Iterative-Trained Semi-Blind Deconvolution Algorithm to Compensate Straylight in Retinal Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Image Dataset
2.2. Image Quality Assessment and Segmentation
2.2.1. Image Sharpness
2.2.2. Trained NIQE Score
2.2.3. Structural Similarity Index
2.2.4. Blind Reference Image Spatial Quality Evaluator
2.2.5. Segmentation
2.3. Glare Spread Function Generation
2.4. Iterative-Trained Semi-Blind Deconvolution Algorithm Description
3. Results
3.1. Testing the ITSD Algorithm with a Straylight Eye Model Optical Simulation
3.2. ITSD of Retinal Images
3.2.1. ITSD of Retinal Images from Healthy Subjects
3.2.2. ITSD of Retinal Images from Glaucomatous Eyes
3.2.3. ITSD of Retinal Images from Diabetic Retinopathy Patients
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wanek, J.; Mori, M.; Shahidi, M. The effect of aberrations and scatter on image resolution assessed by adaptive optics retinal section imaging. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2010, 24, 1296–1304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hope, G.M. Night Myopia. Sur. Ophthalmol. 1984, 29, 129–136. [Google Scholar] [CrossRef]
- Marin-Franch, I.; Xu, R.; Bradley, A.; Thibos, L.N.; Lopez-Gil, N. The effect of spherical aberration on visual performance and refractive state for stimuli and tasks typical of night viewing. J. Optom. 2018, 11, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Van der Berg, T.J. Analysis of intraocular straylight, especially in relation to age. Optom. Vis. Sci. 1995, 72, 52–59. [Google Scholar] [CrossRef]
- Lapid-Gortzak, R.; Labuz, G.; van der Meulen, I.J.; van der Linden, J.W.; Mourits, M.P.; van den Berg, T.J. Straylight Measurements in Two Different Apodized Diffractive Multifocal Intraocular Lenses. J. Refract. Surg. 2015, 31, 746–751. [Google Scholar] [CrossRef] [Green Version]
- Łabuz, G.; Reus, N.J.; van den Berg, T.J. Comparison of ocular straylight after implantation of multifocal intraocular lenses. J. Cataract Refract. Surg. 2016, 42, 618–625. [Google Scholar] [CrossRef]
- Łabuz, G.; Reus, N.J.; van den Berg, T.J. Light scattering levels from intraocular lenses extracted from donor eyes. J. Cataract Refract. Surg. 2017, 43, 1207–1212. [Google Scholar] [CrossRef]
- Gaurisankar, Z.S.; van Rijn, G.A.; Luyten, G.P.; van den Berg, T.J. Straylight As The Result Of Refractive Correction. Clin. Ophthalmol. 2019, 12, 2195–2201. [Google Scholar] [CrossRef] [Green Version]
- Uji, A.; Ooto, S.; Hangai, M.; Arichika, S.; Yoshimura, N. Image Quality Improvement in Adaptive Optics Scanning Laser Ophthalmoscopy Assisted Capillary Visualization Using B-spline-based Elastic Image Registration. PLoS ONE 2013, 8, e80106. [Google Scholar] [CrossRef] [Green Version]
- Burns, S.A.; Elsner, A.E.; Sapoznik, K.A.; Warner, R.L.; Gast, T.J. Adaptive optics imaging of the human retina. Prog. Retin. Eye Res. 2019, 68, 1–30. [Google Scholar] [CrossRef]
- Kanse, S.S.; Yadav, D.M. Retinal fundus image for glaucoma detection: A review and study. J. Intell. Syst. 2019, 28, 43–56. [Google Scholar] [CrossRef]
- Hassan, G.; El-Bendary, N.; Hassanien, A.E.; El-Bendary, N.; Fahmy, A. Retinal blood vessel segmenetation approach based on mathematical morphology. Proc. Comp. Sci. 2015, 65, 612–622. [Google Scholar] [CrossRef] [Green Version]
- Köse, C.; Sevik, U.; Calioglu, G. Automatic segmentation of age-related macular degeneration in retinal fundus images. Comp. Biol. Med. 2008, 38, 611–619. [Google Scholar] [CrossRef]
- García-Guerra, C.E.; Martínez-Roda, J.; Aldaba, M.; Diaz-Douton, F.; Vilaseca, M.; Vohnsen, B.; Pujol, J. Method to reduce undesired multiple fundus scattering effects in double-pass systems. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2019, 36, 918–924. [Google Scholar] [CrossRef]
