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Abstract: This paper aims to provide a brief review of the feature extraction methods applied for
finger vein recognition. The presented study is designed in a systematic way in order to bring light
to the scientific interest for biometric systems based on finger vein biometric features. The analysis
spans over a period of 13 years (from 2008 to 2020). The examined feature extraction algorithms
are clustered into five categories and are presented in a qualitative manner by focusing mainly
on the techniques applied to represent the features of the finger veins that uniquely prove a human’s
identity. In addition, the case of non-handcrafted features learned in a deep learning framework is also
examined. The conducted literature analysis revealed the increased interest in finger vein biometric
systems as well as the high diversity of different feature extraction methods proposed over the past
several years. However, last year this interest shifted to the application of Convolutional Neural
Networks following the general trend of applying deep learning models in a range of disciplines.
Finally, yet importantly, this work highlights the limitations of the existing feature extraction methods
and describes the research actions needed to face the identified challenges.

Keywords: biometrics; finger vein recognition; identity recognition; feature extraction; deep learning

1. Introduction

Identity verification has become an integral part of people’s daily life. Logging into
computers or electronic accounts, using ATMs (Automated Teller Machines), and being
given entrance permission to a bank or an area generally are just some of the most common
cases where identity verification is needed. There are many ways to verify someone’s iden-
tity. The usage of a password is the most popular, but it tends to be obsolete, as biometrics
seem to be the key to the person identification problem.

Biometrics refers to metrics related to human characteristics. Biometric identifiers are
the distinctive, measurable characteristics used to label and describe individuals. They are
usually divided into two categories: (1) behavioral, such as typing rhythm, gait, and voice;
and (2) physiological, e.g., fingerprints, face, iris, and finger vein. Each category has both
advantages and disadvantages and some of them are already being used extensively.

Finger vein recognition is a relatively new method of biometric authentication. It matches
the vascular pattern in an individual’s finger to previously obtained data. Finger vein
biometrics is a field that is currently in the spotlight. Because it is rather new compared
with other biometric fields, the information in addition to the conducted studies is poor.
The advantages of using the veins of the fingers as biometrics are fair enough and consti-
tute the main motivation for applying this technology. Firstly, it is a biometric trait that
is difficult to forge, as the main functionality is to emit infrared light in the finger and
capture via a camera the shape of the finger’s veins. It is well known that the shape of
the finger vein is unique in humans, which makes a finger vein a very good means of
identification. Other advantages of the unique identification the finger vein offers are
that it is achievable through any finger of a human and the vein patterns are permanent,
meaning that they remain unchanged over time and can be measured without subjecting
the human to a painful process. The finger vein trait satisfies in some degree the seven
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factors [1] that define the suitability of a biometric trait in order to be useful for identity
authentication: (1) Universality, (2) Uniqueness, (3) Permanence, (4) Measurability, (5) Per-
formance, (6) Acceptability, and (7) Circumvention. As a result, finger vein biometrics has
gained ground due to all these advantages and raises the interest for most researchers to
conduct studies in this field.

The standard method used to acquire finger vein images includes the position of a CCD
or CMOS camera opposite to a near-infrared (NIR) light source (LED), with the finger
inserted between them. Due to the property of the hemoglobin having a lower absorbance
to the NIR wavelengths than the visible ones, the camera can capture an image containing
the finger veins. Of course, the wavelength of the used LED source affects the representation
quality of the vein patterns. The captured vein patterns are compared with prototype veins
stored in a smart card. The images that are taken include not only vein patterns but also
irregular shading and noise due to the varying thickness of finger bones and muscles.
Therefore, the most challenging part of the whole process is to use the right method to
extract the finger vein features.

Figure 1 shows a flowchart that describes the steps a typical finger vein recognition
algorithm follows. The finger images are usually taken by using a camera and a separate
illumination source emitting near-infrared light. Image preprocessing usually includes de-
noising (such as image smoothing, blurring, etc.), image thresholding, image enhancement,
and skeletonization. The next step, known as feature extraction, is the one that is going to be
studied in the following sections thoroughly. Finally, in the last step, the extracted features
are used as inputs in a matching/recognition model.
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A plethora of methods have been proposed so far for feature extraction, including
the usage of, e.g., templates, transformations, minutiae, line tracking, binary feature
extraction, histogram analysis, and mathematical procedures. This work aims to contribute
in three distinct directions: (1) it systematically reviews the feature extraction methods
proposed in the literature in the last several years; (2) it identifies the shortcomings of
the state-of-the-art methods; and (3) it sheds light on the current challenges that need to be
addressed by the scientific community towards the development of more efficient finger
vein recognition systems.

The structure of this paper is as follows. Section 2 highlights the novelties of this study
in comparison with similar works published in the past. Section 3 analyzes the literature
in order to investigate the scientific interest in finger vein recognition over the last 13 years.
Section 4 presents a categorization of the feature extraction methods that helps us study
the main characteristics of the reviewed methodologies. Section 5 points out the evolution
from feature extraction to feature learning in the framework of deep learning. Section 6
summarizes the main identified implementation aspects. Finally, Section 7 discusses
the limitations of the reviewed feature extraction methods, identifies the challenges that
need to be addressed, and concludes the entire study.
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2. Related Work

In the literature, few works that review finger vein biometrics have been presented.
The first review paper was published in 2014 by Yang et al. [2], focusing on the techniques
employed in image acquisition, the public finger vein databases, and the applied feature
extraction methods. From the feature extraction point of view, the presented study was
based on an analysis of only 15 papers, a very small fraction of the works published
until 2014. Therefore, the importance of this first review paper was not the review of
all the related published papers, but the initiation of a systematic scientific discussion
regarding finger vein recognition.

