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Abstract: In conventional photoacoustic tomography, several effects contribute to the loss of resolution,
such as the limited bandwidth and the finite size of the transducer, or the space-dependent speed of
sound. They can all be compensated (in principle) technically or numerically. Frequency-dependent
acoustic attenuation also limits spatial resolution by reducing the bandwidth of the photoacoustic
signal, which can be numerically compensated only up to a theoretical limit given by thermodynamics.
The entropy production, which is the dissipated energy of the acoustic wave divided by the
temperature, turns out to be equal to the information loss, which cannot be compensated for by
any reconstruction method. This is demonstrated for the propagation of planar acoustic waves in
water, which are induced by short laser pulses and measured by piezoelectric acoustical transducers.
It turns out that for water, where the acoustic attenuation is proportional to the squared frequency, the
resolution limit is proportional to the square root of the distance and inversely proportional to the
square root of the logarithm of the signal-to-noise ratio. The proposed method could be used in future
work for media other than water, such as biological tissue, where acoustic attenuation has a different
power-law frequency dependence.
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1. Introduction

Photoacoustic tomography (PAT), which is also called optoacoustic or thermoacoustic tomography,
is based on the generation of ultrasound following a temperature rise after the illumination of
light-absorbing structures within a semitransparent and turbid material, such as a biological tissue.
It provides optical images with specific absorption contrast [1–3]. Therefore, it offers greater specificity
than conventional ultrasound imaging with the ability to detect hemoglobin, lipids, water, and other
light-absorbing chromophores, but with greater penetration depth than purely optical imaging
modalities that rely on ballistic photons. In PAT, the temporal evolution of the acoustic pressure
field is sampled using an array of ultrasound detectors placed on the tissue surface or by moving a
single detector across the detection surface. Images of the optical absorption within the tissue are then
reconstructed by solving an inverse source problem [3–5].

In this work, the influence of acoustic attenuation on the achievable spatial resolution is
investigated. At depths larger than the range of the ballistic photons, i.e., more than a few hundreds of
microns in tissue, light is multiply scattered, and the spatial resolution is limited by acoustics. As higher
acoustic frequencies, which have smaller wavelengths and allow a better resolution, are more strongly
damped than lower frequencies, the spatial resolution decreases with depth. The spatial resolution
is limited at such depths by the acoustic diffraction limit that corresponds to the highest detectable
frequency. The ratio of the imaging depth to the best spatial resolution is roughly a constant of 200 [3].
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Only recently published non-linear imaging methods, which use additional information such as the
sparsity of the imaged structure, can overcome the acoustic diffraction limit, and are therefore called
“super-resolution” [6,7]. Technical limitations, such as a bandwidth mismatch between the acoustic
transducer and the acoustic signal on the sample surface or the noise of an amplifier, can reduce the
resolution in addition, but can be avoided in principle.

There have been several attempts for mathematically compensating the acoustic attenuation to
obtain images with a higher spatial resolution. Already in 2005, La Riviere et al. proposed an integral
equation that related the measured acoustic signal at a given transducer location in the presence of
attenuation to the ideal signal in the absence of attenuation [8,9]. Ammari et al. later gave a compact
derivation of this integral equation directly through using the wave equations, which is valid for all of
the dimensions [10]. Dean-Ben et al. described the effects of acoustic attenuation (amplitude reduction
and signal broadening), compared these effects to the influence of the transducer bandwidth and
space-dependent speed of sound, and established a correction term similar to La Riviere, but for
space-dependent attenuation [11]. Kowar and Scherzer used a similar formulation for other lossy
wave equations [12].

Burgholzer et al. have directly compensated for the attenuation in photoacoustic tomography
by using a time reversal finite differences method with a lossy wave equation [4,13–16]. The time
reversal of the attenuation term causes the acoustic waves in the finite differences model to grow,
as they propagate back in time through the tissue. At each time step, the total acoustic energy is
controlled by cutting high-frequency signals, which would otherwise grow too quickly. This approach
was later extended by Treeby et al. to account for the general power law absorption behavior [17,18].
Inspired by attenuation compensation in seismology, Treeby proposed a new method for attenuation
compensation in photoacoustic tomography using time-variant filtering [19].

