Testing Segmentation Popular Loss and Variations in Three Multiclass Medical Imaging Problems
Abstract
:1. Introduction
Related Work
2. Materials and Methods
2.1. The Datasets
2.2. Method
2.2.1. Discussing Metrics and Loss
- (1)
- The number TP is always huge in all metrics, because TP of background pixels is huge. As a consequence, all metrics (1) to (8) report high scores regardless of the actual quality of segmentation of individual classes if evaluated over all pixels;
- (2)
- TN is also huge because it includes a huge number of background pixels that are well classified. It means that specificity (SP), FPR, ROC and AUC do not evaluate the quality of segmentation of individual classes well;
- (3)
- Sensitivity (a.k.a recall or TPR), although useful because it quantifies the fraction of organ pixels classified correctly as such, fails to capture very important possible deficiencies, because it does not include FP (background classified as organ) in the formula, a frequent occurrence.
2.2.2. Defining Metrics and Variations for Use as Loss Function
2.3. Experimental Setup
3. Results
3.1. Choose Best-Performing Network
3.2. Loss Formula Weights: Sensitivity Run Using IoUxy Loss Function
3.3. Would It Be Worth Running by n-Uniclass Problems Instead of One Multiclass Problem?
4. Discussion
5. Comparison with Related Work on MRI
6. Conclusions and Future Work
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, L.; Bentley, P.; Rueckert, D. Fully automatic acute ischemic lesionsegmentation in DWI using convolutional neural networks. NeuroImage Clin. 2017, 15, 633–643. [Google Scholar] [CrossRef]
- Havaei, M.; Davy, A.; Warde-Farley, D.; Biard, A.; Courville, A.; Bengio, Y.; Pal, C.; Jodoin, P.M.; Larochelle, H. Brain tumor segmentation with deep neural networks. Med. Image Anal. 2017, 35, 18–31. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.; Jin, K.H. Fast and robust segmentation of the striatumusing deep convolutional neural networks. J. Neurosci. Methods 2016, 274, 146–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibragimov, B.; Xing, L. Segmentation of organs-at-risks in head andneck CT images using convolutional neural networks. Med. Phys. 2017, 44, 547–557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kline, T.L.; Korfiatis, P.; Edwards, M.E.; Blais, J.D.; Czerwiec, F.S.; Harris, P.C.; King, B.F.; Torres, V.E.; Erickson, B.J. Performance of an artificial multi-observer deep neural net-work for fully automated segmentation of polycystic kidneys. J. Digit. Imaging 2017, 30, 442–448. [Google Scholar] [CrossRef]
- Guo, Y.; Gao, Y.; Shen, D. Deformable MR prostate segmentation viadeep feature learning and sparse patch matching. IEEE Trans. MedImaging 2016, 35, 1077–1089. [Google Scholar]
