The Potential Use of Radiomics with Pre-Radiation Therapy MR Imaging in Predicting Risk of Pseudoprogression in Glioblastoma Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Information and Clinical Data
2.2. Imaging, Segmentation, and Feature Extraction
2.2.1. Imaging
2.2.2. Segmentation
2.2.3. Radiomic Feature Extraction
2.3. Data Analysis
2.3.1. Heatmap Analysis of Variables
2.3.2. Radiomic Feature Selection
2.3.3. Radiomic Model Building and Validation
2.3.4. Radiomic and Clinical Model Comparison
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lambin, P.; Leijenaar, R.T.; Deist, T.M.; Peerlings, J.; De Jong, E.E.; Van Timmeren, J.; Sanduleanu, S.; LaRue, R.T.H.M.; Even, A.J.; Jochems, A.; et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 2017, 14, 749–762. [Google Scholar] [CrossRef]
- Nie, K.; Al-Hallaq, H.; Li, X.A.; Benedict, S.H.; Sohn, J.W.; Moran, J.M.; Fan, Y.; Huang, M.; Knopp, M.V.; Michalski, J.M.; et al. NCTN assessment on current applications of radiomics in oncology. Int. J. Radiat. Oncol. 2019, 104, 302–315. [Google Scholar] [CrossRef] [Green Version]
- Xavier-Magalhães, A.; Nandhabalan, M.; Jones, C.; Costa, B.M. Molecular prognostic factors in glioblastoma: State of the art and future challenges. CNS Oncol. 2013, 2, 495–510. [Google Scholar] [CrossRef]
- Ostrom, Q.T.; Gittleman, H.; Truitt, G.; Boscia, A.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2011–2015. Neuro-Oncology 2018, 20, iv1–iv86. [Google Scholar] [CrossRef] [Green Version]
- Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.B.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef]
- Stupp, R.; Taillibert, S.; Kanner, A.A.; Kesari, S.; Steinberg, D.M.; Toms, S.A.; Taylor, L.P.; Lieberman, F.; Silvani, A.; Fink, K.L.; et al. Maintenance therapy with tumor-treating fields plus temozolomide vs temozolomide alone for glioblastoma. JAMA 2015, 314, 2535–2543. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, X.Q.; Zhou, B.; Zhang, L. The prognostic value of MGMT promoter methylation in Glioblastoma multiforme: A meta-analysis. Fam. Cancer 2013, 12, 449–458. [Google Scholar] [CrossRef]
- De Wit, M.C.; De Bruin, H.G.; Eijkenboom, W.; Smitt, P.A.S.; Bent, M.J.V.D. Immediate post-radiotherapy changes in malignant glioma can mimic tumor progression. Neurology 2004, 63, 535–537. [Google Scholar] [CrossRef]
- Van Mieghem, E.; Wozniak, A.; Geussens, Y.; Menten, J.; De Vleeschouwer, S.; Van Calenbergh, F.; Sciot, R.; Van Gool, S.; Bechter, O.E.; Demaerel, P.; et al. Defining pseudoprogression in glioblastoma multiforme. Eur. J. Neurol. 2013, 20, 1335–1341. [Google Scholar] [CrossRef]
- Taal, W.; Brandsma, D.; De Bruin, H.; Bromberg, J.; Swaak-Kragten, A.T.; Smitt, P.A.E.S.; Van Es, C.; Bent, M.V.D. Incidence of early pseudo-progression in a cohort of malignant glioma patients treated with chemoirradiation with temozolomide. Cancer 2008, 113, 405–410. [Google Scholar] [CrossRef]