- Fei, X.; Zhao, J.; Zhao, H.; Yun, D.; Zhang, Y. Deblurring adaptive optics retinal images using deep convolutional neural networks. Biomed. Opt. Express 2017, 8, 5675–5687. [Google Scholar] [CrossRef] [Green Version]
- Marrugo, A.; Millan, M.; Sorel, M.; Sroubek, F.; Millan, M.S. Retinal image restoration by means of blind deconvolution. J. Biomed. Opt. 2011, 16, 116016. [Google Scholar] [CrossRef] [Green Version]
- Nourrit, V.; Vohnsen, B.; Artal, P. Blind deconvolution for high-resolution confocal scanning laser ophthalmoscopy. J. Opt. A Pure Appl. Opt. 2005, 7, 585–592. [Google Scholar] [CrossRef]
- Yang, S.; Barriga, S.; Erry, G.; Raman, B.; Russell, S.; Mitra, S.; Soliz, P. Retinal image deconvolution: Revealing hidden structures and pathology. Investig. Ophthalmol. Vis. Sci. 2005, 46, 361. [Google Scholar]
- Ayers, G.R.; Dainty, J.C. Iterative blind deconvolution method and its applications. Opt. Lett. 1988, 13, 547–549. [Google Scholar] [CrossRef] [Green Version]
- Fish, D.; Brinicombe, A.M.; Pike, E.R. Blind Deconvolution by means of Richardson-Lucy algorithm. J. Opt. Soc. Am. A 1995, 2, 58–65. [Google Scholar] [CrossRef] [Green Version]
- Budai, A.; Bock, R.; Maier, A.; Hornegger, J.; Michelson, G. Robust Vessel Segmentation in Fundus Images. Int. J. Biomed. Imaging 2013, 2013, 154860. [Google Scholar] [CrossRef] [Green Version]
- Maître, H. Image Quality. In From Photon to Pixel: The Digital Camera Handbook, 2nd ed.; Wiley: Hoboken, NJ, USA, 2015; pp. 201–205. [Google Scholar]
- Mittal, A.; Soundararajan, R.; Bovi, A.C. Making a Completely Blind Image Quality Analyzer. IEEE Signal Process. Lett. 2013, 22, 209–212. [Google Scholar] [CrossRef]
- Zhou, W.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.C. Image Qualifty Assessment: From Error Visibility to Structural Similarity. IEEE Trans. Image Process. 2014, 13, 600–612. [Google Scholar]
- Canny, J. A Computational Approach to Edge Detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, 8, 679–698. [Google Scholar] [CrossRef]
- Van den Berg, T.J.; IJspeert, J.K.; de Waard, P. Dependence of intraocular straylight on pigmentation and light transmission through the ocular wall. Vision Res. 1991, 31, 1361–1367. [Google Scholar] [CrossRef]
- Vos, J.J. Disability glare—A state of the art report. Comm. Int. l’Eclairage J. 1984, 3, 39–53. [Google Scholar]
- Vos, J.; van den Berg, T.J. Report on Disability Glare. CIE Collect. 1999, 135, 1–9. [Google Scholar]
- Richardson, W. Bayesian-Based Iterative Method of Image Restoration. J. Opt. Soc. Am. 1972, 62, 55–59. [Google Scholar] [CrossRef]
- Lucy, L.B. An Iterative Technique for the Rectification of Observed Distributions. Astron. J. 1974, 79, 745. [Google Scholar] [CrossRef] [Green Version]
- Shepp, L.A.; Vardi, Y. Maximum Likelihood Reconstruction for Emission Tomography. IEEE Trans. Med. Imaging 1974, 1, 113–122. [Google Scholar] [CrossRef]
- Laasmaa, M.; Vendelin, M.; Peterson, P. Application of regularized Richardson-Lucy algorithm deconvolution of confocal microscopy images. J. Microsc. 2011, 243, 124–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lozano, M.; Herrera, F.; Krasnogor, N.; Molina, D. Real-Coded Memetic Algorithms with Crossover Hill-Climbing. Evol. Comput. 2004, 12, 273–302. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Gracia, J.; Ávila, F.; Ares, J.; Vallés, J.; Remón, L. Misaligment and tilt effect on aspheric intraocular lens designs after a corneal refractive surgery. PLoS ONE 2020, 15, e0243740. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.; Bedggood, P.; Ashman, R.; Daaboul, M.; Metha, A. Exploring ocular aberrations with a schematic human eye model. Optom. Vis. Sci. 2008, 85, 330–340. [Google Scholar] [CrossRef]