- Li, X.; Dou, Q.; Chen, H.; Fu, C.W.; Qi, X.; Belavý, D.L.; Armbrecht, G.; Felsenberg, D.; Zheng, G.; Heng, P.A. 3D multi-scaleFCN with random modality voxel dropout learning for intervertebraldisc localization and segmentation from multi-modality MR images. Med. Image Anal. 2018, 45, 41–54. [Google Scholar] [CrossRef] [PubMed]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.; Ciompi, F.; Ghafoorian, M.; Van Der Laak, J.A.; Van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ching, T.; Himmelstein, D.S.; Beaulieu-Jones, B.K.; Kalinin, A.A.; Do, B.T.; Way, G.P.; Ferrero, E.; Agapow, P.M.; Zietz, M.; Hoffman, M.M.; et al. Opportunities and obstacles for deep learning in biology andmedicine. J. R. Soc. Interface 2018, 15, 20170387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porwal, P.; Pachade, S.; Kamble, R.; Kokare, M.; Deshmukh, G.; Sahasrabuddhe, V.; Meriaudeau, F. Indian Diabetic Retinopathy Image Dataset (IDRiD): A Database for Diabetic Retinopathy Screening Research. Data 2018, 3, 25. [Google Scholar] [CrossRef] [Green Version]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [Google Scholar] [CrossRef]
- Bereciartua, A.; Picon, A.; Galdran, A.; Iriondo, P. Automatic 3D model-based method for liver segmentation in MRI based on active contours and total variation minimization. Biomed. Sign. Process. Control. 2015, 20, 71–77. [Google Scholar] [CrossRef]
- Le, N.; Bao, P.; Huynh, H. Fully automatic scheme for measuring liver volume in 3D MR images. Bio-Med. Mater. Eng. 2015, 26, 1361–1369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huynh, H.; Le, N.; Bao, P.; Oto, A.; Suzuki, K. Fully automated MR liver volumetry using watershed segmentation coupled with active contouring. Int. J. Comput. Assist. Radiol. Surg. 2018, 12, 235–243. [Google Scholar] [CrossRef]
- Zhou, X.; Takayama, R.; Wang, S.; Zhou, X.; Hara, T.; Fujita, H. Automated segmentation of 3D anatomical structures on CT images by using a deep convolutional network based on end-to-end learning approach. In Proceedings of the Medical Imaging 2017: Image Processing, Orlando, FL, USA, 11–16 February 2017; Volume 10133, p. 1013324. [Google Scholar]
- Bobo, M.; Bao, S.; Huo, Y.; Yao, Y.; Virostko, J.; Plassard, A.; Landman, B. Fully convolutional neural networks improve abdominal organ segmentation. In Proceedings of the Medical Imaging 2018: Image Processing, Houston, TX, USA, 10–15 February 2018; Volume 10574, p. 105742V. [Google Scholar]
- Larsson, M.; Zhang, Y.; Kahl, F. Deepseg: Abdominal organ segmentation using deep convolutional neural networks. In Proceedings of the Swedish Symposium on Image Analysis 2016, Göteborg, Sweden, 14–16 March 2016. [Google Scholar]
- Chen, Y.; Ruan, D.; Xiao, J.; Wang, L.; Sun, B.; Saouaf, R.; Yang, W.; Li, D.; Fan, Z. Fully Automated Multi-Organ Segmentation in Abdominal Magnetic Resonance Imaging with Deep Neural Networks. arXiv 2019, arXiv:1912.11000. [Google Scholar]
- Groza, V.; Brosch, T.; Eschweiler, D.; Schulz, H.; Renisch, S.; Nickisch, H. Comparison of deep learning-based techniques for organ segmentation in abdominal CT images. In Proceedings of the 1st Conference on Medical Imaging with Deep Learning (MIDL 2018), Amsterdam, The Netherlands, 4–6 July 2018; pp. 1–3, 15, 16. [Google Scholar]
- Conze, P.; Kavur, A.; Gall, E.; Gezer, N.; Meur, Y.; Selver, M.; Rousseau, F. Abdominal multi-organ segmentation with cascaded convolutional and adversarial deep networks. arXiv 2020, arXiv:2001.09521. [Google Scholar]
- Cai, J.; Lu, L.; Zhang, Z.; Xing, F.; Yang, L.; Yin, Q. Pancreas segmentation in MRI using graph-based decision fusion on convolutional neural networks. In Proceedings of the MICCAI 2016, LNCS, Athens, Greece, 17–21 October 2016; Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W., Eds.; Springer Nature: Cham, Switzerland, 2016; Volume 9901, pp. 442–450. [Google Scholar]