Two years later, Syazana-Itqan et al. [3] presented a review on finger vein biometric
approaches. This review paper discussed published methods in preprocessing, feature ex-
traction, and classification and surveyed some of the existing finger vein databases. The pre-
sented study derived from an analysis of 18 papers proposing conventional methodologies,
5 papers that used Machine Learning (ML) approaches, and 1 paper that introduced Convo-
lutional Neural Networks into finger vein recognition. This second review paper also did
not present all of the publications until 2016 but focused on a small part of the literature.

A year after the last review publication, Dev and Khanam [4] published a conference
paper that reviewed the feature extraction methods applied in finger vein recognition.
The data of this study included 26 papers published in the period 2004–2015. Although
the number of reviewed publications was higher than that in the previous review papers,
this work for the first time categorized the feature extraction methods into three categories
in order to present the methods in a more systematic way.

Another recent review paper for finger vein recognition was published in 2019 by
Shaheed et al. [5]. This work is the most complete study in finger vein biometrics since
it reviews the available datasets, the feature extraction methods and their performance,
and spoofing attacks. Regarding the analysis of the feature extraction methods, this paper
reviewed 25 publications presenting conventional methodologies and 8 and 9 publications
that used machine learning and deep learning models, respectively.

The next year, two review papers were published on finger vein recognition, with
the first one by Mohsin et al. [6], who conducted a review with articles from three different
databases and divided them into two categories, namely software and hardware-based
systems. The specific review presented the trends and focus of the literature regarding
the technical and hardware problems, proposing solutions for the security problems of
the systems, presenting some available databases, and discussing the motivations, chal-
lenges, recommendations, and future directions of the field. On the other hand, F. Ela-
hee et al. [7] compared the results of studies that used deep learning for the authentication
process by presenting their results in a comparative manner.

This work aims to complement the previous four review papers along three directions:
(1) it extends the literature analysis to a wider (13-year) period (between 2008 and 2020);
(2) it focuses only on the feature extraction methodologies; (3) it reviews many more publica-
tions (96 papers) proposing conventional feature extraction algorithms; and (4) it reviews 14
deep learning methodologies that replaced feature extraction with feature learning. The ex-
amined feature extraction methods are clustered into some categories based on the common
feature extraction principles they share. Moreover, their performance is not studied in this
work, since each method has different performance indices and the experiments were
conducted with different datasets and different classifiers; thus, no useful conclusions can
be derived.

3. Literature Analysis

As is mentioned in the introduction section, the main goal of this section is the justification
of the continuously increasing scientific interest in finger vein feature extraction methods.

The analysis of the literature for finding and counting the number of publications
during a certain period constitutes a laborious task. However, for this study, we decided to
make use of two different well-known publication abstract and citation databases. The first
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is the Scopus bibliographic database [8], which is commonly accepted by the scientific com-
munity and includes quite enough information for our analysis. The second is the Google
Scholar [9] search engine, which is broader than Scopus as it contains publications from
a wide range of publishing houses compared with Scopus, which includes only publications
evaluated for inclusion in this dataset. Thus, in order to be more specific to our analysis,
we refer to that as well. The search was performed by applying a rule with the keywords
“finger vein” AND (recognition OR authentication) for the Scopus database and “finger
vein recognition” OR “finger vein authentication” for the Google Scholar network. It is
worth mentioning that the Scopus database provides information (Figure 2) regarding
the type of publication (journal or conference paper), while this information is not easily ex-
tracted from Google Scholar (Figure 3) and in this case the publications are only presented
cumulatively.
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The period of our analysis was set to 13 years, from 2008 to 2020, since these years
include the most publications in this research field and research in the current year is
ongoing. Moreover, we were only interested in two types of publications, namely Articles
(journal publications) and Conference papers, while our subject area of interest is Computer
Science and Engineering in both cases.

Figures 2 and 3 illustrate the number of papers published in the last 13 years, with
a time step equal to 1 year. From Figure 2, the upward trend of the interest in finger vein
feature extraction is obvious, with the 5-year period 2008–2012 being characterized by
a rapid increase in all types of publications. However, publication seems to fall a bit in 2013,
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followed by an increase in 2014. This rise and fall can be seen for six consecutive years,
starting from 2012 and ending in 2017. Years 2018 and 2019 saw a large increase, with
the highest number of publications compared with all previous years, with the last year
having a decreased number of publications, although it is still higher than the average
number of publications during the last few years. Moreover, the year 2020 was a peculiar
year because of the COVID-19 pandemic, during which the research efforts in all disciplines
were reduced worldwide.

By focusing our analysis on the time period of the last 13 years we also derived that
2019 was the most productive year in the history of research on finger vein feature extraction
methods, concerning the Scopus library, during which 63 conference papers and 54 articles
were published. This number is quite large considering the high competitiveness occurring
in other fields of person identification and reflects the amplification of the engagement
of new scientists with finger vein feature extraction-related topics. Another remarkable
characteristic is number of conference papers showing an upward trend compared with
articles. The same can be derived concerning the Google Scholar database (Figure 3),
as the year 2019 is the most productive year as well, with 467 papers in total. The difference
in this case is that, with the exception of 2010 and 2016, where there was a slight drop
in publications, there has been a steady increase in the interest in finger vein publications
throughout the years. The last year, 2020, saw a quite high drop in terms of publications
in both cases, where the number dropped by about 30% in both cases.

