for business documents, etc. In this work, we propose a technique
to recognize handwritten Devanagari characters using deep convolutional neural networks (DCNN)
which are one of the recent techniques adopted from the deep learning community. We experimented
the ISIDCHAR database provided by (Information Sharing Index) ISI, Kolkata and V2DMDCHAR
database with six different architectures of DCNN to evaluate the performance and also investigate
the use of six recently developed adaptive gradient methods. A layer-wise technique of DCNN
has been employed that helped to achieve the highest recognition accuracy and also get a faster
convergence rate. The results of layer-wise-trained DCNN are favorable in comparison with those
achieved by a shallow technique of handcrafted features and standard DCNN.

Keywords: handwritten character recognition; deep learning; Devanagari characters; convolutional
neural network; adaptive gradient methods

1. Introduction

In the last few years, deep learning approaches [1] have been successfully applied to various areas
such as image classification, speech recognition, cancer cell detection, video search, face detection,
satellite imagery, recognizing traffic signs and pedestrian detection, etc. The outcome of deep learning
approaches is also prominent, and in some cases the results are superior to human experts [2,3] in
the past years. Most of the problems are also being re-experimented with deep learning approaches
with the view to achieving improvements in the existing findings. Different architectures of deep
learning have been introduced in recent years, such as deep convolutional neural networks, deep
belief networks, and recurrent neural networks. The entire architecture has shown the proficiency
in different areas. Character recognition is one of the areas where machine learning techniques
have been extensively experimented. The first deep learning approach, which is one of the leading
machine learning techniques, was proposed for character recognition in 1998 on MNIST database [4].
The deep learning techniques are basically composed of multiple hidden layers, and each hidden
layer consists of multiple neurons, which compute the suitable weights for the deep network. A lot of
computing power is needed to compute these weights, and a powerful system was needed, which
was not easily available at that time. Since then, the researchers have drawn their attention to finding
the technique which needs less power by converting the images into feature vectors. In the last few
decades, a lot of feature extraction techniques have been proposed such as HOG (histogram of oriented
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gradients) [5], SIFT (scale-invariant feature transform) [6,7], LBP (local binary pattern) [8] and SURF
(speeded up robust features) [9]. These are prominent feature extraction methods, which have been
experimented for many problems like image recognition, character recognition, face detection, etc. and
the corresponding models are called shallow learning models, which are still popular for the pattern
recognition. Feature extraction [10] is one type of dimensionality reduction technique that represents
the important parts of a large image into a feature vector. These features are handcrafted and explicitly
designed by the research community. The robustness and performance of these features depend on
the skill and the knowledge of each researcher. There are the cases where some vital features may be
unseen by the researchers while extracting the features from the image and this may result in a high
classification error.

Deep learning inverts the process of handcrafting and designing features for a particular problem
into an automatic process to compute the best features for that problem. A deep convolutional
neural network has multiple convolutional layers to extract the features automatically. The features
are extracted only once in most of the shallow learning models, but in the case of deep learning
models, multiple convolutional layers have been adopted to extract discriminating features multiple
times. This is one of the reasons that deep learning models are generally successful. The LeNet [4]
is an example of deep convolutional neural network for character recognition. Recently, many other
examples of deep learning models can be listed such as AlexNet [3], ZFNet [11], VGGNet [12] and
spatial transformer networks [13]. These models have been successfully applied for image classification
and character recognition. Owing to their great success, many leading companies have also introduced
deep models. Google Corporation has made a GoogLeNet having 22 layers of convolutional and
pooling layers alternatively. Apart from this model, Google has also developed an open source software
library named Tensorflow to conduct deep learning research. Microsoft also introduced its own deep
convolutional neural network architecture named ResNet in 2015. ResNet has 152-layer network
architectures which made a new record in detection, localization, and classification. This model
introduced a new idea of residual learning that makes the optimization and the back-propagation
process easier than the basic DCNN model.

Character recognition is a field of image processing where the image is recognized and converted
into a machine-readable format. As discussed above, the deep learning approach and especially
deep convolutional neural networks have been used for image detection and recognition. It has
also been successfully applied on Roman (MNIST) [4], Chinese [14], Bangla [15] and Arabic [16]
languages. In this work, a deep convolutional neural network is applied for handwritten Devanagari
characters recognition.

The main contributions of our work can be summarized in the following points:

1. This work is the first to apply the deep learning approach on the database created by ISI, Kolkata.
The main contribution is a rigorous evaluation of various DCNN models.