- Prentašić, P.; Lončarić, S. Detection of exudates in fundus photographs using convolutional neural networks. In Proceedings of the 2015 9th International Symposium on Image and Signal Processing and Analysis (ISPA), Edinburgh, UK, 6–8 September 2015; pp. 188–192. [Google Scholar]
- Gondal, W.M.; Köhler, J.M.; Grzeszick, R.; Fink, G.A.; Hirsch, M. Weakly-supervised localization of diabetic retinopathy lesions in retinal fundus images. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 2069–2073. [Google Scholar]
- Quellec, G.; Charrière, K.; Boudi, Y.; Cochener, B.; Lamard, M. Deep image mining for diabetic retinopathy screening. Med. Image Anal. 2017, 39, 178–193. [Google Scholar] [CrossRef] [Green Version]
- Haloi, M. Improved microaneurysm detection using deep neural networks. arXiv 2015, arXiv:1505.04424. [Google Scholar]
- Van Grinsven, M.J.; van Ginneken, B.; Hoyng, C.B.; Theelen, T.; Sánchez, C.I. Fast convolutional neural network training using selective data sampling: Application to hemorrhage detection in color fundus images. IEEE Trans. Med. Imaging 2016, 35, 1273–1284. [Google Scholar] [CrossRef]
- Orlando, J.I.; Prokofyeva, E.; del Fresno, M.; Blaschko, M.B. An ensemble deep learning based approach for red lesion detection in fundus images. Comput. Methods Progr. Biomed. 2018, 153, 115–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shan, J.; Li, L. A deep learning method for microaneurysm detection in fundus images. In Proceedings of the 2016 IEEE First International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), Washington, DC, USA, 27–29 June 2016; pp. 357–358. [Google Scholar]
- Zhang, X.; Thibault, G.; Decencière, E.; Marcotegui, B.; Laÿ, B.; Danno, R.; Cazuguel, G.; Quellec, G.; Lamard, M.; Massin, P.; et al. Exudate detection in color retinal images for mass screening of diabetic retinopathy. Med. Image Anal. 2014, 18, 1026–1043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jadon, S. A survey of loss functions for semantic segmentation. arXiv 2020, arXiv:2006.14822. [Google Scholar]
- Salehi, S.S.; Erdogmus, D.; Gholipour, A. Tversky loss function for image segmentation using 3D fully convolutional deep networks. In International Workshop on Machine Learning in Medical Imaging; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Jurdia, R.E.; Petitjean, C.; Honeine, P.; Cheplygina, V.; Abdallah, F. High-level Prior-based Loss Functions for Medical Image Segmentation: A Survey. arXiv 2020, arXiv:2011.08018. [Google Scholar]
- Kavur, A.; Sinem, N.; Barıs, M.; Conze, P.; Groza, V.; Pham, D.; Chatterjee, S.; Ernst, P.; Ozkan, S.; Baydar, B.; et al. CHAOS Challenge—Combined (CT-MR) Healthy Abdominal Organ Segmentation. arXiv 2020, arXiv:2001.06535. [Google Scholar] [CrossRef]
- Deb, K. Multi-objective optimization. In Search Methodologies; Springer: Boston, MA, USA, 2014; pp. 403–449. [Google Scholar]
- Fu, Y.; Mazur, T.; Wu, X.; Liu, S.; Chang, X.; Lu, Y.; Harold, H.; Kim, H.; Roach, M.; Henke, L.; et al. A novel MRI segmentation method using CNN-based correction network for MRI-guided adaptive radiotherapy. Med. Phys. 2018, 45, 5129–5137. [Google Scholar] [CrossRef]