Conclusively, it can be stated that the research in the field of finger vein feature
extraction has experienced its highest evolution so far. The outcomes of this study should
be translated to more research activities since time and the large amount of prior knowledge
favor the discovery and development of next-generation frameworks in both finger vein
feature extraction theory and applications.

4. Finger Vein Feature Extraction

For the needs of the study, the analyzed feature extraction algorithms were divided
into five categories: (1) algorithms based on vein patterns, (2) algorithms based on dimen-
sionality reduction, (3) algorithms based on local binary patterns, (4) algorithms based
on image transformations, and (5) other feature extraction methods. For each category,
a cumulative and comparative table is presented for the methodologies belonging to
the specific category. It should be noted that, in most cases, the feature extraction method’s
performance is evaluated according to the Recognition Rate (RR), Accuracy, and Equal
Error Rate (EER) metrics. In our case, we regarded the performance of a methodology
as having a high RR or accuracy when its performance was equal to or higher than 99%,
and its performance in terms of the EER was regarded as low when it was lower than 1%.
The selection of these thresholds was based on the high demands imposed by the critical
application of the biometric systems.

A finger vein image is acquired by placing a finger on a camera, with a near-infrared
(NIR) light pointed towards it from the opposite side of the camera. With the NIR light
pointing towards the finger, the veins become visible and thus a feature extraction process
can be applied.

4.1. Feature Extraction Based on Vein Patterns

A typical process followed for the extraction of vein patterns is shown in Figure 4.
In most cases, the resulting image, after the preprocessing step and just before the feature
extraction step, is shown in the figure. Then, the features that are extracted from these kinds
of images, in most cases, focus on the topological or curvature information of the veins.
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Starting in 2004, Miura et al. [10] used the repeated line tracking algorithm to extract
features from finger vein images. Miura et al. [11], three years later, proposed another
method that utilized the fact that a vein appears like a dent in the cross-sectional profile;
thus, it is checked and the centerlines of veins are emphasized.

In 2009, Choi et al. [12] used a principal curvature, which is obtained from the eigen-
values at each pixel of the Hessian matrix for the finger vein feature extraction. Later,
Yu et al. [13], in their method, used normalization of the finger vein image, orientation
estimation, and Gabor filtering, then image segmentation and image thinning, and, finally,
minutiae point extraction of the image. From this combination, bifurcation points and
ending points are extracted from vein patterns and used as geometric representations of
the shape of the vein patterns. Finally, the Hausdorff distance algorithm is used to identify
possible positions of the vein pattern shape. Because the original Hausdorff distance (HD)
algorithm is sensitive to small perturbations, the modified Hausdorff distance (MHD)
algorithm is deployed. In the same year, Yang proposed two different feature extraction
methods. Starting with [14], Yang et al. proposed a method that used the circular Gabor
filter as well as multi-channel Gabor filters to produce vein vessel information. They
extracted and combined the local moment, topological structure, and vein-shape features
from the finger vein images. In [15], Yang et al. used a bank of seven symmetric Gabor
filters to exploit vein information. Qian et al. [16] used the maximum curvature to extract
the finger veins from the images. The extracted finger veins are then skeletonized and
a deblurring process is performed on the skeletonized image, which is used as the feature
vector of the finger vein. A year later, Kejun et al. [17] also used 2-D Gabor filters to extract
phase and direction features.

In 2011, Song et al. [18] proposed the mean curvature method, which finds valley-like
structures with negative mean curvatures. In the same year, Yang et al. [19] proposed
another method that used Gabor filters because they are tunable in scale and orientation.
Considering the variety of vessels in orientation and diameter, Gabor filters are suitable for
region texture analysis. For local finger vein codes (L-FVCodes) with the scale being equal
to 2 (s = 2), the FRR for the forefinger was 1.6%, while for a scale equal to 3 (s = 3) the FRR
for the forefinger was 2. A year later, following the same approach of using Gabor filters,
a number of methods were proposed. Xie et al. [20] described a guided Gabor filter, which
is an appropriate method for poor-quality images.

In 2013, Venckauskas and Nanevicius [21] used the pattern of the finger veins to
generate a cryptographic key that corresponds to the specific finger vein. Firstly, the starting,
ending, and vein crossing points are determined. After determining these points, a contour
tracing algorithm is applied, with the starting point for contour tracing being selected by
the user. Using the contour tracing algorithm, the traced contours are used to generate
a partial cryptographic key and all of the partial keys generated are combined into one key.
Prabhakar and Thomas [22] applied the maximum curvature feature extraction method
to provide robustness on the vein width and brightness variations and a postprocessing
method to eliminate false minutiae points.

Nivas et al. [23] used the repeated line tracking algorithm. In the same year, Mo-
hammed et al. [24] also used the repeated line tracking algorithm for their multi-model
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identification, which combined iris and finger vein recognition. On the other hand,
Liu et al. [25] proposed a minutiae matching method based on singular value decom-
position (SVD), which consists of three distinct processing steps: minutia pairing, false pair
removal, and score calculating. For minutiae extraction, they used the bifurcation point
(BP) and the ending point (EP) from skeletonized finger vein images. They extracted four
different minutia features, including the coordinate value and three local descriptors, for
minutiae matching. The local descriptors consist of the local average intensity (LAI), local
intensity deviation (LID), and local extensive binary pattern (LEBP).