2. Deep learning is a rapidly developing field, which is bringing new techniques that can
significantly ameliorate the performance of DCNNs. Since these techniques have been published
in the last few years, there is even a validation process for establishing their cross-domain utility.
We explored the role of adaptive gradient methods in deep convolutional neural network models,
and we showed the variation in recognition accuracy.

3. The proposed handwritten Devanagari character recognition system achieves a high classification
accuracy, surpassing existing approaches in literature mainly regarding recognition accuracy.

4. A layer-wise technique of DCNN technique is proposed to achieve the highest recognition
accuracy and also get a faster convergence rate.

The remainder of this paper is organized as follows. Section 2 discusses previous work in handwritten
Devanagari character recognition, Section 3 presents the introduction of deep convolutional neural
network and adaptive gradient methods, Section 4 outlines the experiments and discussions and, finally,
Section 5 concludes the paper.
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2. Previous Work

Devanagari handwritten character recognition has been investigated by different feature extraction
methods and different classifiers. Researchers have used structural, statistical and topological features.
Neural networks, KNN (K-nearest neighbors), and SVM (Support vector machine) are primarily used
for classification. However, the first research work was published by I. K. Sethi and B. Chatterjee [17]
in 1976. The authors recognized the handwritten Devanagari numerals by a structured approach
which found the existence and the positions of horizontal and vertical line segments, D-curve, C-curve,
left slant and right slant. A directional chain code based feature extraction technique was used by
N. Sharma [18]. A bounding box of a character sample was divided into blocks and computed 64-D
direction chain code features from each divided block, and then a quadratic classifier was applied
for the recognition of 11,270 samples. The authors reported an accuracy of 80.36% for handwritten
Devanagari characters. Deshpande et al. [19] used the same chain code features with a regular
expression to generate an encoded string from characters and improved the recognition accuracy by
1.74%. A two-stage classification approach for handwritten characters was reported by S. Arora [20]
where she used structural properties of characters like shirorekha and spine in the first stage and
in another stage used intersection features. These features further fed into a neural network for
the classification. She also defined a method for finding the shirorekha properly. This approach has
been tested on 50,000 samples and obtained 89.12% accuracy. In [21], S. Arora combined different
features such as chain codes, four side views, and shadow based features. These features were fed
into a multilayer perceptron neural network to recognize 1500 handwritten Devanagari characters and
obtain 89.58% accuracy.

A fuzzy model-based recognition approach has reported by M. Hanmandlu [22]. The features are
extracted by the box approach which divided the character into 24 cells (6 × 4 grid), and a normalized
vector distance for each box was computed except the empty cells. A reuse policy is also used
to enhance the speed of the learning of 4750 samples and obtained 90.65% accuracy. The work
presented in [23] computed shadow features, chain code features and classified the 7154 samples
using two multilayer perceptrons and a minimum edit distance method for handwritten Devanagari
characters. They reported 90.74% accuracy. Kumar [24] has tested five different features named Kirsch
directional edges, chain code, directional distance distribution, gradient, and distance transform on
the 25,000 handwritten Devanagari characters and reported 94.1% accuracy. During the experiment,
he found the gradient feature outperformed the remaining four features with the SVM classifier,
and the Kirsch directional edges feature was the weakest performer. A new kind of feature was
also created that computed total distance in four directions after computing the gradient map and
neighborhood pixels’ weight from the binary image of the sample. In the paper [25], Pal applied
the mean filter four times before extracting the direction gradient features that have been reduced
using the Gaussian filter. They used modified quadratic classifier on 36,172 samples and reported
94.24% accuracy using cross-validation policy. Pal [26] has further extended his work with SVM and
MIL classifier on the same database and obtained 95.13% and 95.19% recognition accuracy respectively.

Despite the higher recognition rate achieved by existing methods, there is still room for
improvement of the handwritten Devanagari character recognition.