- Ávila, F.; Collados, M.V.; Ares, J.; Remón, L. Wide-field direct ocular straylight meter. Opt. Express 2020, 28, 11237–11242. [Google Scholar] [CrossRef]
- Christou, J.C.; Roorda, A.; Williams, D. Deconvolution of adaptive optics retinal images. J. Opt. Soc. Am. A 2004, 21, 1393–1401. [Google Scholar] [CrossRef]
- Blanco, L.; Mugnier, L.M. Marginal blind deconvolution of adaptive optics retinal images. Opt. Express 2011, 19, 23227–23239. [Google Scholar] [CrossRef] [Green Version]
- Marrugo, A.G.; Vargas, R.; Contreras, S.; Millán, M. On the compensation of uneven illumination in retinal images for restoration by means of blind deconvolution. In Proceedings of the 016 XXI Symposium on Signal Processing, Images and Artificial Vision (STSIVA), Bucaramanga, Colombia, 31 August–2 September 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Kretz, F.T.; Tandogan, T.; Khoramnia, R.; Auffarth, G.U. High order aberration and straylight evaluation after cataract surgery with implantation of an aspheric, aberration correcting monofocal intraocular lens. Int. J. Ophthalmol. 2015, 8, 736–741. [Google Scholar]
- Vlasman, J.M.; van den Berg, T.J.; Reus, N.J. Straylight due to intraocular lens opacification in a patient with asteroid hyalosis. Am. J. Ophthalmol. Case Rep. 2020, 19, 1000857. [Google Scholar]
- Hwang, H.B.; Yim, H.B.; Chung, S.K. Effect of diabetic retinopathy and diabetes on the intraocular straylight in pseudophakic eyes. BMC Ophthalmol. 2015, 15, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Wang, X.; Wang, J.; Guo, H. Optical quality and intraocular scattering in the diabetic eye wihtout diabetic retinopathy. Optom. Vis. Sci. 2019, 96, 248–255. [Google Scholar] [CrossRef]
Induced α | Detected α | IT | S_Original | SSIM_Degraded | S_Restored | SSIM_Restored | CC (s) |
---|---|---|---|---|---|---|---|
1 | 1 | 9 | 0.140 | 0.630 | 0.18 | 0.97 | 1.87 |
2 | 2 | 15 | 0.069 | 0.200 | 0.24 | 0.92 | 1.96 |
3 | 2 | 22 | 0.067 | 0.190 | 0.27 | 0.93 | 2.07 |
4 | 3 | 31 | 0.010 | 0.150 | 0.19 | 0.92 | 2.22 |
5 | 5 | 40 | 0.004 | 0.110 | 0.17 | 0.95 | 2.39 |
6 | 6 | 64 | 0.003 | 0.013 | 0.18 | 0.91 | 2.83 |
7 | 6 | 64 | 0.029 | 0.016 | 0.17 | 0.76 | 2.83 |
8 | 7 | 70 | 0.003 | 0.009 | 0.16 | 0.75 | 3.05 |
9 | 9 | 44 | 0.002 | 0.008 | 0.10 | 0.57 | 2.46 |
10 | 9 | 74 | 0.001 | 0.007 | 0.07 | 0.36 | 2.96 |
Parameter | Healthy | Glaucoma | D. Ret. |
---|---|---|---|
Detected α | 1.00 | 4.00 | 6.00 |
IT | 20.00 | 70.00 | 90.00 |
S_Orig. | 0.01 | 0.04 | 0.01 |
S_Rest. | 0.11 | 0.07 | 0.08 |
S_Improv. (%) | 1000.00 | 63.41 | 700.00 |
Brisque_Orig. | 38.42 | 29.02 | 29.54 |
Brisque_Rest. | 43.34 | 39.25 | 43.17 |
Brisque_Improv. (%) | 12.80 | 923.00 | 1263.00 |
CC (s) | 2.23 | 3.68 | 3.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ávila, F.J.; Ares, J.; Marcellán, M.C.; Collados, M.V.; Remón, L. Iterative-Trained Semi-Blind Deconvolution Algorithm to Compensate Straylight in Retinal Images. J. Imaging 2021, 7, 73. https://doi.org/10.3390/jimaging7040073
Ávila FJ, Ares J, Marcellán MC, Collados MV, Remón L. Iterative-Trained Semi-Blind Deconvolution Algorithm to Compensate Straylight in Retinal Images. Journal of Imaging. 2021; 7(4):73. https://doi.org/10.3390/jimaging7040073
Chicago/Turabian StyleÁvila, Francisco J., Jorge Ares, María C. Marcellán, María V. Collados, and Laura Remón. 2021. "Iterative-Trained Semi-Blind Deconvolution Algorithm to Compensate Straylight in Retinal Images" Journal of Imaging 7, no. 4: 73. https://doi.org/10.3390/jimaging7040073
APA StyleÁvila, F. J., Ares, J., Marcellán, M. C., Collados, M. V., & Remón, L. (2021). Iterative-Trained Semi-Blind Deconvolution Algorithm to Compensate Straylight in Retinal Images. Journal of Imaging, 7(4), 73. https://doi.org/10.3390/jimaging7040073