In 2015, Mantrao et al. [26] proposed a method that uses minutiae matching. In this
method, after preprocessing the finger vein image, a skeletonized image of it is created
and minutiae points are then extracted using morphological operations. Prasath et al. [27]
proposed a method that combines the features extracted from sclera images and vein
images from the fingers. The features extracted from the sclera images are extracted using
the Y-shape feature extraction method and the features extracted from the vein images are
extracted using the repeated line tracking method. Gupta et al. [28], in their method, use
multi-scale match filtering to enhance the veins in the images obtained and line tracking
to extract the veins. What this system does is iteratively determine the threshold surface
and does not require any parameters, such as neighborhood size; thus, it can extract
variable-width veins.

Bansal et al. [29] used minutiae extraction and curve analysis. For the minutiae points,
they applied a thinning technique to extract the finger vein skeleton. Then, the minutiae points
were computed and, in the last step, the minutiae coordinates were produced. For the curve
analysis, they applied calculus methods to obtain the curves. Then, they found and counted
the lines or the curves that connected two points and, in the last step, found the amplitude,
phase, and actual curve length. Liu et al. [30] proposed a modified repeated line tracking
algorithm, which figures out the locus space of a finger vein based on revised parameters.

In 2016, Kalaimathi et al. [31] proposed a feature extraction method in which a gradient-
boosted feature algorithm is applied. Image gradients extract information from input
datasets and then a gradient image is calculated from the default image with the use of
the Sobel filter. Three parameters are taken into account in order for the algorithm to make
a decision: scalability, integrity, and flexibility. After that, classification is performed with
the use of a Support Vector Machine (SVM) model. Matsuda et al. [32] solved the problem
of irregular shading and vein deformation in the captured finger vein image by using
the curvature of image-intensity profiles for feature point extraction. Then, a vein-pattern
map was calculated from the descriptor points using eigenvalues. Zou et al. [33] proposed
a method that uses multiple samples of the same finger vein to create features. Each sample
is segmented and all of them are overlaid. By removing the dots that appear only in one of
the samples, a feature template is created. The number of samples that are taken affects
the quality of the feature template.

In 2017, Brindha [34] also used minutiae extraction; however, in addition, a method for
feature reduction by neighborhood elimination using the Euclidean distance was applied.

Babu et al. [35], in their work, used a Gabor filter to extract the texture of the finger
vein since Gabor filters can be tuned to capture a finger vein image’s local orientation
and frequency information. They applied Gabor filters with specified orientations and
convolved them with the enhanced image to filter the unwanted regions. Next, a post-
processing task involving a morphological top-hat operation was applied to the extracted
veins to further improve the quality of the vein patterns.

In 2018, Prommegger et al. [36] established a new finger vein dataset that includes
videos of vein structures all around the finger. Additionally, they compared the perfor-
mance of different feature extraction algorithms, namely maximum curvature, principal
curvature, and Gabor filters. On the other hand, Yang et al. [37] proposed a feature extrac-
tion methodology that extracts the anatomical structure (directionality, continuity, width
variability, smoothness, and solidness) of finger veins.
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In 2019, Yang [38] proposed a finger vein code indexing and matching method. The in-
dexing process includes the extraction of the vein patterns, the detection of the direction of
each vein segment, and the construction of an elliptical direction map. Applying finger
vein recognition in smart home security, Sarala et al. [39], after preprocessing the image,
generated a binary image of the veins and created a feature vector that included the vein
width, length, position, and intersection points. Ali et al. [40] developed the Straight Line
Approximator (SLA) for feature space extension. After detecting the region of interest
(ROI) and the finger vein with the maximum curvature method, they used the proposed
SLA to extract features. For each sub-block of the image, the SLA method fits a line for
the points inside the block, combines its slop and offset components, and eventually ag-
gregates the components of all those blocks to create the feature vector. For a different
application, Ilankumaran and Deisy [41] proposed a C2 code, which was formulated by
using the orientation and magnitude information extracted from finger vein and iris images.
For the feature extraction, after extracting the ROI, enhancing the image, and applying
two Gabor filters, the C2 code scheme is applied for feature extraction. Yang et al. [42]
proposed a new feature extraction method called Polarized depth-Weighted Binary Direc-
tion Coding (PWBDC) for feature extraction from dorsal finger vein and texture images.
This method includes polarized direction extraction, extended normalized angular binary
coding, and self-adaptive depth-dependent weighting.

In 2020, Yong [43] applied a curvature algorithm for feature extraction in their FPGA
system by calculating the eigenvalues of the image’s Hessian matrix. Villar et al. [44]
proposed the usage of Spectral Clustering (SC), in combination with a normalized Laplacian
matrix and eigenvalues, to extract the vein patterns. The SC is applied on all the ROIs that
are detected in the image through a mask application and the features are then used on
a Logistic Regressor for classification.

In general, the methodologies that extract features regarding the patterns of the finger
veins depend on the preprocessing steps to a high degree, as the more visible the veins
are in the binary image, the better the performance of each methodology. The algorithms,
in general, are efficient enough to be ported into an ARM or low-power device and have
low EER values (lower than 1% in most cases). On the other hand, these algorithms require
calibration by setting parameters that can influence their performance, and the classification
is done via a matching score or distance/similarity calculation, which can be efficient for
small databases, but time consuming in large ones. Moreover, Gabor filters seem to be
a useful feature extractor of vein patterns due to their ability to describe the frequency and
orientation of texture patterns. Table 1 sums up the studies mentioned in this category,
showing the key features, advantages, and disadvantages of each method.

Table 1. Characteristics of the vein-pattern-based feature extraction methodologies.