- Chlebus, G.; Meine, H.; Thoduka, S.; Abolmaali, N.; van Ginneken, B.; Hahn, H.; Schenk, A. Reducing inter-observer variability and interaction time of MR liver volumetry by combining automatic CNN-based liver segmentation and manual corrections. PLoS ONE 2019, 14, e0217228. [Google Scholar] [CrossRef]
- Hu, P.; Wu, F.; Peng, J.; Bao, Y.; Chen, F.; Kong, D. Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets. Int. J. Comput. Assist. Radiol. Surg. 2017, 12, 399–411. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Y.; Shen, W.; Park, S.; Fishman, E.; Yuille, A. Abdominal multi-organ segmentation with organ-attention networks and statistical fusion. Med. Image Anal. 2019, 55, 88–102. [Google Scholar] [CrossRef] [Green Version]
- Roth, R.; Shen, C.; Oda, H.; Sugino, T.; Oda, M.; Hayashi, H.; Misawa, K.; Mori, K. A multi-scale pyramid of 3D fully convolutional networks for abdominal multi-organ segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Granada, Spain, 16–20 September 2018; pp. 417–425. [Google Scholar]
- Gibson, E.; Giganti, F.; Hu, Y.; Bonmati, E.; Bandula, S.; Gurusamy, K.; Davidson, B.; Pereira, S.; Clarkson, M.; Barratt, D. Towards image-guided pancreas and biliary endoscopy: Automatic multi-organ segmentation on abdominal ct with dense dilated networks. In Proceedings of the MICCAI, Quebec City, QC, Canada, 11–13 September 2017; Springer Nature: Cham, Switzerland, 2017; pp. 728–736. [Google Scholar]
- Kim, J.; Lee, J. Deep-learning-based fast and fully automated segmentation on abdominal multiple organs from CT. In Proceedings of the International Forum on Medical Imaging in Asia 2019, Singapore, 7–9 January 2019; Volume 11050, p. 110500K. [Google Scholar]
MRI Data | DeepLabV3 | FCN | UNET | CT Data | DeepLabV3 | FCN | UNET | EFI Data | DeepLabV3 | FCN | UNET |
---|---|---|---|---|---|---|---|---|---|---|---|
Background | 0.99 | 0.99 | 0.98 | Background | 0.97 | 0.89 | 0.75 | ||||
Liver | 0.86 | 0.86 | 0.74 | Liver | 0.86 | 0.77 | 0.75 | Microaneurysms | 0.13 | 0.02 | 0.01 |
Spleen | 0.82 | 0.74 | 0.73 | Hemorrhages | 0.24 | 0.23 | 0.10 | ||||
Rt Kidney | 0.77 | 0.78 | 0.75 | Hard Exudates | 0.52 | 0.20 | 0.08 | ||||
Lt Kidney | 0.81 | 0.77 | 0.78 | Soft Exudates | 0.41 | 0.29 | 0.08 | ||||
Optic Disc | 0.90 | 0.83 | 0.26 | ||||||||
Avg IoU | 0.85 | 0.83 | 0.80 | 0.53 | 0.31 | 0.21 |
MRI | CrossE | IoU | IoU | Iou | Dice | Dice noBK | EFI | CrossE | IoU | Dice | Dice noBK |
---|---|---|---|---|---|---|---|---|---|---|---|
α β | - | 1 1 | 1.5 0.5 | 0.5 1.5 | - | - | |||||
BackGround | 0.99 | 0.99 | 0.99 | 1.00 | 0.99 | 0.99 | Background | 0.97 | 0.98 | 0.98 | 0.98 |
liver | 0.86 | 0.84 | 0.69 | 0.88 | 0.87 | 0.84 | Microaneurysm. | 0.13 | 0.17 | 0.16 | 0.18 |
spleen | 0.82 | 0.84 | 0.80 | 0.87 | 0.80 | 0.81 | Hemorrhages | 0.24 | 0.1 | 0.28 | 0.32 |
Rt kidney | 0.77 | 0.82 | 0.77 | 0.88 | 0.81 | 0.82 | Hard Exudates | 0.52 | 0.61 | 0.61 | 0.61 |
Lt kidney | 0.81 | 0.74 | 0.73 | 0.85 | 0.76 | 0.79 | Soft Exudates | 0.41 | 0.49 | 0.51 | 0.56 |
Optic Disc | 0.90 | 0.91 | 0.91 | 0.90 | |||||||
avg | 0.84 | 0.86 | 0.82 | 0.90 | 0.85 | 0.85 | avg | 0.53 | 0.53 | 0.57 | 0.59 |
CrossE | Iou11 | Iou0515 | Dice | Dice noBK | |