- Li, H.; Li, J.; Cheng, G.; Zhang, J.; Li, X. IDH mutation and MGMT promoter methylation are associated with the pseudoprogression and improved prognosis of glioblastoma multiforme patients who have undergone concurrent and adjuvant temozolomide-based chemoradiotherapy. Clin. Neurol. Neurosurg. 2016, 151, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Brandes, A.A.; Franceschi, E.; Tosoni, A.; Blatt, V.; Pession, A.; Tallini, G.; Bertorelle, R.; Bartolini, S.; Calbucci, F.; Andreoli, A.; et al. MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J. Clin. Oncol. 2008, 26, 2192–2197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dworkin, M.; Mehan, W.; Niemierko, A.; Kamran, S.C.; Lamba, N.; Dietrich, J.; Martinez-Lage, M.; Oh, K.S.; Batchelor, T.T.; Wen, P.Y.; et al. Increase of pseudoprogression and other treatment related effects in low-grade glioma patients treated with proton radiation and temozolomide. J. Neuro-Oncol. 2019, 142, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Abdulla, S.; Saada, J.; Johnson, G.; Jefferies, S.; Ajithkumar, T. Tumour progression or pseudoprogression? A review of post-treatment radiological appearances of glioblastoma. Clin. Radiol. 2015, 70, 1299–1312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, B.S.; Jeon, S.H.; Kim, I.H.; Kim, I.A. Prediction of pseudoprogression versus progression using machine learning algorithm in glioblastoma. Sci. Rep. 2018, 8, 12516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avanzo, M.; Stancanello, J.; El Naqa, I. Beyond imaging: The promise of radiomics. Phys. Med. 2017, 38, 122–139. [Google Scholar] [CrossRef] [PubMed]
- Van Griethuysen, J.J.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.; Fillion-Robin, J.C.; Pieper, S.; Aerts, H.J.W.L. Computational radiomics system to decode the radiographic phenotype. Cancer Res. 2017, 77, e104–e107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, L.; Jiang, H.; Yu, H.; Zhang, C.; McAllister, J.; Zheng, D. iVAR: Interactive visual analytics of radiomics features from large-scale medical images. In Proceedings of the 2017 IEEE International Conference on Big Data (Big Data), Boston, MA, USA, 11–14 December 2017; pp. 3916–3923. [Google Scholar]
- Zwanenburg, A.; Leger, S.; Vallières, M.; Löck, S. Image Biomarker Standardisation Initiative—Feature definitions. arXiv 2016, arXiv:1612.07003. [Google Scholar]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Chaddad, A.; Kucharczyk, M.J.; Daniel, P.; Sabri, S.; Jean-Claude, B.J.; Niazi, T.; Abdulkarim, B. Radiomics in glioblastoma: Current status and challenges facing clinical implementation. Front. Oncol. 2019, 9, 374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prager, A.; Martinez, N.; Beal, K.; Omuro, A.; Zhang, Z.; Young, R.J. Diffusion and perfusion MRI to differentiate treatment-related changes including pseudoprogression from recurrent tumors in high-grade gliomas with histopathologic evidence. Am. J. Neuroradiol. 2015, 36, 877–885. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Martinez-Lage, M.; Sakai, Y.; Chawla, S.; Kim, S.; Alonso-Basanta, M.; Lustig, R.; Brem, S.; Mohan, S.; Wolf, R.; et al. Differentiating tumor progression from pseudoprogression in patients with glioblastomas using diffusion tensor imaging and dynamic susceptibility contrast MRI. Am. J. Neuroradiol. 