Ref. Key Features Advantages Disadvantages

[10] Application of line tracking Robust against dark images,
fast with a low EER (0.14%)

Mismatch increases when veins
become unclear

[11] Application of local
maximum curvatures

Not affected by fluctuations in width
and brightness, low EER (0.0009%)

Evaluated only with one dataset
of 638 images

[12] Combination of gradient normalization,
principal curvature, and binarization

Not affected by vein thickness or
brightness, EER of 0.36% High EER

[13] Extraction of minutiae with bifurcation
and ending points

Used as a geometric representation of
a vein, low EER (0.76%) Tested on a small dataset

[14] Extraction of local moments,
topological structure, and statistics

A Dempster–Shafer fusion scheme
is applied Low accuracy (98.50%)

[15] Application of Gabor filter banks
Takes into account local and global
features, performs well in person

identification
Low accuracy (98.86%)
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Table 1. Cont.

Ref. Key Features Advantages Disadvantages

[16] Application of maximum
curvature

Overcomes low contrast and intensity
inhomogeneity High EER (8.93%)

[17] Extraction of phase and direction
texture features

Does not require preprocessing,
has a low storage requirement

Robustness in the presence of
noise is not studied

[18] Application of the mean curvature
method

Extracts patterns from images with
unclear veins, fast with a low EER

(0.25%)
Small dataset

[19] Application of multi-scale oriented
Gabor filters

Takes into account local and global
features Low RR (97.60%)

[20] Application of guided Gabor filters
Does not require segmentation, good

against low contrast, illumination,
and noise

High EER (2.24%)

[21] Cryptographic key generation from
a contour-tracing algorithm

Small probability of error when
the image is altered and robust

against minor changes in direction or
position

No recognition results
presented

[22] Maximum curvature method, Gabor
filter, minutiae extraction Elimination of false minutiae points Performance analysis is not

reported

[23] Combination of SURF with
Lacunarity Shows real-time performance Experimental information is

missing

[25] Application of SVDMM Performs better than similar works High EER (2.45%)

[26] Combination of minutiae extraction
and false pair removal Eliminates false minutiae matching Low accuracy (91.67%)

[27] Application of repeated line
tracking Simplicity Part of a multi-modal system,

no results presented

[28] Combination of multi-scale matched
filtering and line tracking Extracts local and global features High EER (4.47%)

[29] Combination of minutiae
extraction and curve analysis Low EER (0.50%) Low accuracy (92.00%)

[30] Application of modified repeated line
tracking

More robust and efficient than
the original line tracking method, fast

Depends heavily
on the segmentation result

[31] Application of gradient boost Fast, is not affected by roughness or
dryness of skin No results presented

[32] Curvature through image intensity
Robust against irregular shading and

deformation of vein patterns, fast
with a low EER

Requires capturing of finger
outlines

[33] Overlaying of segmented vein images
for feature generation

Generation of optimal quality
templates

Low accuracy (97.14%), small
dataset

[34]
Application of neighborhood
elimination to minutiae point

extraction

Takes into account intersection points,
reduced feature vector size No RR or EER results provided

[35] Application of Gabor filters Captures both local orientation and
frequency information No results presented

[36]

Application of different feature
extraction methods (maximum and
principal curvature, Gabor filters,

and SIFT)

Low EER (0.08%) Fusion of different perspectives
needs improvement

[37]
Application of orientation map-guided

curvature and anatomy
structure analysis

Easy vein pattern extraction, fast,
overcomes noise and breakpoints,

Low EER (0.78%) and high RR
(99.00%)

The width of the vein pattern is
not used
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Table 1. Cont.

Ref. Key Features Advantages Disadvantages

[38] Application of an elliptical direction
map for vein code generation High accuracy (99.04%) Results depend on

parameters

[39] Combination of KMeans Segmentation
with canny edge detection Low EER (0.015%) Small dataset

[40] Application of SLA Ensemble learning is applied Low accuracy (87.00%)

[41] Application of C2 code
Takes into account orientation and
magnitude information, low EER

(0.40%)

Dataset information is
missing

[42] Application of PWBDC Low storage requirement and
effective with a low EER

Low accuracy (98.9%), High
EER (2.20%)

[43] Application of principal curvature
using a Hessian matrix Suitable for FPGA No results presented

[44] Application of Spectral Clustering Takes into account useful vein
patterns, a low EER (0.037%)

Selection of an appropriate seed
parameter value

4.2. Feature Extraction Based on Dimensionality Reduction

In 2004, Beng and Rosdi [45] used a pattern map template to extract the features
from finger vein images. The pattern map is generated by first choosing a random finger
vein class and generating a mean image. Then, the mean image is sliced onto M blocks
with the same width and height and then PCA is performed over all M blocks, resulting
in eigenveins. The eigenvein with the maximum eigenvalue is chosen as a Gaussian low-pass
filter and all the others as derivative filters.

In 2010, Liu et al. [46] used Orthogonal Neighborhood Preserving Projections for
feature extraction and dimensionality reduction. It is a linear dimensionality technique
that preserves both the local and global geometry of high-dimensional data samples.
Guan et al. [47] proposed a different weighted bi-directional B2DPCA (WB2DPCA), called
Bi-directional Weighted Modular B2DPCA (BWMB2DPCA), to overcome the problems of
the finger position, uneven lighting from the infrared light, etc. According to the proposed
method, the image is divided into sub-blocks and each sub-block is dealt with as a group
of sub-image blocks. The rest of the steps are the same as in WB2DPCA.