All of these attempts have one thing in common: the compensation of the frequency-dependent
attenuation is an ill-posed problem that needs regularization. The physical reason for this ill-posedness
is thermodynamics: acoustic attenuation is an irreversible process and the entropy production, which is
the dissipated energy of the attenuated acoustic wave divided by the temperature, is equal to the
information loss for the reconstructed image [16]. This also limits the spatial resolution, which correlates
with the information content of the reconstructed image. To reach this thermodynamic resolution
limit for the compensation of acoustic attenuation, it is necessary to measure the broadband ultrasonic
attenuation parameters of tissues or liquids very accurately [20], and evaluate the existing mathematical
models in order to get an accurate description of the attenuation [21].

In Section 2, the experimental set-up to measure the laser-induced acoustic wave at a varying
distance is described. Section 3 gives the theoretical resolution limit for the acoustic attenuated waves
in water. In Section 4, the measured acoustic wave signals are presented, the acoustic attenuation is
compensated, and the theoretical limits are verified. In Section 5, the results are summarized, and the
extension to other materials, such as biological tissue, is discussed.

2. Experimental Set-Up

Figure 1 schematically presents the experimental set-up. An unfocused piezoelectric immersion
transducer (V358-SU, Panametrics, Waltham, MA, USA) with a center frequency of 50.6 MHz and a
−6 dB bandwidth of 81.2% is used to detect the ultrasonic waves. The active element of the transducer
has a diameter of 6.35 mm. After being amplified by a pulser/receiver (5073PR-40-E, Olympus NDT
Inc., Waltham, MA, USA; not shown in the figure), the received signals are sampled by a digital
oscilloscope (DSO 5043, 300 MHz; Agilent Technologies Inc., Santa Clara, CA, USA; not shown in the
figure). The plane waves are generated on basis of the laser ultrasound technique [22,23]. To this end,
a short laser pulse is directed onto an opaque target. Thereby, a thin region under the illuminated spot
is rapidly heated. The resulting thermoelastic expansion of the heated volume causes the emission
of broadband ultrasonic waves. Thereby, a broader frequency spectrum can be achieved compared
to ultrasonic generation with another piezoelectric transducer. The laser pulses are generated with a
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frequency-doubled Nd:YAG laser at wavelength of 532 nm, with a pulse duration of six ns, a repetition
rate of 20 Hz, and a beam diameter of six mm. Different pulse energies, ranging from 12 mJ to 65 mJ,
were used. The mechanical components are designed in order to minimize the axial tilting between
the ultrasonic source and detector and errors regarding the length of the water path. More details on
the set-up can be found in [20]. By using different distance bolts in the mechanical set-up, water paths
of 7.65 mm, 10.65 mm, and 24.65 mm were realized.
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Figure 1. Experimental set-up for the generation and measuring of acoustic plane waves in water.
Short laser pulses are directed on a silicon wafer. Fast local heating due to optical absorption leads
to the emission of ultrasonic waves. The ultrasound detector is held by a mounting flange, and is
axially fixated with a worm screw. The length of the water path between the silicon wafer (i.e., the
ultrasound emitter) and the detector can be adjusted with distance bolts between two aperture discs.
The silicon wafer is pressed onto one aperture disc by another mounting flange, which is bolted to the
opposite flange.

3. Compensation of Acoustic Attenuation and the Limits of Resolution

For a plane wave, a Dirac’s delta pulse δ after traveling a distance r in a liquid, such as water,
the pressure p can be described as (e.g., [11]):

p(r, t) =
1

2π

√
π

α0r
exp

(
−
( r

c − t
)2

4α0r

)
, (1)

in which α0 is the attenuation constant, t is the time, and c is the sound velocity. The amplitude of
the pulse is decreased, and the width of the Gaussian pulse is increased by a factor of

√
α0r. Without

attenuation, the ideal wave is:
pideal(r, t) = δ

( r
c
− t
)