3. Deep Convolutional Neural Networks (DCNN)

The deep convolutional neural network can be broadly segregated into two major parts as shown
in Figure 1, the first part contains the sequence of alternative convolutional with max-pooling layers,
and another part contains the sequence of fully connected layers. An object can be recognized by its
features which are directly dependent on the distributions of color intensity in the image. The Gaussian,
Gabor, etc. filters are used to record these color intensity distributions. The values of a kernel for these
filters are predefined, and they record only the specific distribution of color intensity. The kernel values
are not going to change as per the response of the applied model. However, in DCNN, the values
of the kernel are being updated according to the response of the model. That helps to find the best
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kernel values for the model. The alternative convolutional and max-pooling layers do this job perfectly.
Another part of DCNN is fully connected layers which contain multiple neurons, like the simple neural
network in each layer that gets a high-level feature from the previous convolutional-pooling layer and
computes the weights to classify the object properly.
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Figure 1. The schematic diagram of deep convolutional neural network (DCNN) architecture.

3.1. DCNN Notation

The deep convolutional neural network is a specially designed neural network for the image
processing work. The most of the color images are being represented in three dimensions h× w× c,
where h represents height, w represents the width of the image and c represents the number of channels
of the image. However, the DCNN can only take an image which has the same height and width.
So before feeding the image in DCNN, a normalization process has to follow to convert the image from
h×w× c size to m×m× c size where m represents height and width of an image. The DCNN directly
takes the three-dimensional normalized image/matrix X as an input and supplies to convolutional
layer which has k kernels of size n× n× p, where n < m and p ≤ c. The convolutional layer performs
the multiplication between the neighbors of a particular element of X with the weights provided by
the kernel to generate the k different feature maps of size l(m− n + 1). The convolutional layer is often
followed by the activation functions. Rectified linear unit (Relu) was selected as activation function

Yk
l = f

(
n

∑
i=1

Xi ∗Wk
il + Bk

l

)
(1)

where k denotes the feature map layer, Y is a map of size l × l and Wil is a kernel weight of size n× n,
Bk

l represents the bias value and * represents the 2D convolution.
The next pooling layer works to reduce the feature maps by applying mean, max or min operation

over pl× pl local region of feature map, where pl can vary from 2 to 5 generally. DCNNs have multiple
consecutive layers of convolutional followed by pooling layers and each convolutional layer introduces
a lot of unknown weight. The back-propagation algorithm—one of the famous techniques used in
the simple neural network to find weight automatically—has been used to find the unknown weights
during the training phase. The back-propagation updates the weights to minimize a loss j(w) or error
with an iterative process of gradient descent that can be expressed as

Wt+1 = Wt − α∇E|j(Wt)|+ µνt (2)

Back-propagation algorithm helps to follow a direction towards where the cost function gives
the minimum loss or error by updating the weights. The value α, called learning rate, helps to
determine the step size or change in the previous weight. The back-propagation can be stuck at local
minimum sometimes, which can be overcome by momentum µ which accumulates a velocity vector
ν in the direction of continuous reduction of loss function. The error or loss of a network can be
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found by various functions. The sum of squares function used to calculate the loss or error that can be
expressed as

j(w) =
N

∑
n=1

(yn − ŷn)
2 + λ

L

∑
l=1

W2
l (3)

An L2 regularization λ was applied during the computation of loss to avoid the large progress of
the parameters at the time of the minimization process.

The entire network of DCNN involves the multiple layers of convolutional, pooling, relu, fully
connected and Softmax. These layers have a different specification to express them in a particular
network. In this paper, we used a special convention to express the network of DCNN.

• xINy: An input layer where x represents the width and height of the image and y represent the
number of channels.

• xCy: A convolutional layer where x represents a number of kernels and y represents the size of
kernel y*y.

• xPy: A pooling layer where x represents pooling size x*x, and y represents pooling stride.
• Relu: Represents rectified layer unit.
• xDrop: A dropout layer where x represents the probability value.
• xFC: A fully connected or dense layer where x represents a number of neurons.
• xOU: A output layer where x represents classes or labels.

3.2. Different Adaptive Gradient Methods

Basically, the neural network training updates the weights in each iteration, and the final goal
of training is to find the perfect weight that gives the minimum loss or error. One of the important
parameters of the deep neural network is learning rate, which decides the change in the weights.
The selection of value for learning rate is a very challenging task because if the value of the learning rate
selects low, then the optimization can be very slow and a network will take time to reach the minimum
loss or error. On the other hand, if the value of learning rate selects higher, then the optimization can
deviate and the network will not reach the minimum loss or error. This problem can be solved by
the adaptive gradient methods that help in faster training and better convergence. The Adagrad [27]
(adaptive gradient) algorithm was introduced by Duchi in 2011. It automatically incorporates low
and high update for frequent and infrequent occurring features respectively. This method gives
an improvement in convergence performance as compared to standard stochastic gradient descent for
the sparse data. It can be expressed as,