---|---|---|---|---|---|
BackGround | 0.98 | 0.96 | 0.98 | 0.99 | 0.98 |
liver | 0.75 | 0.82 | 0.76 | 0.84 | 0.79 |
avg | 0.86 | 0.89 | 0.87 | 0.91 | 0.89 |
Mean (IoU) | CV1 | CV2 | CV3 | CV4 | CV5 | Avg | stdev | Avg − CI | Avg + CI | p-Value |
---|---|---|---|---|---|---|---|---|---|---|
CrossE | 0.843 | 0.834 | 0.829 | 0.833 | 0.836 | 0.835 | 0.006 | 0.831 | 0.842 | 0.000007 |
dice | 0.848 | 0.851 | 0.864 | 0.849 | 0.852 | 0.853 | 0.007 | 0.845 | 0.859 | 0.00015 |
iou11 | 0.836 | 0.875 | 0.855 | 0.876 | 0.857 | 0.860 | 0.019 | 0.838 | 0.876 | 0.007 |
iou0515 | 0.879 | 0.901 | 0.903 | 0.895 | 0.881 | 0.892 | 0.011 | 0.871 | 0.892 | - |
Alpha | 0 | 0.25 | 0.5 | 0.75 | 1 | 1.25 | 1.5 | 1.75 | 2 |
MeanIoU | 0.63 | 0.82 | 0.89 | 0.88 | 0.87 | 0.84 | 0.83 | 0.79 | 0.16 |
MRI | Multiclass | Uniclass | EFI | Multiclass | Uniclass | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CrossE | IoU | Dice | CrossE | IoU | Dice | CrossE | Dice | CrossE | Dice | ||
BackGround | 0.99 | 0.99 | 0.99 | - | - | - | Background | 0.97 | 0.98 | - | - |
liver | 0.86 | 0.84 | 0.87 | 0.86 | 0.89 | 0.87 | Microaneurysm. | 0.13 | 0.16 | 0.16 | 0.12 |
spleen | 0.82 | 0.84 | 0.80 | 0.58 | 0.62 | 0.52 | Hemorrhages | 0.24 | 0.28 | 0.31 | 0.25 |
Rt kidney | 0.77 | 0.82 | 0.81 | 0.72 | 0.50 | 0.79 | Hard Exudates | 0.52 | 0.61 | 0.43 | 0.60 |
Lt kidney | 0.81 | 0.74 | 0.76 | 0.70 | 0.67 | 0.79 | Soft Exudates | 0.41 | 0.51 | 0.45 | 0.36 |
Optic Disc | 0.9 | 0.91 | 0.87 | 0.91 | |||||||
avg | 0.84 | 0.86 | 0.85 | 0.77 | 0.73 | 0.79 | avg | 0.53 | 0.57 | 0.45 | 0.45 |
MRI JI = IoU | Liver | Spleen | R Kidney | L Kidney |
---|---|---|---|---|
teamPK [24] | ||||
U-Net | 0.73 | 0.76 | 0.79 | 0.83 |
V19UNet | 0.76 | 0.79 | 0.84 | 0.85 |
V19pUNet | 0.85 | 0.83 | 0.85 | 0.86 |
V19pUnet1-1 | 0.86 | 0.83 | 0.86 | 0.87 |
deeplabV3 iou 0.5/1.5 | 0.88 | 0.87 | 0.88 | 0.85 |
MRI JI = IoU | Liver | Spleen | R Kidney | L Kidney |
---|---|---|---|---|
[20] | 0.84 | 0.87 | 0.64 | 0.57 |
[40] | 0.90(LiverNet) | - | - | - |
[39] | 0.91 | - | 0.87 | 0.87 |
CT JI = IoU | Liver | Spleen | R Kidney | L Kidney |
[43] | 0.938 | 0.945 | ||
[44] | 0.85 | - | ||
[19] | 0.88 | 0.77 | ||
[41] | 0.92 | 0.89 | ||
[42] | 0.96 | 0.94 | 0.96 | 0.94 |
[45] | 0.9 | - | 0.84 | 0.80 |
[23] | ||||
F-net | 0.86 | 0.79 | 0.79 | 0.80 |
BRIEF | 0.74 | 0.60 | 0.60 | 0.60 |
U-Net | 0.89 | 0.80 | 0.77 | 0.78 |
[21] | 0.90 | 0.87 | 0.76 | 0.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Furtado, P. Testing Segmentation Popular Loss and Variations in Three Multiclass Medical Imaging Problems. J. Imaging 2021, 7, 16. https://doi.org/10.3390/jimaging7020016
Furtado P. Testing Segmentation Popular Loss and Variations in Three Multiclass Medical Imaging Problems. Journal of Imaging. 2021; 7(2):16. https://doi.org/10.3390/jimaging7020016
Chicago/Turabian StyleFurtado, Pedro. 2021. "Testing Segmentation Popular Loss and Variations in Three Multiclass Medical Imaging Problems" Journal of Imaging 7, no. 2: 16. https://doi.org/10.3390/jimaging7020016
APA StyleFurtado, P. (2021). Testing Segmentation Popular Loss and Variations in Three Multiclass Medical Imaging Problems. Journal of Imaging, 7(2), 16. https://doi.org/10.3390/jimaging7020016