
Journal of

Imaging

Article

Deep Concatenated Residual Networks for Improving Quality
of Halftoning-Based BTC Decoded Image

Heri Prasetyo 1,* , Alim Wicaksono Hari Prayuda 1 , Chih-Hsien Hsia 2,* and Jing-Ming Guo 3

����������
�������

Citation: Prasetyo, H.; Wicaksono

Hari Prayuda, A.; Hsia, C.-H.; Guo,

J.-M. Deep Concatenated Residual

Networks for Improving Quality of

Halftoning-Based BTC Decoded

Image. J. Imaging 2021, 7, 13.

https://doi.org/10.3390/jimaging

7020013

Academic Editor: Roman Starosolski

Received: 26 November 2020

Accepted: 12 January 2021

Published: 25 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Informatics, Universitas Sebelas Maret, Surakarta 57126, Indonesia; wicayudha.wy@gmail.com
2 Department of Computer Science and Information Engineering, National Ilan University, Yilan 260, Taiwan
3 Department of Electrical Engineering, National Taiwan University of Science and Technology,

Taipei 106335, Taiwan; jmguo@seed.net.tw
* Correspondence: heri.prasetyo@staff.uns.ac.id (H.P.); chhsia625@gmail.com (C.-H.H.)

Abstract: This paper presents a simple technique for improving the quality of the halftoning-based
block truncation coding (H-BTC) decoded image. The H-BTC is an image compression technique
inspired from typical block truncation coding (BTC). The H-BTC yields a better decoded image
compared to that of the classical BTC scheme under human visual observation. However, the
impulsive noise commonly appears on the H-BTC decoded image. It induces an unpleasant feeling
while one observes this decoded image. Thus, the proposed method presented in this paper aims
to suppress the occurring impulsive noise by exploiting a deep learning approach. This process
can be regarded as an ill-posed inverse imaging problem, in which the solution candidates of
a given problem can be extremely huge and undetermined. The proposed method utilizes the
convolutional neural networks (CNN) and residual learning frameworks to solve the aforementioned
problem. These frameworks effectively reduce the impulsive noise occurrence, and at the same time,
it improves the quality of H-BTC decoded images. The experimental results show the effectiveness
of the proposed method in terms of subjective and objective measurements.

Keywords: block truncation coding; convolutional neural networks; deep learning; halftoning;
residual learning; image reconstruction

1. Introduction

The block truncation coding (BTC) is a type of lossy image compression technique
under the block-wise processing manner [1]. In the encoding process, an input image is
firstly divided into a set of image blocks, in which one block is non-overlapping with the
other blocks. Each image block is processed individually to yield two extreme quantizers,
namely high and low mean values, and a binary image. The high and low mean values are
computed in such a way using the average value (mean value) and standard deviation on
each processed image block. The magnitude of high mean value is higher compared to the
low mean value. These two means keep the image block statistics unchanged. The required
bit to represent each image block can be significantly reduced using this strategy, while the
underlying statistical property of an image block (the mean value and standard deviation)
can be still maintained. In the decoding process, a pixel value of a binary image is simply
replaced with high or low mean value. From this point of view, the BTC compression is
very easy to implement. However, the false contour and blocking artifacts often destroy
the quality of the BTC decoded image. These artifacts are more noticeable while the size of
the image block is increased.

On other hand, the halftoning-based block truncation coding (H-BTC) method beats
the performance of the classical BTC by introducing the digital halftoning technique to
generate visual illusion on its binary image [2–4]. The H-BTC replaces the binary image
used in the BTC technique with the common digital halftone image obtained from the
ordered dither, error diffusion, and dot diffusion. While these halftoning techniques are
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integrated with H-BTC, we pronounce as ordered dither block truncation coding (ODBTC),
error diffusion block truncation coding (EDBTC), and dot diffused block truncation coding
(DDBTC). As reported in literature, the H-BTC method and its variants yield a better quality
of decoded image and overcome the artifact problems that occurred at the BTC technique.
Even though the H-BTC method and its variants successfully compress an image with
better quality compared to that of the classical BTC technique, they generally produce a
decoded image with poor quality due to the occurrence of impulsive noise. This impulsive
noise is more perceivable and noticeable while the H-BTC compression is applied to the
color image over a large image block. Some solutions have been offered to overcome these
shortcomings such as in [5,6]. The wavelet-based approach [5] separates the occurred noise
into the high-frequency sub-band, while the image information including detail, edge, and
intrinsic geometric property are located in the low-frequency sub-band. By modifying
the high and low-frequency sub-bands, this simple technique successfully eliminates the
occurred impulsive noise. However, the reconstructed image looks blurry and produces
some checkerboard artifacts. In different directions, the fast vector quantization (VQ) [6]
conducts the H-BTC image reconstruction by substituting each image patch of the H-BTC
decoded image with the similar image patch from a trained codebook. In this technique, the
trained codebook is generated from a set of clean images, thus, each codeword is a noise-
free image patch. It is no wonder that the VQ-based approach gives better performance
compared to the wavelet-based scheme. However, the reconstructed image is still blurry
with an unpleasant appearance. The developed methods in [5,6] share a similar idea,
i.e., performing the inverse halftoning to suppress the occurred impulsive noise in the
H-BTC decoded image. The inverse halftoning mainly performs the restoration from the
halftone image into its continuous-tone version. However, this task becomes non-trivial
due to many-to-one nature on the quantization process of halftoning computation. Many
different input levels are quantized into one value, i.e., black or white tone. Thus, the
inverse halftoning has no unique solution.

The deep learning frameworks have attracted so much attention in recent years due
to its outstanding performance in image processing and computer vision tasks [7–21]. The
convolutional neural networks (CNN) and residual [7] learnings are the most well known
amongst the other deep learning techniques. The CNN involves several convolution opera-
tions, activation function, and image batch normalization in the learning process. Whereas,
the residual networks (ResNets) learn an end-to-end mapping between the input and tar-
geted output image based on the residual information contained in a series of convolutional
layers. The CNN, ResNets, and its variants have been reported in literature [7–21] to yield
an excellent performance in the image retrieval, image super resolution, image denoising,
etc. In recent years, some efforts have been devoted to further improve the performance
and effectiveness of CNN methods by considering the non-local self-similarity information.
An example are the neural nearest neighbor networks [18]. This scheme employs the
non-local self-similarity as a building block to perform image denoising. It overcomes the
limitation of the K-nearest neighbor method by offering relaxation for neighbor selection.
Whereas, the method in [19] conducts an image restoration with non-local recurrent net-
works by learning the non-local information and adjacent recurrent states. It computes the
deep features from neighborhood information of a given input image. The method in [20]
combines the CNN and non-local self-similarity to create the graph convolutional networks
for the image denoising task. As reported in literature [18–20], the CNN-based method
with non-local self-similarity gives better performance compared to that of the original
CNN-based scheme. The U-Nets has also been reported as an outstanding performance in
image segmentation [21]. It is built on the CNN and residual learning frameworks.