The next year, Ushapriya [48] proposed a combination of PCA and a Radon transform
for feature extraction. In that case, the features are derived by using the Radon projections
of a finger vein image in different orientations and PCA is applied to each projection matrix.
Wu et al. [49] used Principal Component Analysis (PCA) and Linear Discriminant Analysis
(LDA). Firstly, PCA is applied for dimension reduction and then LDA is applied for feature
extraction. The combination of these two methods gives better classification performance
by reducing the amount of irrelevant and redundant information in the data.

In 2012, Yang et al. [50] used 2DPCA for extracting the features of an image. Dama-
vandinejadmonfared et al. [51] used PCA, KPCA, and KECA to test the performance of
a neural network with various numbers of training and testing images for each subject us-
ing each method. Two years later, Hajian et al. [52] used three different KPCAs (Polynomial,
Gaussian, and Laplacian) to extract the features of the data.

In 2015, You et al. [53] proposed a combination of the 2DPCA and KMMC methods.
In this work, 2DPCA was applied to the image in the horizontal direction, which was
used as a training set. Van et al. [54] proposed a method in which Modified Finite Radon
Transform (MFRAT) is applied to each pixel in the region of interest. Then, a grid sampling
strategy is performed, which results in m sets of n pixels. Finally, GridPCA is performed
on these sets to calculate the features of the finger vein.

The next year, Qiu et al. [55] used a dual sliding window to first find the phalangeal
joint of the finger. Then, after enhancing the finger vein image, it is transformed using
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the proposed pseudo-elliptical sampling model. Lastly, a 2DPCA single direction algorithm
is used on the transformed image to obtain the feature matrix.

In 2017, Xi et al. [56], after preprocessing the finger vein images, obtained class centers
using the (2D)2PCA dimensionality reduction. Using the class centers, a relation matrix
was calculated and transformed into binary code templates that were used as the features
of the finger vein. In 2018, in their multi-biometric system, Yang et al. [57] applied 40 Gabor
filters to an image, generating a real-valued vector that was then passed through to a Linear
Discriminant Analysis dimensionality reduction technique.

In 2020, Hu et al. [58] applied a Multi-scale Uniform Local Binary Pattern block to
extract local texture features, followed by the application of a (2D)2PCA method based on
a block to preserve the local information of the finger vein images.

Dimensionality reduction methodologies, in most cases, use a variation of the PCA
algorithm, which can reduce the feature vector to any desired length. As a result, this
type of feature extraction can yield good results, and most studies had high accuracy
rates. In general, these methodologies are combined with a type of matching function for
the classification, yielding satisfactory results, or the authors trained a type of Machine
Learning (ML) model to obtain higher accuracy rates. Moreover, dimensionality reduc-
tion algorithms have been applied in combination with other types of feature extraction
methods and, as a result, depend heavily on them. Table 2 sums up the methodologies
mentioned in this category, showing the key features of each one and their advantages and
disadvantages.

Table 2. Characteristics of the dimensionality-reduction-based feature extraction methodologies.

Ref. Key Features Advantages Disadvantages

[45] Application of pattern map images
with PCA

Fast and a high identification rate
(100%)

High number of feature vectors
(40 features), results depend on

parameters

[46] Application of manifold learning Robust against pose variation, a low
EER (0.80%) Low RR (97.80%)

[47] Combination of B2DPCA with
eigenvalue normalization

Improves upon the original 2DPCA
method and other methods Low RR (97.73%)

[48] Combination of Radon transformation
and PCA Low FAR (0.008) and FRR (0) An in-house dataset is used

instead of a benchmark one

[49] Application of linear discriminant
analysis with PCA

Very fast and retains the main feature
vector Low Accuracy (98.00%)

[50] Application of (2D)2PCA High RR (99.17%) Sample increment with SMOTE

[51] Comparison of multiple PCA
algorithms Can reach an accuracy of up to 100% Requires a large training set

[52] Application of KPCA High accuracy (up to 100%) Accuracy depends on the kernel,
feature output, and training size

[53] Combination of KMMC and 2DPCA Improves upon the recognition time
of just KMMC Very slow recognition time

[54] Combination of MFRAT and GridPCA
Fast and robust against vein

structures, variations in illumination
and rotation

Low RR (95.67%)

[55] Application of pseudo-elliptical
sampling model with PCA

Retains the spatial distribution of
vein patterns, reduces redundant

information and differences

High EER (1.59%) and low RR
(97.61%)

[56] Application of Discriminative Binary
Codes

Fast extraction and matching with
a low EER (0.0144%)

Requires the construction of
a relation graph

[57] Combination of Gabor filters and LDA Low EER (0.12%) Part of a multi-modal system

[58]
Application of multi-scale uniform

LMP with block (2D)2PCA
Preserves local features with a high

RR (99.32%)

Does not retain global features
and the EER varies per dataset

(high to low)
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4.3. Feature Extraction Based on Local Binary Patterns

In Figure 5, the extraction process of Local Binary Pattern (LBP)-based features is
depicted. These methodologies, after extracting the ROI of the finger vein, apply a type of
LBP-based algorithm and extract the LBP images as shown in the figure. In some cases,
the histogram of the image is used for the matching process instead.
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In 2006, Zhang et al. [59] proposed a multi-scale method based on curvelet and local
interconnection structure neural networks. The former is used for enhancement while
the latter is used to extract the features. It is stated that the proposed method solves
the problem of how to extract features from obscure images.

Three years later, Lee et al. [60], after preprocessing the finger vein image, aligned
the finger vein using an affine transformation and then extracted the LBP code.