Wt+1 = Wt −
α√

∑t Avt2 + ε
� gt (4)

where Avt is the previous adjustment gradient and ε is used to avoid divide by zero problems.
The Adagrad method divides the learning rate by the sum of the squared gradient that produces

a small learning rate. This problem is solved by the Adadelta method [28] that can only accumulate
a few past gradients in spite of entire past gradients. The equation of the Adadelta method can be
expressed as

Wt+1 = Wt −
α√

E[Av]2 + ε
� gt (5)

where E[Av]2 represents entire past gradients. It depends on current gradient and the previous average
of the gradient. The problem of Adagrad is solved by Hinton [29] by the technique called RMSProp,
which was designed for stochastic gradient descent. RMSProp is an updated version of Rprop which
did not work with mini-batches. Rprop is same as the gradient, but it also divides by the size of
the gradient. RMSProp keeps a moving average of the squared gradient for each weight and, further,
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it divides the gradient by square root of the mean square value. The first moving average of the squared
gradient is given by,

AvtγAvt−1 + (1− γ)(∇Qw)2 (6)

where γ is the forgetting factor,∇Qw is the derivative of the error and Avt−1 is the previous adjustment
value. The weights are updated as per following equation,

wt+1wt −
α√
Avt
∇Qw (7)

where w is the previous weight and wt+1 is the updated weight whereas α is the global learning rate.
Adam (adaptive moment estimation) [30] is another optimizer for DCNN that needs the first-order

gradient with small memory and computes adaptive learning rate for different parameters.
This method has proven better than the RMSprop and rprop optimizers. The rescaling of the gradient
is dependent on the magnitudes of parameter updates. The Adam does not need a stationary object
and works with sparse gradients. It also contains a decaying average of past gradients Mt.

Mt = B1Mt−1 + (1− B1)Gt (8)

Vt = B2Vt−1 + (1− B2)G2
t (9)

where Mt and Vt are calculated first and the second moment of the gradients and these values are
biased towards zero when the decay rates are small, and thereby bias-correction has done first and
second moments estimates:

M̌t =
Mt

1− Bt
1

(10)

V̌t =
Vt

1− Bt
2

(11)

As per the authors of Adam, the default values of B1 and B2 were fixed at 0.9 and 0.999 empirically.
They have shown its work in practice as a best choice as an adaptive learning method. Adamax is
an extension of Adam, where in place of L2 norm, an LP norm-based update rule has been followed.

3.3. Layerwise Training DCNN Model

The work of training is to find the best weight for the deep neural network at which the network
produces high accuracy or a very small error rate. The outcome of any deep model neural network
somehow depends on how the model was trained and the number of layers. Usually, the model
is created with the certain number of layers, and entire layers are being involved in the training
phase. In this work, we proposed a layer-wise training model of DCNN in spite of involving entire
layers during the training phase to recognize the handwritten Devanagari characters. The layer-wise
training model starts with adding one layer of convolutional and pooling layer, followed by fully
connected layer and applies the back-propagation algorithm to find the weights. In the next
phase of the layer-wise training model, the next layer of convolutional, pooling layer is added and
the back propagation algorithm is applied with previously found weights to calculate weights for
the added layer.

After adding entire layers, a fine tuning was performed with the complete network to adjust
the entire weights of the network on a very low learning rate. The back-propagation algorithm starts
with some random weights, and during training it sharpens the weighs by updating them in each epoch.
The layer-wise training model provides nice rough weights initially as the network starts with first
layers and, further, it adds remaining layers to find the weights for remaining layers. The layer-wise
training model is clearly shown in Figure 2. The training starts with only one pair of convolutional
and pooling layer and further another pair is being added. Algorithm 1 shows the stepwise procedure
to create the layer-wise DCNN model.
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Algorithm 1. Layer wise training of deep convolutional neural network

INPUT: Model, T, t, α1, α2, n \\ T= (TrainData), t = (TestData),
OUTPUT: TM \\ TrainedModel
Begin \\ Add first layer of convolutional layer and pooling layer