, (2)

where the shape of the pulse does not change. According to [11], for a one-dimensional plane
wave, a relationship between the non-attenuated plane wave pideal and the attenuated wave p can be
established:

p(r, t) = pideal(r, t) ?
1

2π

√
π

α0r
exp
(
− t2

4α0r

)
, (3)

where ? denotes the time convolution.
In the frequency domain, acoustic attenuation in water is described by a power-law dependence,

as can be seen by the Fourier transformation of Equation (3):

p̃(r, ω) =
∫ ∞

−∞
p(r, t)exp(iωt)dt = exp
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iω

r
c

)
exp
(
−α0ω2r

)
, (4)
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where the Fourier transformation of the time convolution is the product of the Fourier transformations.
Acoustic attenuation in a liquid is proportional to the square of the frequency ω. The Kramers–Kronig
relationship states that for a power-law with an exponent of two, no dispersion occurs, and therefore
the sound velocity c does not depend of the frequency ω. This makes the equations simpler than those
for other exponents, such as a linear frequency behavior of attenuation, which is often assumed for
biological tissues [11]. However, despite these mathematical difficulties, the same arguments that are
presented here can be used for any materials and mathematical models for acoustic attenuation.

The limit in spatial resolution caused by frequency-dependent attenuation can be compensated
numerically only up to a certain limit given by thermodynamics. The entropy production, which is the
dissipated energy of the acoustic wave divided by the temperature, is equal to the information loss,
which cannot be compensated by any reconstruction method. The compensation of acoustic attenuation
is according to Equation (3) a deconvolution to get pideal from the measured pressure p, which is
mathematically an ill-posed inverse problem. Regularization methods, such as the truncated singular
value decomposition (T-SVD) method, can solve this inverse problem. Before actually inverting
Equation (3), the physical argument of entropy production as the cause for the “ill-posed-ness” of this
inverse problem is elaborated in a similar way as we could do already for heat diffusion [24,25].

Thermodynamic fluctuations are the reason for the entropy production, which reduces the
available information about the subsurface structures in the measured surface data. They are extremely
small for macroscopic samples, but are highly amplified due to the ill-posed problem of the inversion of
Equation (4) in the frequency domain. The factor exp

(
−α0ω2r

)
for higher frequencies ω gets extremely

small; therefore, for the inversion, the factor exp
(
+α0ω2r

)
gets very large, which is also the factor for

the amplification of the fluctuations.
Non-equilibrium thermodynamics has made enormous progress over the last decade. Heating

light absorbing structures with a laser pulse and observing the induced pressure wave is definitely
a process in which the system state is far from equilibrium. One comprehensive letter about
non-equilibrium thermodynamics, the second law, and the connection between entropy production
and information loss was published in 2011 by M. Esposito and C. van den Broeck [26]. They gave a
proof that for two different non-equilibrium states evolving to the same equilibrium state, the entropy
production ∆iS during the evolution from one state to the other is equal to the information loss
∆I = kB∆D, with the Boltzmann constant kB and ∆D being the difference of the Kullback–Leibler
divergence D, which is also called the relative entropy of these states. D is a measure of how “far” a
certain state is away from equilibrium, see e.g., [27]. The entropy production for macroscopic states
with small fluctuations around equilibrium turns out to be a good approximation that is equal to the
dissipated energy ∆Q divided by the mean temperature T, so ∆iS = ∆Q/T = kB ∆D [24,25].

In the frequency domain, the information loss with increasing time can be described by a cut-off
frequency ωcut, which is calculated similar to that which is done for heat diffusion in thermography [24,25].
Equation (4) shows that after some distance r, the acoustic attenuation reduces the amplitude of p̃(r, ω) by
a factor of exp

(
−α0ω2r

)
. The energy of the acoustic wave with frequency ω is proportional to the square

of the pressure amplitude: ∆Q = 0.5χ∆V |p̃(r, ω)|2 = 0.5χ∆V exp
(
−2α0ω2r

)
can be found e.g., in Morse

and Ingard [28], where χ = 1/
(
c2ρ
)

is the adiabatic compressibility with the density ρ, and ∆V is the
measurement volume. Since kBT/(χ∆V) corresponds to the variance of the pressure (e.g., from Landau
and Lifshitz [29]), one gets for the information content, which is the negative entropy of each frequency
component ∆Sω = ∆Q/T = 0.5 kBSNR2exp