In 2010, Lee et al. [61] proposed a method using a weighted LBP. Firstly, the LBP
method was applied to extract the holistic codes without detecting the vein patterns
by reducing the processing time caused by the vein detection. Secondly, the extracted
LBP codes were used in combination with a SVM classifier to classify the local areas of
vein patterns into three categories: (1) Large Amount (LA), (2) Medium Amount (MA),
and (3) Small Amount (SA). Finally, based on the determined local area types (LA, MA,
and SA), different weights were assigned to the extracted LBP codes of each local area type.

In 2011, Park [62] combined the LBP with the Gabor wavelet to extract local and global
features from a finger vein image. Lee et al. [63] compared the LBP with the Local Deriva-
tive Pattern (LDP) in an attempt to overcome a problem that is related to local shadows
appearing on the finger area when binarization is used. In 2012, Yang et al. [64] extracted
the LBP code of finger vein images from two or more fingers of each user. Yang et al. [65]
used the Personalized Best Bit Map (PBBM) for feature extraction. In 2014, Lu et al. [66]
proposed a new local binary pattern (LBP) extraction method called Generalized Local
Line Binary Pattern (GLLBP) to extract the features from finger veins.

In 2015, Dong et al. [67] transformed the weighted SLGS (W-SLGS) to MOW-SLGS.
This algorithm makes clockwise and counterclockwise comparisons between the pixel
values for a number of angles as the SLGS does. From the feature vectors that result,
the maximum value is chosen as the feature of the target pixel and the weight of the pixel
is set according to the distance between the pixels. The same year, William et al. [68]
adopted LHBGC as a finger vein feature extractor. LHBGC differs from the BGC in en-
closing not only texture but also magnitude information. The texture information encodes
the local differences, while additional discriminant information is encoded by the mag-
nitude components. The extracted information is divided equally into a set of cells. For
each cell, the histogram is computed, with the magnitude components being the weight
representation of the distribution of the texture values. Next, the histogram of each cell
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is vectorized and all the cells’ histogram vectors are concatenated. The extracted feature
sets from each finger image are fused together into a super-vector based on a serial feature
fusion technique. Khusnuliawati et al. [69] compared Scale-Invariant Feature Transform
(SIFT) with the LEBP (along with LmBP and LdBP) for feature extraction using the LVQ
classifier for the matching process. Dong et al. [70] extracted features using the Difference
Symmetric Local Graph Structure (DSLGS) algorithm. This method considers a center
pixel, which is the target pixel and 14 more pixels that surround the target one. Then,
the difference value between the pixels is calculated to give the difference coefficient, which
leads to stable feature extraction. To calculate the DSLGS, there are three steps.

In 2016, Yang et al. [71] used the Cross-Sectional Binary Code (CSBC) to extract
the features from the finger vein and the finger dorsal texture and fuse them as one feature.
In 2019, Liu et al. [72] utilized Pixel Difference Vectors (PDVs) for feature extraction and
then used the Anchor-based Manifold Binary Pattern (AMBP) for the feature learning
process. Extending their previous work, Liu et al. [73] developed a new local binary
learning feature, called Personalized Binary Code (PBC), for which multiple directional
PDVs are calculated for all the images of the training set of a class. Then, all the vectors
are combined into one and the binary code is calculated. Then, a function is applied to
the binary vector calculated to make it more compact, discriminative, and personalized.
Lastly, Su et al. [74] used both finger vein and electrocardiogram (ECG) signals in their
identification system, extracting LBP features from the former and combining them with
other features extracted from the latter. Lastly, they projected the matrix with the improved
binary vector into the low-dimension binary features, applied clustering of those features
in a codebook using k-means, and, finally, created a histogram as the image representation.
On the other hand, Lv et al. [75] combined the features extracted from their proposed
Adaptive Radius LBP from images of both a fingerprint and a finger vein.

Local binary pattern-based methodologies have been proven to perform very well
in finger vein authentication in general, with EERs lower than 0.1% in most studies. Their
main advantage is that they are resistant to irregular shading and saturation from the image-
capturing device. Additionally, depending on the implementation, they can be very fast
and implemented in low-power devices. Table 3 summarizes the main characteristics of
the methods in this category.

Table 3. Characteristics of the local binary pattern-based feature extraction methodologies.

Ref. Key features Advantages Disadvantages

[59] Usage of NN for local feature extraction Very fast and robust against obscure
images High EER (0.13%)

[60] Alignment using extracted
minutiae points Fast with a low EER (0.081%) An in-house dataset is used

instead of a benchmark one

[61] Extraction of holistic codes through
weighted LBP

Reduced processing time and a low
EER (0.049%) Requires setting of weights

[62] Combination of LBP and Wavelet
transformation

Low EER (0.011%), fast, and robust
against irregular shading and

saturation
Tested on a small dataset

[63] Combination of a modified Gaussian
high-pass filter with LBP and LDP

Improvement compared with using
vein pattern features, a faster

processing time,
an EER of 0.89%

Not reported

[64] LBP image fusion based on
multiple instances

Simple with low computational
complexity and improves the RR on

low-quality images
High EER (1.42%)

[65] Application of PBBM
Removes noisy bits, personalized
features, and highly robust and
reliable with a low EER (0.47%)

A small in-house dataset is used
instead of a benchmark one
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Table 3. Cont.