Based on these observations, we propose a new technique for improving the quality
of an H-BTC decoded image using a deep learning framework. This technique learns much
information from a set of training images to investigate the ill-posed problem and the
many-to-one nature of inverse halftoning schemes. This learning process produces a model
to infer and suppress the impulsive noise for improving the quality of the H-BTC decoded
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image. Herein, we employ the CNN and residual learning with end-to-end mapping ability.
The proposed networks receive the H-BTC decoded image and produce the improved
quality of this decoded image.

The rest of this paper is organized as follows. Section 2 briefly discusses the H-BTC
image compression and related works for improving the quality of the decoded image.
Section 3 presents the proposed deep learning framework for H-BTC image reconstruction.
Section 4 reports the experimental results and findings. The conclusions are finally drawn
in Section 5.

2. Related Works

This section briefly reviews the three H-BTC compression methods, namely ordered
dither block truncation coding (ODBTC), error diffusion block truncation coding (EDBTC),
and dot diffused block truncation coding (DDBTC). The two methods for improving the
quality of H-BTC decoded image, i.e., wavelet-based approach and VQ based technique,
are also presented in this section.

2.1. H-BTC Image Compression

The variants of H-BTC image compression, i.e., ODBTC, EDBTC, and DDBTC, trans-
form a continuous-tone image into another representation to reduce the required bit.
Figure 1 illustrates the schematic diagram of H-BTC compression for color image regarded
as continuous-tone. In this compression, a color image of size H ×W is firstly divided into
non-overlapping blocks, each of size M× N. Let I(m, n) =

{
xR

m,n, xG
m,n, xB

m,n
}

be an image
block in color version, for m = 1, 2, . . . , M and n = 1, 2, . . . , N, where xR

m,n, xG
m,n, and xB

m,n
denote the pixel values on red, green, and blue channels, respectively. Suppose that Î(m, n)
be the grayscale version of an image block I(m, n). This image block I(m, n) is further
encoded into two extreme quantizers and a bitmap image based on the following function:

H{I(m, n)} ⇒ {qmin, qmax, b(m, n)}, (1)

where qmin and qmax are two extreme quantization values, b(m, n) is the binary or bitmap
image of size M× N. These quantization values can be simply obtained by searching the
minimum and maximum pixel values within the image block as follows:

qmin =

{
min
∀m,n

xR
m,n, min

∀m,n
xG

m,n, min
∀m,n

xB
m,n

}
, (2)

qmax =

{
max
∀m,n

xR
m,n, max

∀m,n
xG

m,n, max
∀m,n

xB
m,n

}
. (3)

Figure 1. Schematic diagram of halftoning-based block truncation coding (H-BTC) image compression.
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The ODBTC, EDBTC, and DDBTC compression employ the same extreme quantization
values. The main difference between those methods is only on the bitmap image generation
process. This bitmap image is generated from the grayscale version of an image block.
The ODBTC utilizes a dither array, while the EDBTC uses the error kernel. Whereas, the
DDBTC involves class rank and diffused weighting matrices.

Let D(m, n) be a dither array of the same size with the image block, i.e., M× N. The
dither array is generated by involving a set of training images and learning process. The
optimum dither array is obtained by an iterative process by minimizing similarity error
between the input image and its thresholded image after dithering process. Prospective
readers are suggested to refer [2] for detailed explanation of dither array generation. Given
a set of training images, the dither array is iteratively updated based on the similarity. The
scaled versions of this dither array are pre-calculated and stored as a look-up table denoted
with

{
D(0), D(1), . . . , D(255)

}
. This look-up table significantly reduces the computational

time on generating the ODBTC bitmap image [2]. Subsequently, the ODBTC encodes the
grayscale version of the image block Î(m, n) using the simple thresholding as follows:

b(m, n) =
{

0, if Î(m, n) < D(k)(m, n) + x̂min
1, otherwise

, (4)

where x̂min denotes the minimum pixel value in the image block Î(m, n), and d = qmax − qmin.
In contrast, the EDBTC method generates the bitmap image by means of error kernel [3].
The Floyd–Steinberg kernel is very popular among the other kernels in the error diffu-
sion halftoning. The generation of this error kernel can be traced back in [3]. Yet, the
thresholding process for computing the EDBTC bitmap image is formally defined as:

b(m, n) =
{

0, if vm,n < x
1, otherwse

, (5)

where x denotes the mean value over all pixels in the image block Î(m, n). The EDBTC
further diffuses the error value obtained from this thresholding operation into its neigh-
boring pixels based on the error kernel value. This error diffusion process can be simply
formulated as follows:

vm,n = x̂m,n + x′m,n, (6)

em,n = vm,n − om,n, (7)

where x′m,n = em,n ∗ k. The value of om,n = x̂min if vi,j < x, and om,n = x̂max for vice versa.
Herein, the symbols em,n, om,n, k, and ∗ denote the residual quantization error, intermediate
value, the value of error kernel, and convolution operator, respectively. The symbols x̂min
and x̂max are the maximum and maximum pixel values, respectively, found in Î(m, n).

Whereas, the DDBTC combines the effectiveness of ordered dithering and error diffu-
sion halftoning techniques to achieve outstanding performance [4]. The DDBTC utilizes the
class and diffusion matrices. The class matrix is of the same size as the image block, which
determines the pixel processing order, while the diffusion matrix contains information for
distributing the residual quantization error into its neighborhood pixels. The process of
DDBTC thresholding can be executed using the following strategy as formerly used in [4]:

vm,n = x̂m,n + x′m,n, where x′m,n =
em,n ∗ d

sum
, (8)

sum =
1

∑
k=−1

1

∑
l=−1

{
0 if cm+k,n+l < cm,n

hm,n otherwise
, (9)

where d, cm,n, and sum indicate the diffusion matrix, coefficient value in class matrix, and
the summation of diffused weights corresponding to those unprocessed pixels, respec-
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tively. The DDBTC performs an identical thresholding operation as used in the EDBTC for
generating the bitmap image.