(
−2α0ω2r

)
. Note, that the signal-to-noise ratio (SNR) at

the distance r = 0 is the reciprocal value of the square root of the variance of the pressure, as the signal
amplitude in the frequency domain is normalized to one (Equation (4)). Now, the cut-off frequency ωcut is
defined so that the information content in this frequency component is so low that its distribution cannot
be distinguished from the equilibrium distribution within a certain statistical error level (Chernoff–Stein
Lemma, see e.g., [27]). This error level can be set such that the amplitude of p̃(r, ω) is damped below the
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noise level for frequencies higher than ωcut [24]. Using this error level, the acoustic wave at a distance r
cannot be distinguished from equilibrium if ∆Sωcut gets less than 0.5 kB, which gives:

SNRexp
(
−α0ωcut

2r
)

= 1.

or ωcut =

√
ln(SNR)

α0r
. (5)

For the spatial resolution in photoacoustic imaging, the width of the acoustic signal in the time
domain is essential. A small width enables a high spatial resolution, which corresponds to a broad
frequency bandwidth. If the frequency bandwidth is limited by thermodynamic fluctuations according
to Equation (5), the spatial resolution limit according to Nyquist is half the wavelength at this frequency:

δresolution =
π

ωcut
c = πc

√
α0r

ln(SNR)
. (6)

For our experimental set-up described in Section 2, the acoustic pulse is measured by a
piezoelectric transducer. Its impulse response T(t) is taken into account in the time domain by an
additional convolution in Equation (3), or in Equation (4) by an additional factor T̃(ω) in the frequency
domain. The transducer limits the frequency bandwidth. This technical limit can be overcome
(in principle) by using better transducers with higher bandwidths. As shown in the next section,
our used transducer can measure the frequency components only up to approximately 100 MHz,
which is for smaller propagation distances r significantly lower than the cut-off frequency ωcut from
Equation (5). Therefore, it is expected that a degradation of the resolution δresolution with increasing
distance r according to Equation (6) can only be found for higher distances, where ωcut is in the order
of—or lower—than 100 MHz.

4. Results

From the arrival time of the pulses at various distances, the sound velocity was determined by
linear regression as c = 1498 m/s at a water temperature of 25.5 ◦C. Interpolation from the acoustic

attenuation data of Litovitz and Davis for this temperature gives α0 = 5.24·10−16
(

rad
s

)−2
m−1 [30].

4.1. Measured Signals and Frequency Spectra

Figure 2 shows the measured acoustic pressure as a function of time at a distance r of 7.65 mm,
10.65 mm, and 24.65 mm. A total of 32 measurements were averaged to get a signal-to-noise ratio
(SNR) of approximately 570 instead of 100 for single measurements. The arrival time of the ideal
acoustic wave was subtracted, which allows plotting all of the signals with the same time scale.
The corresponding frequency spectra of the measured signals from Figure 2 are shown in Figure 3.
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Figure 2. Measured acoustic pressure as a function of time at a distance r of 7.65 mm, 10.65 mm,
and 24.65 mm. A total of 32 measurements were averaged to get a signal-to-noise ratio (SNR) of
approximately 570 instead of 100 for single measurements. The time scale was shifted for each signal,
which allows plotting all of the signals with the same time scale.
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Figure 3. Amplitude of the Fourier transformation in time to get the frequency domain pressure
amplitude from the measured signals shown in Figure 2 at a distance r of 7.65 mm, 10.65 mm,
and 24.65 mm. The frequency response of the transducer is taken into account in the frequency
domain by an additional factor T̃(ω) in Equation (4). The transducer limits the frequency bandwidth,
and therefore, a significant influence according to Equation (4) on the bandwidth of the signals can be
seen only for larger distances, such as that at 24.65 mm.

4.2. Compensation of Acoustic Attenuation Using the Truncated Singular Value Decomposition (T-SVD) Method

The pressure signals p(r, t) (Figure 2) are measured at a sampling rate of one GHz, which gives a
time discretization of 1 ns. The same time discretization is used for pideal(r, t), and the convolution
with the Gaussian function in Equation (3) can be described as a matrix equation:

pr = Mrpideal , (7)

where pr and pideal are vectors and Mr is the convolution matrix, which describes the influence of
acoustic attenuation. Mr cannot be inverted directly, but the pseudo-inverse matrix invMr can be
calculated by the truncated singular value decomposition (T-SVD) method (see e.g., [31]). It turns out
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that the SVD of Mr is its Fourier transformation (represented as multiplication with matrix F), which is
shown in Equation (4):