2015, 37, 28–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; Bai, H.; Chen, Y.; Sun, Q.; Liu, L.; Zhou, S.; Wang, G.; Liang, C.; Li, Z.C. A Fully-automatic multiparametric radiomics model: Towards reproducible and prognostic imaging signature for prediction of overall survival in glioblastoma multiforme. Sci. Rep. 2017, 7, 14331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xi, Y.B.; Guo, F.; Xu, Z.L.; Li, C.; Wei, W.; Tian, P.; Liu, T.-T.; Liu, L.; Cheng, G.; Ye, J.; et al. Radiomics signature: A potential biomarker for the prediction of MGMT promoter methylation in glioblastoma. J. Magn. Reson. Imaging 2018, 47, 1380–1387. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.; Choi, Y.; Ahn, S.S.; Chang, J.H.; Kang, S.G.; Kim, E.H.; Kim, S.H.; Lee, S.K. Radiomic MRI phenotyping of glioblastoma: Improving survival prediction. Radiology 2018, 289, 797–806. [Google Scholar] [CrossRef]
- Soike, M.H.; Mctyre, E.; Shah, N.; Puchalski, R.B.; Holmes, J.A.; Paulsson, A.K.; Miller, L.D.; Cramer, C.K.; Lesser, G.J.; Strowd, R.E.; et al. Glioblastoma radiomics: Can genomic and molecular characteristics correlate with imaging response patterns? Neuroradiology 2018, 60, 1043–1051. [Google Scholar] [CrossRef]
- Chamberlain, M.C.; Glantz, M.J.; Chalmers, L.; Van Horn, A.; Sloan, A.E. Early necrosis following concurrent Temodar and radiotherapy in patients with glioblastoma. J. Neuro-Oncol. 2007, 82, 81–83. [Google Scholar] [CrossRef]
- Topkan, E.; Topuk, S.; Oymak, E.; Parlak, C.; Pehlivan, B. Pseudoprogression in patients with glioblastoma multiforme after concurrent radiotherapy and temozolomide. Am. J. Clin. Oncol. 2012, 35, 284–289. [Google Scholar] [CrossRef] [Green Version]
- Gahramanov, S.; Muldoon, L.L.; Varallyay, C.G.; Li, X.; Kraemer, D.F.; Fu, R.; Hamilton, B.E.; Rooney, W.D.; Neuwelt, E.A. Pseudoprogression of glioblastoma after chemo- and radiation therapy: Diagnosis by using dynamic susceptibility-weighted contrast-enhanced perfusion MR Imaging with ferumoxytol versus gadoteridol and correlation with survival. Radiology 2013, 266, 842–852. [Google Scholar] [CrossRef]
Total (n = 35) | Pseudoprogression (n = 8) | No Pseudoprogression (n = 27) | ||||
---|---|---|---|---|---|---|
Age | 55.5 (8–87) | 59.3 (26–73) | 54.3 (8–87) | |||
Gender | n | % | n | % | n | % |
Male | 24 | 68.6 | 7 | 87.5 | 17 | 63.0 |
Female | 11 | 31.4 | 1 | 12.5 | 10 | 37.0 |
MGMT Promoter status | ||||||
Methylated | 7 | 20 | 2 | 25 | 5 | 18.5 |
Non-methylated | 3 | 8.6 | 1 | 12.5 | 2 | 7.4 |
Unknown | 25 | 71.4 | 5 | 62.5 | 20 | 74.1 |
IDH-1 status | ||||||
Wild-Type | 13 | 37.1 | 3 | 37.5 | 10 | 37.0 |
Mutant | 4 | 11.4 | 1 | 12.5 | 3 | 11.1 |
Unknown | 18 | 51.4 | 4 | 50 | 14 | 51.9 |
Concurrent TMZ | ||||||
Yes | 25 | 71.4 | 6 | 75 | 19 | 70.4 |
No | 8 | 22.9 | 2 | 25 | 6 | 22.2 |
Unknown | 2 | 5.7 | 0 | 0 | 2 | 7.4 |
Adjuvant TMZ | ||||||
Yes | 26 | 74.3 | 5 | 62.5 | 21 | 77.8 |
No | 6 | 17.1 | 2 | 25 | 4 | 14.8 |
Unknown | 3 | 8.6 | 1 | 12.5 | 2 | 7.4 |
Radiation Dose/Fractions | ||||||
60Gy/30Fx | 21 | 60 | 5 | 62.5 | 16 | 59.3 |
59.4Gy/33Fx | 4 | 11.4 | 0 | 0 | 4 | 14.8 |
54Gy/30Fx | 2 | 5.7 | 0 | 0 | 2 | 7.4 |
55.8Gy/31Fx | 1 | 2.85 | 1 | 12.5 | 0 | 0 |
40.05Gy/15Fx | 2 | 5.7 | 0 | 0 | 2 | 7.4 |
34.6Gy/11Fx | 1 | 2.85 | 0 | 0 | 1 | 3.7 |
34Gy/10Fx | 2 | 5.7 | 1 | 12.5 | 1 | 3.7 |
25Gy/5Fx | 1 | 2.85 | 1 | 12.5 | 0 | 0 |
Unknown | 1 | 2.85 | 0 | 0 | 1 | 3.7 |