All H-BTC methods transmit two extreme quantization values and bitmap image into
the decoder side. Yet, the decoder simply replaces the bitmap image of value 1 with the max
quantizer value, and vice versa. The decoding process of H-BTC methods is performed
using the following strategy:

r(m, n) =
{

qmin, if b(m, n) = 0
qmax, otherwise

, (10)

where r is the decoded pixel at position (m, n) for m = 1, 2, . . . , M and n = 1, 2, . . . , N. This
decoding process is very efficient, making it very suitable for real-time application.

In this paper, a single bitmap image is utilized in the ODBTC, EDBTC, and DDBTC.
As illustrated in Figure 1, we firstly need to compute the grayscale version of a given color
image. Subsequently, the image thresholding is performed to convert this grayscale image
into a bitmap image. This process effectively reduces the computational burden in the
encoding side. In addition, the required bit for storing a single bitmap image is lower
compared to that of keeping three bitmap images. But, the quality of H-BTC decoded
image using a single bitmap image is slightly inferior in comparison to the three bitmap
images. Figure 2 shows visual comparisons of using a single and three bitmap images
over ODBTC, EDBTC, and DDBTC compression. The first and second rows are using
single and three bitmap images, respectively. This figure demonstrates that quality of the
decoded image using a single bitmap image is degraded compared to employing three
bitmap images. It will be more challenging if we are able to improve the quality of the
H-BTC decoded image using a single bitmap image.

Figure 2. Visual comparisons of using single and three bitmap images on (first to last column) ordered dither block
truncation coding (ODBTC), error diffusion block truncation coding (EDBTC), and dot diffused block truncation coding
(DDBTC). The first and second rows are using single and three bitmap images, respectively.
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2.2. Wavelet-Based H-BTC Image Reconstruction

The quality of the H-BTC decoded image is less satisfied for human vision due to
impulsive noise occurrence. Thus, the wavelet-based method [5] tries to improve the quality
of this decoded image quality based on the fact of noise placement. Commonly, the image
noise remains on high-frequency subbands of the wavelet transformed image, while image
information lies on low frequency subbands. More precisely, the H-BTC reconstructed
image is obtained from the lowpass filtered and downsampled version of an input image [5].
Figure 3 draws a schematic diagram of wavelet-based image reconstruction [5]. Suppose
that the downsampled version of the H-BTC decoded image is denoted as I↓×2. This image
is of size M× N, where M = H

2 and N = W
2 , respectively. Herein, the discrete wavelet

transform (DWT) [22,23] is utilized to decompose an image I↓×2 as follows:

J
{

I↓×2
}
⇒
{

I↓×2
θ

∣∣∣ θ = (LL, LH, HL, HH)
}

, (11)

where θ and J{·} denote the DWT image subbands and DWT operator, respectively. This
decomposition process yields a transformed image I↓×2

θ of size M
2 ×

N
2 . Subsequently, an

image interpolation process with upscaling factor 2 is applied to I↓×2
θ . Yet, this process

produces an upscaled image I↑×2
θ of size M× N.

Figure 3. Schematic diagram of wavelet-based H-BTC image reconstruction [5].

At the same time, the stationary wavelet transform (SWT) decomposes an image I↓×2

into the following subbands:

J∗
{

I↓×2
}
⇒
{

I↓×2
θ∗

∣∣∣ θ∗ = (LL, LH, HL, HH)
}

, (12)

where θ∗ and J∗{·} denote the SWT image subbands and SWT operator, respectively.
Herein, each image subband I↓×2

θ∗ is of size M×N. From this stage, we obtain paired image
subbands with the same size, i.e., the upscaled DWT and SWT subbands. Performing the
addition process between these paired subbands effectively eliminates the impulsive noise.
The addition process can be denoted as follows:

Ĩ↓×2
θ = αθ I↑×2

θ + (1− αθ)I↓×2
θ∗ , (13)

where αθ denotes a specific constant controlling the percentage contribution of upscaled
DWT and SWT image subbands. This addition process is applied to all subbands θ and
θ∗. Symbol Ĩ↓×2

θ indicates the modified image subbands. Finally, the following process is
executed for overall Ĩ↓×2

θ :

Î ⇐ J−1
{

Ĩ↓×2
θ

∣∣∣ θ = (LL, LH, HL, HH)
}

, (14)
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where Î is the H-BTC reconstructed image, and J−1{·} indicates the inverse DWT operator.
From this process, one obtains the H-BTC reconstructed image of the same size with the
original H-BTC decoded image. However, the quality of the H-BTC reconstructed image is
improved compared to the original decoded image.

2.3. Fast Vector Quantization Based H-BTC Image Reconstruction

The fast vector quantization (FVQ) [24] is an improved version of classical VQ to
further speed up the computational time. This approach avoids the closest matching and
similarity distance computation for all codeworks in a specific given codebook [6].

Figure 4 shows a schematic diagram of the FVQ-based approach [6]. In this scheme, the
H-BTC decoded image is firstly divided into several overlapping image patches. These im-
age patches are further matched and replaced with selected codewords from a trained code-
book. The VQ or K-means algorithms generate the codebook from a set of clean images.

Figure 4. Schematic diagram of fast vector quantization (VQ)-based H-BTC image reconstruction [6].