Model.add (xCy, T, Relu)
Model.add (xPy)
Model.add (xFC)
Model.add (xOU)
Model.compile (optimizer)
Model.fit (T, t, α1)

for all I := 1: n-1 step 1 do
\\ Remove the last two layers (FC & OU)
of existing model to add next layer of convolutional and pooling
Model.layer.pop()
Model.layer.pop()
Model.add (xCy, T, Relu)
Model.add (xPy)
\\ Again added fully connected and output layer
Model.add (xFC)
Model.add (xOU)
Model.compile (optimizer)
Model.fit (T, t, α1) \\ Trained the model with high learning rate

end for
Model.fit (T, t, α2) \\ Perform fine tuning with low learning rate

end

4. Experiments and Discussions

Experiments were carried out on two databases: ISIDCHAR and V2DMDCHAR using the DCNN,
layer-wise DCNN and different adaptive gradient methods. As it is hard to delineate the number of
layers of DCNN that can produce the best result, we considered six different network architectures
(NA) of DCNN as shown in Table 1. NA-1 contains only single convolutional-pooling layer and
500 fully connected neurons to observe the first response of DCNN. The next, NA-2 has double
the number of fully connected neurons. The aim is to observe the impact of enhancement. Further,
NA-3 and NA-4 have two C-P layers with variation in the number of kernels to analysis the impact of
two C-P layers. The last, NA-5 and NA-6 have three C-P layers.

Initially, the different network architectures of DCNN were applied on each database to find out
the best model for that particular database and then the proposed layer-wise DCNN was applied to
observe the impact of that model. The models have also been tested with different adaptive gradient
methods to these methods; they are also under experiment to observe their performance. Our work
also shows the impact of different adaptive gradient methods on recognition accuracy.
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Table 1. Various network architectures of deep convolutional neural network used.

Network Model Architectures

NA-1 64IN64-64C2-Relu-4P2-500FC-47OU
NA-2 64IN64-64C2-Relu-4P2-1000FC-47OU
NA-3 64IN64-32C2-Relu-4P2-32C2-Relu-4P2-1000FC-47OU
NA-4 64IN64-64C2-Relu-4P2-64C2-Relu-4P2-1000FC-47OU
NA-5 64IN64-32C2-Relu-4P2-32C2-Relu-4P2-32C2-Relu-4P2-1000FC-47OU
NA-6 64IN64-64C2-Relu-4P2-64C2-Relu-4P2-64C2-Relu-4P2-1000FC-47OU

The experiments were all executed on the ParamShavak supercomputer system having
two multicore CPUs with each CPU consisting of 12 cores along with two accelerator cards. This system
has 64 GB RAM with CentOs 6.5 operating system. The deep neural network model was coded in
Python using Keras—a high-level neural network API that uses Theano Python library. The basic
pre-processing tasks like background elimination, gray-normalization and image resizing were done
in Matlab. ISIDCHAR and V2DMDCHAR databases.

The ISIDCHAR [26] was prepared by researchers of the Indian Statistical Institute, Kolkata.
They collected the samples from persons of different age groups to accommodate the maximum
variation of written characters. Apart from that, the samples are also collected from the filled job
forms and post-cards that makes this database so realistic. This database consists of 36,172 grayscale
images of 47 different Devanagari characters. Owing to the assemblage of samples from many authors,
this database delivers a variety of samples in each class, and the background of the samples is also
highly uninformed. V2DMDCHAR [31] has been prepared by Vikas J. Dongre and Vijay H. Mankar’s
in 2012. This database has 20,305 samples of handwritten Devanagari characters.

4.1. Experimental Setup

The experiments were performed to investigate the effects of different network architectures,
optimizers, and layer-wise trainings. The first phase of experiments was performed to observe the best
network architecture for the database, and then the best-observed network architecture was tested
with six different optimizers to find the best optimizer. A total of 12 (6 + 6) different experiments were
performed on the database. The second phase of experiments aimed to observe the effect of layer-wise
training. The layer-wise training was only performed with the best network architecture and best
optimizer selected in the first phase.

Each optimizer had its own set of parameters. In our experiments, the optimizer parameters were
kept as per their default values or as suggested by the author. The rectified linear activation function
was used for entire experiments to mitigate the gradient vanishing problem. The sum of squares of
the difference between target and observed values was calculated to estimate the loss of the deep
network. Each network was trained for 100 epochs using mini-batches of size 200.

4.2. Results

The first phase of experiments was performed on ISIDCHAR to examine the best deep network
architecture. We recorded the recognition accuracy at different network architecture using the Adam
optimizer during each of the 50 epochs. The results in terms of the maximum, minimum, mean,
and standard deviation values of recognition accuracy are reported in Table 2.