Mr = F∗ diag
(

exp
(
−α0ω2r

))
F, (8)

where F∗ is the complex conjugated of F, and diag
(
exp
(
−α0ω2r

))
represents the diagonal matrix of the

singular values. The truncation criterion for the T-SVD method is that the singular value gets smaller
than 1/SNR [31]. This gives exactly the same truncation value as the cut-off value in Equation (5),
which was derived by setting the entropy production equal to the information loss. The pseudo-inverse
matrix is:

invMr = F∗diag
(

1, . . . , exp
(
+α0ωcut

2r
)

, 0, . . . , 0
)

F, (9)

where in the diagonal matrix, the reciprocal values of singular values are taken, and for singular values
smaller than 1/SNR, the value in the diagonal is set to zero. The ideal wave can be reconstructed by:

pideal_rec = invMrpr. (10)

According to Equation (4), the reconstruction of the ideal wave is the inverse Fourier
transformation, where the frequency integral is taken from −ωcut to +ωcut:

pideal_rec(r, t) =
1

2π

∫ +ωcut

−ωcut
exp
(

iω
r
c

)
exp(−iωt)dω =

1
π

1
t− r

c
sin
(

ωcut(
r
c
− t)

)
. (11)

This is a sinc function, where the maximum at a distance r is at t = r
c , which is the arrival time of

the ideal wave (Equation (2)). The zero points are at:

t =
r
c
± π

ωcut
=

r± δresolution
c

, (12)

with δresolution from Equation (6).
For the measured signals (SNR = 570), the truncation frequencies from Equation (5) are 200 MHz,

170 MHz, and 112 MHz for a distance r of 7.65 mm, 10.65 mm, and 24.65 mm, respectively (Table 1).
This would give a spatial resolution of 3.7 µm, 4.4 µm, and 6.7 µm for the best reconstructions according
to Equation (6), as shown in Table 2.

Table 1. Truncation frequency ωcut/(2π) in MHz.

Propagation Distance Only for Acoustic Attenuation Taking Transducer Bandwidth into Account

7.65 mm 200 125
10.65 mm 170 125
24.65 mm 112 93

Table 2. Spatial resolution δresolution in µm.

Propagation Distance Only for Acoustic Attenuation Taking Transducer Bandwidth into Account

7.65 mm 3.7 6
10.65 mm 4.4 6
24.65 mm 6.7 8.1

In the used experimental set-up, the bandwidth of the transducer significantly influences that
resolution. The truncation frequency of the used transducer is 125 MHz (Table 1). This is the frequency
at which the signal gets lower than the noise level because of the band limitation of the transducer and
the amplifier. At a distance of 7.65 mm and 10.65 mm, the truncation frequency from wave propagation
is significantly higher (Table 1), and therefore, the truncation frequency of 125 MHz and the spatial
resolution of six µm does not change (Table 2). After a traveling distance of 24.65 mm, the truncation
frequency is reduced to 93 MHz, and the resolution degrades to approximately eight µm.
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Figure 4 shows the reconstruction of the ideal signal according to Equation (10) from the measured
pressure signals that are shown in Figure 2. As shown in Equation (11), these sinc functions have their
maximum at time zero, as the time scale was shifted by − r

c for each signal, which allows plotting all of
the signals on the same time scale. The zero points are at ±δresolution

c (see Equation (12)).J. Imaging 2018, 4, x FOR PEER REVIEW  8 of 11 
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c .

5. Discussion, Conclusions, and Outlook

The numerical compensation of acoustic attenuation is an ill-posed inverse problem that needs
regularization. Here, for the reconstruction of the ideal waves without acoustic attenuation from
the measured pressure data of plane waves at a varying distance, the truncated singular value
decomposition (T-SVD) method in the frequency domain was applied for regularization.

Choosing an adequate regularization parameter, which is for the T-SVD method the truncation
frequency ωcut, is essential. If this frequency is too high, reconstruction artifacts come up due to
the amplification of fluctuations (noise), as shown in Figure 5 (dashed line). If it is taken too low,
resolution is lost (Figure 5, dotted line). A physical argument from thermodynamics for choosing the
regularization parameter could be given. For a certain propagation distance r of the acoustic wave
in water, the truncation frequency ωcut is the frequency where the acoustic wave is just damped to
the noise level. Lower frequencies are damped less, and therefore, these frequency components can
contribute to the reconstruction of the ideal wave. Higher frequencies are damped below the noise
level, and therefore, they are truncated and cannot contribute to the reconstruction of the ideal wave.