Let B be a trained codebook of size N, containing several codewords {C1, C2, . . . , CN}.
Each codeword is of n× n. Given p as an image patch from the H-BTC decoded image.
This image patch is of the same size with the codeword. The matching process between an
image patch p and codewords in codebook B is formulated as:

Ck∗ ⇐ Q{p, B}, (15)

where Q{·} and Ck∗ represent the matching operation and best closest codewords, respec-
tively. This matching process is performed by checking and evaluating the mean value,
variance, and norm of the image patch with the offline precomputed of aforementioned
values over all codewords. Let µp, vp, and np be the mean value, variance, and norm value,
respectively. The first matching process checks the mean value of uninspected codeword
µk whether it falls into the following interval:

mp −
√

dmin/n2 ≤ mk ≤ mp +
√

dmin/n2, (16)
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where dmin is “so far” smallest distortion. If codeword Ck satisfies (16), its variance value
vk is subsequently checked using the following criterion:

vp −
√

dmin ≤ vk ≤ vp +
√

dmin. (17)

If the vk value fits on interval (17), the norm value nk is then inspected using:

np −
√

dmin ≤ nk ≤ np +
√

dmin. (18)

If the constraint (18) is satisfied, the codeword Ck can be regarded as the best candidate
for the closest codeword. Then, the “so far” smallest distortion needs to be updated.
The checking process is then continued for all uninspected codewords in the codebook.
Subsequently, the image patch p is then simply replaced with codeword Ck∗ as:

p̃⇐ Ck∗ , (19)

where p̃ denotes the replaced image patch. After processing all image patches, the non-
alignment H-BTC reconstructed image can be obtained by arranging all image patches as
follows:

õ(m, n)⇐ ∪∀ p̃ p̃. (20)

This process can be viewed as an additional operation over all image patches in the
correct position. An alignment operation should be conducted for õ(m, n) to obtain the
corrected H-BTC image reconstruction. The image patch alignment can be performed
as follows:

Ĩ(m, n)⇐ ∑ õ(m, n)
∑ RT(m, n)R(m, n)

, (21)

where R(m, n) and Î represent image patch operator and H-BTC reconstructed image,
respectively. From this point, the quality of the reconstructed H-BTC image Ĩ(m, n) is
increased compared to that of the original H-BTC decoded image.

3. Deep Learning Based H-BTC Image Reconstruction

This section’s details present the proposed method for improving the quality of the
H-BTC decoded image using a deep learning framework. The proposed method performs
image quality enhancement by applying a series of convolutions, downsampling, and
upsampling operations. The convolution, downsampling, and upsampling operations play
an important role for the proposed method. The convolution operation learns the feature
mappings for noise removal, while the downsampling operator effectively reduces the
occurred noise. These convolution series effectively extract the important information of
the H-BTC decoded image in order to suppress the impulsive noise. Herein, the proposed
method inherits the effectiveness of CNN with the residual learning approaches. The
proposed method is an extended version of the former scheme published in [14]. The
former scheme in [14] mainly focuses on improving the quality of the ODBTC decoded
image, while the proposed method aims to increase the quality of H-BTC decoded images,
including ODBTC, EDBTC, and DDBTC. Thus, the proposed method can be regarded as a
generalized version of the former scheme in [14].

The proposed method is motivated from the downsampling and upsampling oper-
ation on an image. In some cases, the downsampling operation effectively reduces the
occurrence of noise. The quality of the downsampled image is often better compared to the
original size of the noisy image. The H-BTC decoded image can be regarded as an image
corrupted with the impulsive noise. The first column of Figure 5 shows the decoded image
obtained from ODBTC, EDBTC, and DDBTC compressions. The occurred noise is reduced
by performing the downsampling operation with factor 0.5 and upsampling back to the
original size of the H-BTC decoded images. This result is shown in the second column
of Figure 5. Whereas, the third column of Figure 5 is a set of images after performing
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the downsampling operator with factor 0.25 and upsampling to the original size. The
downsampling and upsampling operations suppress the impulsive noise in the H-BTC
decoded image effectively.

Figure 5. Effects of performing downsampling and upsampling operations on (first to last rows) ODBTC, EDBTC, and
DDBTC. The first column is the original decoded image. The second column are reconstructed images after applying
downsampling with factor 0.5 and upsampling to the original size, while the third column are images after downsampling
operator over factor 0.25 and upsampling to the original size.

3.1. Residual Concatenated Networks

The proposed method contains the residual leaning part, namely residual concate-
nated networks (RCN). This RCN consists of multiple convolution layers. This network
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concatenates each output feature from previous layers, regarded as input features, to the
current processed layer. Figure 6 gives an illustration of RCN. Suppose F be an RCN
module with input features denoted as x. Let θ be the network parameters. The feed
forward process of RCN can be simply formulated as follows:

y = F (x; θ), (22)

where y denotes the output features of RCN. Specifically, the output of each layer while
the networks consist of K convolution layers can be written in the concatenated form
as follows:

xk+1 = ϕ(Wk ∗ [xk, xk−1, . . . , x1] + bk) ∀k = 1, 2, . . . , K, (23)

where x1 = x, Wk, and bk represent the weights and biases of k-th convolution layer,
respectively. The symbols [xk, xk−1, . . . x1], ∗, and ϕ denote the element-wise concatenation
of feature maps, convolution operation of CNN, and Leaky ReLU [8] activation function,
respectively. The proposed method exploits the effectiveness of Leaky RELU due to its
ability on avoiding the dying RELU while the neuron response is negative. Thus, the
proposed method can adapt better learning in the training step.

Figure 6. The architecture of residual concatenated networks (RCN).

If the first convolutional layer produces n feature maps, then the k-th convolutional
layer will generate a n× k number of feature maps accordingly, except for the K-th layer.
The number of features in the final layer should be identical to that of the first convolutional
layer. Thus, the final layer could receive the residual information transmitted by shortcut
connection as an identity mapping of input features. This process is denoted as follows:

y = xK+1 + x. (24)

The RCN can be regarded as a layer with multiple receptive field configurations by
expanding the number of feature maps and integrating the concatenation process.

3.2. Residual Networks of Residual Concatenated Networks

The proposed method also utilizes the residual network of residual concatenated
networks (RRCN). Figure 7 depicts a simple illustration of RRCN. This part is a simple
residual network with the RCN module as weight layers. By using this network config-
uration, the information flow can reach the deeper layer of the network easily [7,9]. Let
R denote the RRCN operator. Thus, the feed forward process of RRCN can be formally
defined as:

ŷ = R(x; θ), (25)
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where ŷ and θ are the output features of RRCN and the RRCN parameters, respectively.
Suppose that L be the number of RCN modules in the RRCN part. Thus, the output features
of RRCN can be formulated as follows:

yl+1 = F (yl ; θl) ∀l = 1, 2, . . . , L, (26)

ŷ = yL+1 + y1, (27)

where ŷ denotes the output features produced by a RRCN module, with y1 = x. If the
networks is composed from D layers RRCN, then the feed forward process of the network
can be written as:

z = ŷ1 +
D

∑
d=1
R(ŷd; θd) ∀d = 1, 2, . . . , D, (28)

where z is the networks outputs, with ŷ1 = x. The RRCN actually mimics the iterative
regularization as similarly performed in the image denoising task, while one observes the
following forms:

z = ŷ1 +R(ŷ1; θ1) +R(ŷ2; θ2) + . . . +R(ŷD; θD),= ŷ1 + ŷ2 + ŷ3 + . . . + ŷD+1,= ŷ1 +
(

y(1)L+1 + ŷ1

)
+
(

y(2)L+1 + ŷ2

)
+ . . . +

(
y(D)

L+1 + ŷD

)
.