Location | ||||||
Right frontal lobe | 8 | 22.9 | 2 | 25 | 6 | 22.2 |
Right temporal lobe | 6 | 17.1 | 0 | 0 | 6 | 22.2 |
Right parietal lobe | 4 | 11.4 | 1 | 12.5 | 3 | 11.1 |
Left frontal lobe | 0 | 0 | 0 | 0 | 0 | 0 |
Left temporal lobe | 3 | 8.6 | 1 | 12.5 | 2 | 7.4 |
Left parietal lobe | 5 | 14.2 | 1 | 12.5 | 4 | 14.8 |
Other location | 3 | 8.6 | 2 | 25 | 1 | 3.7 |
Unknown | 6 | 17.1 | 1 | 12.5 | 5 | 18.5 |
Extent of resection | ||||||
GTR | 12 | 34.2 | 1 | 12.5 | 11 | 40.7 |
NTR | 3 | 8.6 | 1 | 12.5 | 2 | 7.4 |
STR | 11 | 31.4 | 2 | 25 | 9 | 33.3 |
Biopsy | 7 | 20 | 4 | 50 | 3 | 11.1 |
None | 1 | 2.85 | 0 | 0 | 1 | 3.7 |
Unknown | 1 | 2.85 | 0 | 0 | 1 | 3.7 |
Radiomic Feature ID | Radiomic Feature | Mean AUC | Std. Dv. | Mean PRAUC | Mean F1 |
---|---|---|---|---|---|
1 | wavelet_HHL_firstorder_Mean | 0.66 | 0.19 | 0.51 | 0.52 |
2 | original_firstorder_Minimum | 0.67 | 0.18 | 0.47 | 0.37 |
3 | wavelet_LHL_glszm_SizeZoneNonUniformityNormalized | 0.66 | 0.20 | 0.53 | 0.47 |
Radiomic Feature Combination | 1,2 | 1,3 | 2,3 | 1,2,3 |
---|---|---|---|---|
Mean AUC | 0.80 | 0.75 | 0.82 | 0.81 |
Std. Dv. | 0.14 | 0.20 | 0.15 | 0.15 |
Mean PRAUC | 0.60 | 0.66 | 0.62 | 0.63 |
Std. Dv. | 0.22 | 0.24 | 0.26 | 0.24 |
Mean F1 | 0.50 | 0.50 | 0.59 | 0.57 |
Std. Dv. | 0.22 | 0.25 | 0.29 | 0.24 |
Mean TPR | 0.58 | 0.53 | 0.64 | 0.63 |
Std. Dv. | 0.29 | 0.29 | 0.35 | 0.29 |
Mean TNR | 0.82 | 0.84 | 0.88 | 0.85 |
Std. Dv. | 0.14 | 0.13 | 0.13 | 0.13 |
Clinical Model | Radiomics Model | Combined Model | |
---|---|---|---|
Mean AUC | 0.62 | 0.82 | 0.80 |
Std. Dv. | 0.16 | 0.15 | 0.16 |
Mean PRAUC | 0.21 | 0.62 | 0.62 |
Std. Dv. | 0.11 | 0.26 | 0.25 |
Mean F1 | 0.09 | 0.59 | 0.49 |
Std. Dv. | 0.16 | 0.30 | 0.29 |
Mean TPR | 0.09 | 0.64 | 0.49 |
Std. Dv. | 0.16 | 0.35 | 0.33 |
Mean TNR | 0.83 | 0.88 | 0.90 |
Std. Dv. | 0.13 | 0.13 | 0.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baine, M.; Burr, J.; Du, Q.; Zhang, C.; Liang, X.; Krajewski, L.; Zima, L.; Rux, G.; Zhang, C.; Zheng, D. The Potential Use of Radiomics with Pre-Radiation Therapy MR Imaging in Predicting Risk of Pseudoprogression in Glioblastoma Patients. J. Imaging 2021, 7, 17. https://doi.org/10.3390/jimaging7020017
Baine M, Burr J, Du Q, Zhang C, Liang X, Krajewski L, Zima L, Rux G, Zhang C, Zheng D. The Potential Use of Radiomics with Pre-Radiation Therapy MR Imaging in Predicting Risk of Pseudoprogression in Glioblastoma Patients. Journal of Imaging. 2021; 7(2):17. https://doi.org/10.3390/jimaging7020017
Chicago/Turabian StyleBaine, Michael, Justin Burr, Qian Du, Chi Zhang, Xiaoying Liang, Luke Krajewski, Laura Zima, Gerard Rux, Chi Zhang, and Dandan Zheng. 2021. "The Potential Use of Radiomics with Pre-Radiation Therapy MR Imaging in Predicting Risk of Pseudoprogression in Glioblastoma Patients" Journal of Imaging 7, no. 2: 17. https://doi.org/10.3390/jimaging7020017
APA StyleBaine, M., Burr, J., Du, Q., Zhang, C., Liang, X., Krajewski, L., Zima, L., Rux, G., Zhang, C., & Zheng, D. (2021). The Potential Use of Radiomics with Pre-Radiation Therapy MR Imaging in Predicting Risk of Pseudoprogression in Glioblastoma Patients. Journal of Imaging, 7(2), 17. https://doi.org/10.3390/jimaging7020017