It was shown that for this truncation frequency ωcut, the absorbed acoustic energy divided by the
temperature, which is the entropy production for this frequency component, is equal to the information
loss described by the relative entropy (Kullback–Leibler divergence D). The close connection of entropy
production (dissipation) to the signal noise (fluctuation) is an example of the fluctuation–dissipation
theorem in non-equilibrium thermodynamics [24,25]. This enables us to give a physical argument for
the choice of the regularization parameter ωcut: either when the frequency components of the acoustic
signal are just damped to the noise level, or, which is equivalent according to the fluctuation–dissipation
theorem, where the information content gets smaller than a certain level, and then this component
cannot be distinguished from thermodynamic equilibrium (Chernoff–Stein–Lemma).

For the chosen transducer with a truncation frequency of 125 MHz, it turns out that the acoustic
attenuation in water is too low to detect a significant degradation in resolution for a propagation
distance up to 20 mm, where according to Equation (5), the truncation frequency only for acoustic
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attenuation is equal to the truncation frequency of the transducer. This is different for a propagation
distance of 24.65 mm. Then, the truncation frequency for acoustic attenuation is 112 MHz, and in
combination with the transducer, it is 93 MHz (Table 1). For future work, either a transducer with a
higher bandwidth or a liquid with higher attenuation, such as glycerin, may be used. The proposed
method could be used for media other than water, such as biological tissue where acoustic attenuation
is higher and has a different power-law frequency dependence. In a first approximation, the change
of the sound velocity with frequency, which is called dispersion, could be neglected compared to
attenuation [11]. Acoustic attenuation in biological tissue is caused by a combination of dissipation and
scattering, and the power law describing the frequency-dependent attenuation should describe both
dissipation and scattering. If the frequency dependence of scattering and dissipation is significantly
different than that in the observed frequency range, the power law needs to be modified.
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Figure 5. Reconstructed ideal waves for the signal at a distance 24.65 mm where the signal-to-noise
ratio (SNR) of 570 for the reconstruction is divided by 10 (dotted line) or multiplied by 10 (dashed line).
The width of the reconstruction gets higher for a lower SNR, because the truncation frequency is
reduced. The truncation frequency is shifted from 93 MHz (Table 1) to 80 MHz, and the spatial
resolution degrades from 8.1 µm (Table 2) to 9.3 µm. If a higher SNR is assumed than that provided by
the experimental data, large artifacts caused by the high amplification of the fluctuations appear. In that
case, proper reconstruction is not possible (dashed line). By such a SNR, the truncation frequency
would be shifted from 93 MHz to 114 MHz, and the spatial resolution would be enhanced from 8.1 µm
to 6.6 µm.

In this manuscript, only one-dimensional wave propagation in a plane wave model is presented.
The results only refer to the axial resolution in the direction of propagation. The relationship between
the non-attenuated plane wave pideal and the attenuated wave p as shown in Equation (3) is local,
which means that for pideal and for p, the same location in the sample is used, and the relation is the same
for one, two, or three-dimensional wave propagation [10]. We have shown this explicitly by simulating
the attenuated signal at a distance of 10 mm from a 200-micron thick layer (1D), a cylinder (2D), and a
sphere (3D) as an acoustic source. Reconstruction in the axial direction was the same [14,15]. Therefore,
it is sufficient to describe plane wave propagation. Of course, the resolution in higher dimensions
varies for different directions. For one-dimensional propagation, no reconstruction is necessary,
because the resolution is directly given by pideal_rec in Equation (11). For two or three-dimensional wave
propagation, reconstruction methods such as time reversal reconstruction [4] can be used for image
reconstruction from pideal . For lateral reconstruction perpendicular to the axial direction, propagation
directions that have an angle θ to the axial direction are necessary. For such propagation directions,
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the distance to the sample surface increases with r/ cos(θ), which especially broadens the resolution
in the lateral direction.
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