(29)

Figure 7. The architecture of residual networks of residual concatenated network (RRCN).

Herein, the RCN module performs the aggregation process. In addition, some
important information from preceding layers are retained via shortcut connection as
residual information.

3.3. Reconstruction Networks

This subsection presents the proposed networks for performing the H-BTC image
reconstruction. The proposed method is developed and inspired by the effectiveness
of wavelet-based approach for suppressing the impulsive noise of the H-BTC decoded
image [5] and U-Nets framework [21]. Figure 8 illustrates the proposed networks for H-
BTC image reconstruction. The proposed method works on the downscaled version of the
H-BTC decoded image. It is based on the fact that the downscaled H-BTC image contains
important structural information in comparison to that of the original size of the H-BTC
image. The usage of downscaled versions of H-BTC decoded images also significantly
reduces the computational overhead required for reconstruction purposes. Compared to
the U-Nets framework [21], the proposed method simply utilizes element-wise addition
for feature aggregation after downsampling and upsampling operators.
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Figure 8. The proposed networks architecture for H-BTC image reconstruction.

The proposed networks firstly extract some important information of the H-BTC
decoded image over various resolutions by performing convolution operation over several
layers. Subsequently, the proposed networks reconstruct the feature maps produced by the
convolution layers. It receives the H-BTC decoded image, IHBTC, as the networks input,
and produces the networks output, Irec, as the reconstructed image. This process can be
formally defined as follows:

Irec = RecNet(IHBTC; Θ), (30)

where RecNet(·) and Θ are the operator of reconstruction networks and its corresponding
parameters, respectively. Herein, the reconstruction networks consist of five main parts,
namely patch extraction layer, feature decomposition layers, feature integration layers,
feature reconstruction layers, and output layer. The following are the explanations of
each layer.

(1) Patch Extractor: This network part owns a single weight layer for performing image
patch extraction and representation. Herein, an input image is divided into several
overlapping patches. Suppose C denotes the number of image channels. This network
part acts as a convolution layer with 32 filters, each of size C× 3× 3. It generates F
feature maps. These feature maps are further processed with nonlinearity mapping
activation function, i.e., Leaky ReLU. At the end of the process, this network part
yields feature maps of size F× H ×W, denoted as Ff ull .

(2) Feature Decomposer: This network part consists of multiple RRCN and downsam-
pling operators. This network part decomposes and aggregates the extracted feature
Ff ull into multiple resolutions of feature maps. The downsampling operations are
performed by a convolution layer with two-unit strides. The RRCN in this part em-
ploys the RCN modules with dilated convolution. Using this configuration strategy,
the receptive field area of networks can be expanded without increasing the number
of parameters. This scenario is also motivated by the well-known algorithme a’trous,
i.e., an algorithm to perform SWT with dilated convolution [10]. The network part
produces a feature map F f ull of the same size with Ff ull . It also generates other maps,
i.e., Fhal f and Fhal f , each of half size compared to Ff ull . Other maps also yield Fquart

and Fquart, each of quarter size in comparison to that of Ff ull .
(3) Feature Integrator: This network part has almost similar structure compared to that

of the feature decomposer part. The main difference is only on the replacement of
the downsampling operator with the upsampling operator. The typical interpolation
algorithm, such as bilinear or bicubic, can be selected as an upsampling operator in
this network part. The long skip connection in this network part connects the aggre-
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gated feature maps from the feature decomposer part and aggregated feature maps
from this network part. This long skip connection aims to ease the network training.
It can trivially mitigate the modeling of identity mapping in the networks [11]. Yet,
the integration process is performed by pixel-wise addition between each channel of
feature maps.

(4) Feature Reconstruction and Output Layers: Both these layers contain a single weight
layer. These two parts perform feature aggregation between the integrated feature

maps of
=
F f ull and Ff ull . After the aggregation operation, we obtain the resulting

feature maps denoted as Frec. These feature maps are further processed by the output
layer to yield the H-BTC reconstructed image, i.e., Irec. This Irec is regarded as the
improved quality of the H-BTC decoded image with a reduced impulsive noise
occurrence.

3.4. Loss Function

This subsection shows the loss function of the proposed method for obtaining the
optimal H-BTC image reconstruction. Herein, the proposed network architecture performs
end-to-end function optimization to achieve the optimal parameters as follows:

Θ̂ = argmin
Θ

RecNet(IHBTC; Θ)− IGT
2
2, (31)

where Θ̂ denotes the optimized network parameters, and IGT is the clean image (ground
truth). In simple words, the optimal image reconstruction can be achieved by minimizing
the pixel difference between the original image and the reconstructed image produced
from the proposed networks.

In this work, we utilize the mean squared error (MSE) as loss function in order to
measure the pixel difference between the original and reconstructed image. This loss
function is executed during the training process and denoted as follows:

L(Θ) =
1
N

N

∑
n=1

(
I(n)rec − I(n)GT

)2
,=

1
N

N

∑
n=1

(
RecNet

(
I(n)HBTC; Θ

)
− I(n)GT

)2
, (32)

where N denotes the number of batch sizes for a single iteration. Lower value of this
loss function indicates better performance during the training process. Thus, the training
procedure is stopped if the magnitude of loss function is small enough or under predeter-
mined maximum iteration. It should be noted that the proposed method is only workable
for images of size divisible by 4. However, the proposed method can be applied and
generalized for the image over various image sizes. If the image is indivisible by 4, the
zero padding can be added to the input image such that it becomes divisible by 4. Yet,
we simply extract the image with the original size at the end of the proposed network to
obtain an image with the correct size.