The best recognition accuracy was obtained with the network architecture NA-6, and the least
recognition accuracy was obtained with the network architecture NA-1. Figure 3 shows the obtained
recognition accuracy at each epoch. The network NA-1 produced 85% recognition accuracy because
it has only one convolutional layer. The network NA-3 and NA-5 produced higher recognition
accuracies of 91.53% and 93.24% respectively because these networks have a more convolutional layer.
This enhancement signifies that the increment of the convolutional layer in deep convolutional neural
network produced best results. In our experiments, we observed the enhancement in the recognition
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accuracy by increasing the number of kernels of convolutional layer. The network architectures NA-2,
NA-4 and NA-6 had more kernels than NA-1, NA-3 and NA-5 and they produced higher recognition
accuracy as observed in Table 2. The number of trainable parameters for each network architecture
is shown in Table 3. The entire network architecture was also tested using the RMSProp optimizer,
and the results have reported in Table 4. The NA-6 network produced 96.02% recognition accuracy
with RMSProp while 95.58% with Adam. The behavior of NA-6 with RMSProp at each epoch can be
seen in Figure 4.
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Figure 3. In this figure, we draw the recognition accuracy obtained with different network architectures
on ISIDCHAR database at each epoch. The Adam optimizer was used.

Table 2. In this table, we report the results in term of maximum, minimum, mean, and standard
deviation recognition accuracy obtained with different network architectures on ISIDCHAR when
the system trained for 50 epochs with the Adam optimizer. The best scores are in bold.

Recognition Accuracy
Different Network Architectures

NA-1 NA-2 NA-3 NA-4 NA-5 NA-6

Maximum 0.8571 0.8654 0.9153 0.9224 0.9324 0.9558
Minimum 0.7208 0.7701 0.8237 0.8363 0.8077 0.8385
Average 0.8436 0.8549 0.9000 0.9058 0.9190 0.9427

Std. Deviation 0.0204 0.0169 0.0165 0.0158 0.0178 0.0168

Table 3. List of trainable parameters in each network architecture.

Network Architectures Layer Type Layer Size Trainable Parameters Total Parameters

NA-1
Conv1 layer 64 × 64 × 64 1088

34,873,135Dense layer 500 34,848,500
Output layer 47 23,547

NA-2
Conv1 layer 64 × 64 × 64 1088

61,553,135Dense layer 1000 61,505,000
Output layer 47 47,047

NA-3

Conv1 layer 32 × 64 × 64 544

7,265,007
Conv2 layer 32 × 33 × 33 16,416
Dense layer 1000 7,201,000

Output layer 47 47,047



J. Imaging 2018, 4, 41 10 of 14

Network Architectures Layer Type Layer Size Trainable Parameters Total Parameters

NA-4

Conv1 layer 64 × 64 × 64 1088

14,514,735
Conv2 layer 64 × 33 × 33 65,600
Dense layer 1000 14,401,000

Output layer 47 47,047

NA-5

Conv1 layer 32 × 64 × 64 544

1,649,423
Conv2 layer 32 × 33 × 33 16,416
Conv3 layer 32 × 17 × 17 16,416
Dense layer 1000 1,569,000

Output layer 47 47,047

NA-6

Conv1 layer 64 × 64 × 64 1088

3,316,335
Conv2 layer 64 × 33 × 33 65,600
Conv3 layer 64 × 17 × 17 65,600
Dense layer 1000 3,137,000

Output layer 47 47,047

Table 4. In this table, we report the results in term of maximum, minimum, mean, and standard
deviation recognition accuracy obtained with different network architectures on ISIDCHAR when
the system trained for 50 epochs with the RMSProp optimizer. The best scores are in bold.

Recognition Accuracy
Different Network Architectures

NA-1 NA-2 NA-3 NA-4 NA-5 NA-6

Maximum 0.8572 0.8641 0.903 0.9079 0.9311 0.9602
Minimum 0.7093 0.7475 0.7711 0.7788 0.7422 0.8067
Average 0.8383 0.8501 0.8927 0.8941 0.9150 0.9463

Std. Deviation 0.0321 0.0232 0.0210 0.0197 0.0308 0.0252
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Figure 4. In this figure, we draw the recognition accuracy obtained with different network architectures
on the ISIDCHAR database at each epoch. The RMSProp optimizer was used.

