Individualised Halo-Free Gradient-Domain Colour Image Daltonisation
Abstract
:1. Introduction
2. Background
3. Proposed Method
3.1. The Initial Value
3.2. Local Linear Anisotropic Diffusion
3.3. Further Simplifications
3.4. Implementation
4. Results
- the simple daltonisation algorithm proposed in Equation (4),
- the isotropic daltonisation algorithm proposed in Equation (3), which is essentially the same as the one proposed in [17], but with the simplifications described in Section 3.3, and the simple daltonisation as the initial condition, and
- the anisotropic daltonisation algorithm proposed in Equation (5).
5. Conclusions
Funding
Conflicts of Interest
References
- Valberg, A. Light Vision Color; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Hansen, E. Fargeblindhet: Årsaker, Forekomst og Typer; Gyldendal Akademisk: Oslo, Norway, 2010. [Google Scholar]
- Simon-Liedtke, J.T.; Farup, I. Using a Behavioral Match-to-Sample Method to Evaluate Color Vision Deficiency Simulation Methods. J. Imaging Sci. Technol. 2016, 60, 50409-1–50409-9. [Google Scholar]
- Brettel, H.; Viénot, F.; Mollon, J.D. Computerized simulation of color appearance for dichromats. JOSA A 1997, 14, 2647–2655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simon-Liedtke, J.; Farup, I. Empirical Disadvantages for Color-Deficient People. In Proceedings of the AIC2015 Tokyo Color and Image Conference. International Colour Association (AIC), Japan, Tokyo, 19–22 May 2015; pp. 391–394. [Google Scholar]
- Ward, J.; Wright, T. Sensory substitution as an artificially acquired synaesthesia. Neurosci. Biobehav. Rev. 2014, 41, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, K.; Hauswirth, W.W.; Li, Q.; Connor, T.B.; Kuchenbecker, J.A.; Mauck, M.C.; Neitz, J.; Neitz, M. Gene therapy for red–green colour blindness in adult primates. Nature 2009, 461, 784–787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anagnostopoulos, C.N.; Tsekouras, G.; Anagnostopoulos, I.; Kalloniatis, C. Intelligent modification for the daltonization process of digitized paintings. In Proceedings of the International Conference on Computer Vision Systems (ICVS 2007), Bielefeld, Germany, 21–24 March 2007. [Google Scholar]
- Huang, J.B.; Chen, C.S.; Jen, T.C.; Wang, S.J. Image recolorization for the colorblind. In Proceedings of the 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, Taipei, Taiwan, 19–24 April 2009; pp. 1161–1164. [Google Scholar]
- Kotera, H. Optimal daltonization by spectral shift for dichromatic vision. In Proceedings of the Color and Imaging Conference.Society for Imaging Science and Technology, Los Angeles, CA, USA, 12–16 November 2012; pp. 302–308. [Google Scholar]
- Kuhn, G.R.; Oliveira, M.M.; Fernandes, L.A. An efficient naturalness-preserving image-recoloring method for dichromats. IEEE Trans. Vis. Comput. Graph. 2008, 14, 1747–1754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simon-Liedtke, J.; Farup, I.; Eschbach, R. On the edge: A scalable daltonization method focusing chromatic edges and contrast. Electron. Imaging 2017, 2017, 28–35. [Google Scholar] [CrossRef] [Green Version]
- Simon-Liedtke, J.T.; Farup, I. Evaluating color vision deficiency daltonization methods using a behavioral visual-search method. J. Vis. Commun. Image Represent. 2016, 35, 236–247. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, M.; Gomes, A.J. Recoloring algorithms for colorblind people: A survey. ACM Comput. Surv. (CSUR) 2019, 52, 1–37. [Google Scholar] [CrossRef] [Green Version]
- Chatzistamatis, S.; Rigos, A.; Tsekouras, G.E. Image Recoloring of Art Paintings for the Color Blind Guided by Semantic Segmentation. In International Conference on Engineering Applications of Neural Networks; Springer: Berlin/Heidelberg, Germany, 2020; pp. 261–273. [Google Scholar]
- Iqbal, M.; Riaz, M.M.; Ghafoor, A.; Ahmad, A. Image recoloring using specular decomposition and in-painting. Imaging Sci. J. 2020, 68, 188–194. [Google Scholar] [CrossRef]
- Simon-Liedtke, J.T.; Farup, I. Multiscale Daltonization in the Gradient Domain. J. Percept. Imaging 2018, 1, 010503-1–010503-12. [Google Scholar] [CrossRef]
- Zhu, Z.; Toyoura, M.; Go, K.; Fujishiro, I.; Kashiwagi, K.; Mao, X. Naturalness-and information-preserving image recoloring for red–green dichromats. Signal Process. Image Commun. 2019, 76, 68–80. [Google Scholar] [CrossRef]
- Gonzalez, R.C.; Woods, R.E. Digital Image Processing, 3rd ed.; Pearson Education Inc.: Upper Saddle River, NJ, USA, 2008. [Google Scholar]
- Jolliffe, I. Principal Component Analysis; Wiley Online Library: Hoboken, NJ, USA, 2002. [Google Scholar]
- International Electrotechnical Commission (IEC). IEC 61966-2-1:1999; Technical Report; International Electrotechnical Commission (IEC): Geneva, Switzerland, 1999. [Google Scholar]
- Rudin, L.I.; Osher, S.; Fatemi, E. Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 1992, 60, 259–268. [Google Scholar] [CrossRef]
- Alsam, A.; Farup, I. Spatial Colour Gamut Mapping by Means of Anisotropic Diffusion. In Computational Colour Imaging Workshop (CCIW); Lecture Notes in Computer Science; Springer: Berlin, Germany, 2011; Volume 6626, pp. 113–124. [Google Scholar]
- Farup, I.; Pedersen, M.; Alsam, A. Colour-to-Greyscale Image Conversion by Linear Anisotropic Diffusion of Perceptual Colour Metrics. In Proceedings of the Colour and Visual Computing Symposium, Gjøvik, Norway, 19–20 September 2018. [Google Scholar]
- Thomas, J.B.; Farup, I. Demosaicing of Periodic and Random Colour Filter Arrays by Linear Anisotropic Diffusion. J. Imaging Sci. Technol. 2018, 62, 050401-1–050401-8. [Google Scholar] [CrossRef] [Green Version]
- Di Zenzo, S. A note on the gradient of a multi-image. Comput. Vision, Graph. Image Process. 1986, 33, 116–125. [Google Scholar] [CrossRef]
- Sapiro, G.; Ringach, D.L. Anisotropic diffusion of multivalued images with applications to color filtering. IEEE Trans. Image Process. 1996, 5, 1582–1586. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farup, I. Individualised Halo-Free Gradient-Domain Colour Image Daltonisation. J. Imaging 2020, 6, 116. https://doi.org/10.3390/jimaging6110116
Farup I. Individualised Halo-Free Gradient-Domain Colour Image Daltonisation. Journal of Imaging. 2020; 6(11):116. https://doi.org/10.3390/jimaging6110116
Chicago/Turabian StyleFarup, Ivar. 2020. "Individualised Halo-Free Gradient-Domain Colour Image Daltonisation" Journal of Imaging 6, no. 11: 116. https://doi.org/10.3390/jimaging6110116
APA StyleFarup, I. (2020). Individualised Halo-Free Gradient-Domain Colour Image Daltonisation. Journal of Imaging, 6(11), 116. https://doi.org/10.3390/jimaging6110116