The proposed method is mainly designed for reconstructing the color image, i.e.,
three-dimensional data. However, the proposed method can be further extended for the
grayscale image or two-dimensional data without any modifications of the networks. In
simple terms, the grayscale image (two-dimensional data) needs to be converted into the
color image (three-dimensional data). Each color channel (Red, Green, and Blue channel)
is simply set with the grayscale image. Using this strategy, we obtain the color image or
three-dimensional data from the grayscale image. Subsequently, this image is further fed
into the proposed networks. At the end of the process, the proposed networks produce the
image in color space (or three-dimensional data). An additional operation is applied on the
output image, i.e., converting back the color image into the grayscale image. We can apply
the color image conversion by using formal color space formulation or simply averaging
computation over all color spaces. Another way can also be utilized for the grayscale image.
The proposed networks can also receive two-dimensional data or grayscale image as input.
However, we need to modify the patch extractor layer and output layers.



J. Imaging 2021, 7, 13 14 of 22

4. Experimental Results

This section reports some extensive experimental results of the proposed method. We
firstly describe the image sources including the process of making the H-BTC image dataset.
Subsequently, we show the model initialization and experimental setup. The proposed
method is visually investigated and compared with the former schemes. At the end of this
section, the performance of the proposed method is further compared with some previous
H-BTC image reconstruction schemes. We consider the peak signal-to-noise ratio (PSNR)
and structural similarity index measure (SSIM) scores [25] to objectively assess the quality
of the H-BTC reconstructed image. The PSNR metric evaluates the accuracy of pixel value
reconstruction between two images, which is formulated as:

PSNR = 20 log10(255)− 10 log10(MSE), (33)

where MSE denotes the mean square error value between the reconstructed image and
reference image.

On the other hand, the SSIM measures the degree of structural reconstruction between
two images. Let Irec and Ire f be the reconstructed H-BTC image and the reference image,
respectively. The SSIM metric is formally defined as:

SSIM
(

Irec, Ire f

)
=

(
2µrecµre f + c1

)(
2σrec,re f + c2

)
(

µ2
rec + µ2

re f + c1

)(
σ2

rec + σ2
re f + c2

) , (34)

where µrec and σ2
rec denote the mean value and variance of H-BTC images, µre f and σ2

re f
are the mean value and variance of original image. The value of σrec,re f is the covariance
between the H-BTC images and original image. The values of c1 and c2 are two scalars to
stabilize the division operation with weak denominators. The source code of the proposed
method will be publicly available on the personal website of the second author.

4.1. Experimental Setup

We firstly describe the experimental setup for the proposed method. The proposed
method needs three image datasets, regarded as the training, validation, and testing image
sets. For the training set, we use a set of images from the DIV2K image dataset [26]. Herein,
each image is divided into non-overlapping image patches of size 128× 128 pixels. Thus,
we obtain 167,235 image patches for the training of the proposed H-BTC reconstruction
network. In the training process, the proposed method requires a paired image, i.e., the
H-BTC compressed image and its corresponding original image. For each training image
patch, we simply perform the ODBTC, EDBTC, and DDBTC image compression to create
the H-BTC compressed image from the original image patch. The size of the H-BTC
compression is set as 8× 8 and 16× 16. The proposed method is workable on any arbitrary
H-BTC image size, not only 8× 8 and 16× 16. We can simply perform image reconstruction
using the proposed method with any arbitrary H-BTC block sizes. Yet, we can feed a set of
H-BTC compressed and original image patches for the training purpose.

Despite using the training image set, we also need another image sets, i.e., validation
set, in the training process. This validation set is to monitor the reconstruction performance
during the training process. Herein, we use the downsampled version of the validation
set (low resolution with bicubic interpolation of scale ×4) from DIV2K [26]. There are
six images for the validation set. We perform a similar process as used in the training
set for this validation set. The BSD100 [27], 24 images from Kodak [28] image dataset,
and 16 images test from [5,6] are involved in the experiment as testing sets. They contain
some broadly used images such as Lenna, Baboon, airplane, peppers, etc. All those image
datasets consist of natural scenes. In addition, we also observe the proposed method
performance under the URBAN100 [27] image dataset. This dataset is very challenging
since it contains some urban scenes with rich details in various frequency bands. It should
be noted that the dithering process on H-BTC image compression usually destroys the
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image details and lines. In our experimental activity, the images for validation and testing
purpose are excluded from the training set.

4.2. Networks Training and Model Initialization

The network weights for the proposed method are initialized using He’s method [12].
Whereas, all biases in the proposed networks are firstly set as zero over all layers on the
initial stage. The proposed networks employ the stride of size 1 for all kernels, except some
kernels for the downsampling operation. The proposed method simply sets the stride
with size 2 for the kernel of downsampling. In addition, the proposed scheme utilizes the
kernels with size 3 × 3 over all layers. Herein, we utilize the Adam algorithm [13] for
performing the optimization task with β1 = 0.9, β2 = 0.999, and ε = 1× 10−8. The training
process is performed on 20 epochs (roughly 200.000 iterations), with batch normalization of
size 16 images. The learning rate is set 1× 10−4 for the first 10 epoch and set into 1× 10−5

for the rest training of epoch. We use two RRCN modules, i.e., D = 2 in each network
part. Each module contains three RCN modules, i.e., L = 3. Yet, each RCN modules
consists of three convolutional layers, i.e., K = 3. The constant of all Leaky ReLU is set to
0.0001. All experiments were conducted under the Pytorch framework [29] and Python 3.
The experimental environment was set on a computer with AMD Ryzen™ Threadripper
1950X 3.4GHz CPU and Nvidia GTX 1080 ti GPU. It approximately requires about 20 h for
performing the training process of the proposed method.

Figure 9 shows the performance of the proposed method during the training process
over the H-BTC image block size 8× 8 and 16× 16. Herein, we use the average PSNR to
measure the performance over several epochs. The PSNR is computed for all images in the
validation set. From Figure 9, the number of epoch 20 is enough to obtain near-optimum
networks parameters for the proposed method. During the training process, the ODBTC
image compression is relatively hard to achieve the optimum solution compared to the
other H-BTC methods. Since the impulsive noise produced by ODBTC is more randomized
and perceived, it causes difficulty to the proposed networks to obtain an optimum solution
in a limited number of epochs.