The best recognition accuracy of the ISIDCHAR database was obtained with NA-6 network
architecture with RMSProp optimizer. However, it may be possible that this network could perform
better with other optimizers. To further investigate, we performed experiments with six different
optimizers. Table 5 shows the recognition accuracy obtained with NA-6 at different optimizers.
The highest recognition accuracy 96.02% was recorded with NA-6 at RMSProp optimizer. The Adam
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optimizer outperformed the SGD and Adagrad optimizers. The AdaDelta, AdaMax, and RMSProp
optimizers outperformed the Adam optimizer. Figure 5 shows the performance of individual optimizer.

Table 5. In this table, we report the results in term of maximum, minimum, mean, and standard
deviation recognition accuracy obtained with NA-6 on ISIDCHAR when the system trained for
50 epochs with the different optimizers. The best scores are in bold.

Recognition Accuracy
Different Optimizers

SGD Adagrad Adam AdaDelta AdaMax RMSProp

Maximum 0.931 0.9364 0.9558 0.9565 0.9579 0.9602
Minimum 0.6933 0.7703 0.7585 0.7605 0.7851 0.8067

Mean 0.9168 0.9280 0.9411 0.9457 0.9448 0.9463
Std. Deviation 0.0365 0.0252 0.0274 0.0311 0.0256 0.0252
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Figure 5. In this figure, we draw the recognition accuracy obtained with NA-6 network architecture 
at different optimizers (a) SGD; (b) Adagrad; (c) Adam; (d) AdaDelta; (e) AdaMax; (f) RMSProp; on 
the ISIDCHAR database at each epoch.  
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Figure 5. In this figure, we draw the recognition accuracy obtained with NA-6 network architecture
at different optimizers (a) SGD; (b) Adagrad; (c) Adam; (d) AdaDelta; (e) AdaMax; (f) RMSProp;
on the ISIDCHAR database at each epoch.
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We found that the NA-6 network architecture with RMSProp optimizer produced the highest
recognition accuracy. This network was again trained by layer-wise model as described in Section 3.3.

This network was tested with ISIDCHAR, V2DMDCHAR, and combined databases. The results
are reported in Table 6. It has been seen that a nice enhancement in the recognition accuracy
was recorded by the layer-wise training model. The 97.30% recognition accuracy was obtained
on ISIDCHAR database and 97.65% recognition accuracy obtained on V2DMDCHAR database.
The layer-wise training model was also applied after combining both the databases and obtained 98%
recognition accuracy when 70% of the samples were used for training and the rest used for testing.
The current work is compared to previous works on ISIDCHAR database in Table 7.

Table 6. In this table, we reported the maximum recognition accuracy obtained with NA-6 and RMSProp
optimizer on ISIDCHAR, V2DMDCHAR and combined both when the model was trained layer-wise.

Database No. of Samples
Recognition Accuracy

DCNN Layer-Wise DCNN

ISIDCHAR 36,172 96.02% 97.30%
V2DMDCHAR 20,305 96.45% 97.65%

ISIDCHAR+V2DMDCHAR 56,477 96.53% 98.00%

Table 7. Comparison of recognition accuracy by other researchers.

S. No. Accuracy Obtained Feature; Classifier Method Proposed by Data Size

1 95.19 Gradient; MIL U. Pal [26] 36,172
2 95.24 GLAC; SVM M. Jangid [32] 36,172
3 96.58 Masking, SVM M. Jangid [33] 36,172
4 96.45 DCNN Proposed work 36,172
5 97.65 SL-DCNN Proposed work 36,172
6 98 SL-DCNN Proposed work 56,477

5. Conclusions

Deep learning is one of the prominent technologies that have been experimentally studied with
entire major areas of computer vision and document analysis. In this paper, we experimentally
developed a deep convolutional neural network (DCNN) and adaptive gradient methods to recognize
the unconstrained handwritten Devanagari characters. The deep convolutional neural network
helped us to find the best features automatically and also classify them. We experimented with
a handwritten Devanagari character database with six different DCNN network architectures as
well as six different optimizers. The highest recognition accuracy 96.02% was obtained using NA-6
network architecture and RMSProp—an adaptive gradient method (optimizer). Further, we again
trained DCNN layer-wise, which is also adopted by many researchers to enhance the recognition
accuracy, using NA-6 network architecture and the RMSProp adaptive gradient method. Using DCNN
layer-wise training model, our database obtained 98% recognition accuracy, which is the highest
recognition accuracy of the database.
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