Figure 9. The performance of the proposed method in terms of average peak signal-to-noise (PSNR) values during the
training process over various H-BTC image block sizes: (a) 8 × 8, (b) 16 × 16.

Figure 10 depicts the average training loss during the training process on the validation
set over various number of iterations. Herein, we set the H-BTC image block as 8× 8 and
16× 16. After several iterations, the average training loss does not significantly improve.
It indicates that the proposed method almost finds an optimum solution. Similar to the
previous finding, the impulsive noise on ODBTC is also hard to be suppressed. The effect of
different epochs on visual quality of the H-BTC reconstructed image is shown in Figure 11.
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In this experiment, we show the quality improvement produced by the proposed method
on an image from the validation set while the parameters of networks are from epoch 1, 5,
and 20. From this figure, we can clearly see that the quality of the H-BTC reconstructed
image is progressively improved while the number of epochs goes. Increasing the number
of epochs may produce better quality on the H-BTC reconstructed image. In addition, we
give an example of image block alignment performed by the proposed method as shown
in Figure 12. As shown in this figure, the proposed method effectively increases the quality
of the H-BTC decoded image by combining all image features.

Figure 10. The average training loss of the proposed method over various H-BTC image blocks: (a) 8× 8, and (b) 16× 16.

Figure 11. Image quality improvement produced by the proposed networks during the training process on the validation set.
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Figure 12. An example of image block alignment performed by the proposed networks: (a)
=
F f ull , (b)

=
Fhal f , (c)

=
Fquart, and

(d) the final reconstruction image obtained by combining all those features.

4.3. Visual Investigation

This section reports the performance of the proposed method based on the visual
investigation. We firstly investigate the performance of proposed method over various
H-BTC image compression methods, i.e., ODBTC, EDBTC, and DDBTC. The image block
for H-BTC is set as 8× 8 and 16× 16. In this experiment, we train the proposed networks
with the training set, and then validate the performance using the training set. Yet, we
overlook the performance by applying the optimum networks parameters on the testing set.
Figures 13 and 14 show the visual comparisons for the proposed networks over various H-
BTC methods. The quality of H-BTC reconstructed image yielded by our proposed method
is better than the original H-BTC decoded image. It clearly reveals that the proposed
method can remove the occurrence of impulsive noise on the H-BTC decoded image. In
addition, the proposed method is capable of removing the blocking artifact that appeared
on the H-BTC decoded image. Yet, the proposed method effectively refines the damaged
image details and lines caused by digital halftoning.

Figure 13. Performance comparisons over various H-BTC methods on an image 208001 from the BSD100 dataset.
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Figure 14. Performance comparisons over various H-BTC methods on an image img_039 from the URBAN100 dataset.

Figures 15 and 16 display the performance comparisons between the proposed method
and former schemes in the H-BTC image reconstruction task. Herein, we only consider
the DDBTC compression with the block size 8× 8. We visually compared the former
wavelet-based and FVQ-based approaches. As displayed in this figure, the proposed
method produces better image quality in comparison with the former competing schemes
as indicated with higher SSIM and PSNR scores. The proposed method also outperforms
the other techniques based on the reconstructed image quality. One may conclude that the
proposed method is capable of increasing the quality of the H-BTC decoded image.

Figure 15. Visual comparisons between the proposed method and former schemes on reconstructing the DDBTC decoded
image over the Lena image.
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Figure 16. Visual comparisons between the proposed method and former schemes on reconstructing the DDBTC decoded
image over the Peppers image.

4.4. Performance Comparisons

This subsection reports the performance comparison between the proposed method
and former schemes in terms of objective measurements. In this experiment, the optimum
parameters of proposed networks are obtained from the training process as described
before. These parameters are then applied to the testing set. Herein, we consider all
images from SIPI, Kodak, BSD100, and Urban100 as testing images. For each image, we
perform H-BTC image compression under the image block 8× 8 and 16× 16. Subsequently,
each decoded image is processed by the proposed method with the optimum parameters.
The quality of reconstructed image is then measured using two metrics, i.e., SSIM and
PSNR. We firstly compare the performance of the proposed method and former schemes
in terms of average PSNR value. Herein, we make comparisons against the traditional
approaches for H-BTC image reconstruction such as the wavelet-based method [5] and
FVQ [6] scheme. In addition, the comparison is also conducted with the former deep
learning-based approaches such as in the residual network [15,16] and symmetric skip
CNN [17]. The methods in [15,16] inherit the superiority of the residual networks for
performing the image denoising. These methods are also very suitable for H-BTC im-
age reconstruction under the similarity of the ability of noise suppression. Meanwhile,
the method in [17] performs H-BTC image reconstruction by involving the symmetric
skip CNN framework. To make a fair comparison, we simply set the number of layers
and feature maps for the former schemes [15–17] as identical to the proposed method.
Table 1 shows the performance comparisons between the proposed method and former
schemes in terms of average PSNR value. Whereas, Table 2 summarizes the performance
comparison between the proposed method and former existing schemes in terms of the
average SSIM score. These two tables explicitly tell that the proposed method outperforms
the other competing schemes in the H-BTC reconstruction task. It is worthy noted that
the proposed method yields better results with significant margin in comparison to the
various traditional or handcrafted H-BTC compression methods. In addition, the proposed
method also yields better performance in comparisons to the former deep learning-based
approaches. The proposed method is a good candidate in the H-BTC image reconstruction
task. The proposed method can be extended and applied for image compression, vehicle
verification [30], and secret sharing [31–33].
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Table 1. Performance comparison between the proposed method and former schemes in terms of PSNR value.

ODBTC

Datasets Block Size Decoded Wavelet [5] Fast VQ [6]
Residual
Network

[15,16]
Symmetric Skip

CNN [17] Proposed

SIPI 8× 8 19.73 25.12 27.34 28.11 29.31 29.90
16× 16 16.58 23.57 25.06 26.90 27.22 27.53

Kodak 8× 8 19.25 24.55 27.48 28.91 29.45 30.58
16× 16 16.16 23.74 25.68 27.89 28.67 29.00

BSD100 8× 8 17.94 23.80 26.55 28.09 28.33 28.79
16× 16 15.06 23.14 24.97 26.88 26.98 27.51

Urban100 8× 8 16.15 20.89 23.93 27.34 27.77 28.26
16× 16 13.48 20.30 22.27 25.89 26.31 26.80

EDBTC

Datasets Block size Decoded Wavelet [5] Fast VQ [6]
Residual
Network

[15,16]
Symmetric Skip

CNN [17] Proposed

SIPI 8× 8 19.80 25.12 27.44 29.39 29.77 30.78
16× 16 16.40 23.52 24.94 27.71 28.03 28.46

Kodak 8× 8 19.28 24.61 27.83 30.44 31.78 32.03
16× 16 15.98 23.80 25.64 29.33 29.78 30.40

BSD100 8× 8 17.95 23.85 26.91 28.98 29.78 30.41
16× 16 14.88 23.22 24.94 28.45 29.00 29.11

Urban100 8× 8 16.21 20.90 24.17 28.65 28.91 29.20
16× 16 13.35 20.33 22.22 26.01 26.77 27.61

DDBTC

Datasets Block size Decoded Wavelet [5] Fast VQ [6]
Residual
Network

[15,16]
Symmetric Skip

CNN [17] Proposed

SIPI 8× 8 2.037 25.00 27.68 28.89 29.78 30.79
16× 16 16.89 23.42 25.25 27.63 28.01 28.13

Kodak 8× 8 20.02 24.48 28.31 30.33 31.78 32.26
16× 16 16.53 23.68 26.04 29.11 30.37 30.48

BSD100 8× 8 18.75 23.72 27.50 28.88 29.79 30.74
16× 16 15.47 23.10 25.40 28.01 28.99 29.19

Urban100 8× 8 17.04 20.83 24.71 28.64 28.91 29.54
16× 16 13.96 20.24 22.63 27.12 27.78 27.90

Table 2. Performance Comparison between the Proposed Method and Former Schemes in Terms of SSIM Score.

ODBTC

Datasets Block Size Decoded Wavelet [5] Fast VQ [6]
Residual
Network

[15,16]
Symmetric

Skip CNN [17] Proposed

SIPI 8× 8 0.7188 0.8632 0.9132 0.9391 0.9399 0.9462
16× 16 0.5677 0.8118 0.8575 0.8911 0.9102 0.9186

Kodak 8× 8 0.6425 0.8026 0.8921 0.9220 0.9378 0.9414
16× 16 0.4820 0.7624 0.8299 0.8998 0.9002 0.9155

BSD100 8× 8 0.5967 0.7778 0.8698 0.8978 0.9100 0.9193
16× 16 0.4373 0.7333 0.8008 0.8698 0.8709 0.8891

Urban100 8× 8 0.5940 0.7124 0.8266 0.9301 0.9299 0.9315
16× 16 0.4466 0.6605 0.7443 0.8760 0.8923 0.9006

EDBTC

Datasets Block size Decoded Wavelet [5] Fast VQ [6]
Residual
Network

[15,16]
Symmetric

Skip CNN [17] Proposed

SIPI 8× 8 0.7242 0.8639 0.9153 0.9312 0.9457 0.9551
16× 16 0.5669 0.8138 0.8539 0.8991 0.9129 0.9291

Kodak 8× 8 0.6512 0.8055 0.9005 0.9413 0.9550 0.9569
16× 16 0.4818 0.7705 0.8322 0.9221 0.9331 0.9349

BSD100 8× 8 0.6034 0.7781 0.8802 0.9378 0.9399 0.9415
16× 16 0.4374 0.7436 0.8044 0.9000 0.9167 0.9173

Urban100 8× 8 0.6048 0.7145 0.8348 0.9232 0.9389 0.9433
16× 16 0.4538 0.6686 0.7455 0.8975 0.9099 0.9124

DDBTC

Datasets Block size Decoded Wavelet [5] Fast VQ [6]
Residual
Network

[15,16]
Symmetric

Skip CNN [17] Proposed

SIPI 8× 8 0.7530 0.8619 0.9216 0.9391 0.9478 0.9552
16× 16 0.5932 0.8101 0.8626 0.9090 0.9199 0.9287

Kodak 8× 8 0.6940 0.8016 0.9129 0.9378 0.9457 0.9594
16× 16 0.5191 0.7622 0.8427 0.9229 0.9301 0.9385

BSD100 8× 8 0.6551 0.7741 0.8966 0.9331 0.9441 0.9474
16× 16 0.4797 0.7345 0.8162 0.9032 0.9210 0.9220

Urban100 8× 8 0.6543 0.7140 0.8541 0.9234 0.9299 0.9481
16× 16 0.4906 0.6612 0.7607 0.9163 0.9200 0.9210
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5. Conclusions and Future Works

A deep learning approach for H-BTC image reconstruction has been presented in
this paper. The H-BTC aims to perform image compression with simple technique. The
proposed method inherits the effectiveness of CNN and residual learning frameworks
to perform the reconstruction process. It is constructed from RCN and RRCN modules
to suppress the impulsive noise and reduce the blocking artifacts of the H-BTC decoded
image. The proposed method presented in this paper can be regarded as a post-processing
step in the H-BTC image compression technique. As documented in the Experimental
Results Section, the proposed method offers better quality on the H-BTC reconstructed
image compared to the former schemes. In the real application, the proposed method
can be applied on the post-processing of image compression while the decoded image
requires the noise suppression or quality enhancement. The proposed method works well
on improving the quality of the decoded image obtained from various image compression
techniques. The decoded image can be simply fed into the proposed framework and
produce the enhanced image. In addition, the proposed method can also be used for
improving the quality of the H-BTC decoded image for image retrieval, watermarking,
secret sharing, and the other image processing and computer vision applications.

To further improve the performance of the proposed method, the number of layers
can be added to the proposed networks in the H-BTC image reconstruction task. The
different activation functions can also be investigated to increase the learning ability of the
proposed networks. The proposed networks can also use different optimizers to increase
its performance. The convolutional operation in the proposed method can also be modi-
fied by incorporating the non-local self-similarity, graph convolutional approach, nearest
neighbor information, non-local recurrent framework, and so forth. These aforementioned
approaches may improve the convolutional ability to capture the non-local information to
increase the learning ability and performance. In addition, the adversarial learning can
be injected to the proposed networks. The adversarial networks can effectively learn the
occurrence of impulsive noise and suppress the detected noise in encoder–decoder based
learning. The residual learning with adversarial networks may yield better performance in
H-BTC image reconstruction. These alternatives are our future works and suggestions.
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