Ref. Key features Advantages Disadvantages

[66] Application of GLLBP

Performs better than other
conventional methods

on the collected dataset, an EER of
0.58%

Not reported

[67] Application of MOW-SLGS Takes into account location and
direction information Low RR (96.00%)

[68] Application of enhanced BGC (LHBGC)
Fast, a low EER (0.0038%) when using
multiple fingers, and robust against

noises

Low EER in cases with
multiple fingers

[69] Application of LEBP Low FPR (0.0129%) and TPR (0.90%) Low accuracy (97.45%)

[70] Application of DSLGS More stable features with better
performance than the original High EER (3.28%)

[71] Application of CSBC High accuracy (99.84%) and a low
EER (0.16%)

Multi-modal
application

[72] Application of PDVs and AMBP

Solves out-of-sample problems,
robust against local changes, and fast
with a low EER (0.29%) and a high RR

(100%)

Accuracy depends on
parameters

[73] Application of multi-directional PDVs Outperforms state-of-the-art
algorithms with a low EER (0.30%)

Complexity analysis is not
reported

[74] Fusion of vein images with an ECG
signal through DCA

Better than two individual unimodal
systems, a low EER (0.1443%)

Multi-modal
application

[75] Application of ADLBP Better describes texture than LBP Low RR (96.93%), multi-modal
application

4.4. Feature Extraction Based on Image Transformations

In Figure 6, the extraction process of image-transformation-based features is depicted.
These methodologies, after extracting the ROI of the finger vein, apply image transfor-
mation filters and for the prediction use a classifier-based prediction method, e.g., an ML
model, or a matching rule.
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In 2005, Zhang et al. [76] applied a multi-scale self-adaptive enhancement transforma-
tion to a finger vein image. Based on this method, the image is emphasized and noises are
reduced. Consequently, different receptive fields are used to deal with different sizes of
finger vein patterns. Moreover, the use of the integral image method makes this method
very fast.

Four years later, Wu et al. [77] used the continuous Radon transform [78], leveraging
its properties [79], for geometry transformation to extract finger vein features for the needs
of a driver identification system, using a neural network for decision-making.

In 2014, Ramya et al. [80] used the Haar classifier and line detection to extract the fea-
tures from a finger vein image. Sreekala et al. [81] used a second-generation wavelet
transformation, after preprocessing the finger vein image, for feature extraction in their
simulation of a security system. Gholami et al. [82] proposed a method that extracts veins
with the use of entropy thresholding, applying the Radon transformation to images and
resizing and partitioning them.

A year later, Santosh et al. [83] used the Discrete Wavelet Packet Transform (DWPT)
to decompose finger vein images without computing the High-High (HH) sub-band as
it contains the majority of the noise. The feature vector consisted of the averages and stan-
dard deviation of the energy of the image for each level of decomposition. Kejun et al. [84]
introduced two discrete algorithms based on the Unequally Spaced Fast Fourier Trans-
form (USFFT) and wrapping for the finger vein feature extraction. On the other hand,
Shareef et al. [85] used the Haar wavelet moments as the features of the finger vein. In the
first step, the image is divided into overlapping blocks and then a 2D wavelet transform is
applied to the blocks three times. Then, the energy is computed for each wavelet sub-band
of a block, which is used as a feature of a finger vein.

In 2016, Qin et al. [86] proposed a new approach to extract finger veins by detecting
the valley-like structures based on the curvatures in Radon space. For each of the image’s
pixels, eight patches centered on it were obtained after the rotation of a window by eight
different orientations. Next, the resulting patches are projected onto the Radon space.
It is worth noting that prominent valleys in Radon space are created by the vein patches.
The curvature values of the veins are used to enhance the vein patterns, which after
binarization are extracted in good quality.

Yang et al. [87] proposed an adaptive vector field estimation algorithm for feature
extraction from finger vein images. Using Gaussian Weighted Spatial Curve Filtering
(GWSCF), they extracted the features from the finger vein images. The same year, Jan-
ney et al. [88] in their method used Discrete Wavelet Transform (DWT). Discrete Wavelet
Transform decomposes the image into two bands: low-pass components and high-pass
components. They state that it is a lossless compression method and does not degrade
the quality of an image.

In 2018, Subramaniam and Radhakrishnan [89] developed a biometric authentication
system that uses finger, palm, and dorsal vein images. After preprocessing the image,
the feature extraction was performed by applying three different transformations: Hilbert–
Hung, Radon, and Dual-Tree Wavelet Transform. The three transformations were applied
to the images and fused to form a single feature vector.

Depending on the chosen transformation function, the feature extraction can be
sensitive to rotation or scaling factors (such as the Radon transformation) or not (the Haar
Wavelet). In most cases, though, image transformation techniques have been proven to
perform very well, with very low EERs and high accuracy rates. However, these functions
require the setting of some parameter values. Table 4 sums up the studies mentioned in this
category, showing the key features of each one and the advantages and disadvantages.
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Table 4. Characteristics of the image-transformation-based feature extraction methodologies.

Ref. Key Features Advantages Disadvantages

[76] Multi-scale self-adaptive enhancement
transformation Very fast, a low EER (0.13%) Timing performance is not

reported

[77] Usage of the Radon transformation for
driver identification

High accuracy rate (99.2%) for
personal identification Tested upon a small dataset

[80] Embedded system using the HAAR
classifier

Fast recognition time and low
computational complexity

Accuracy analysis is not
reported

[81] Second generation of wavelet
transformation Fast, a low EER (0.07%) Dataset and experimental

information are missing

[82]
Combination of the Radon

transformation and common spatial
patterns

Fast, a high RR (100%) Small dataset

[83]
Usage of Discrete Wavelet Packet

Transform decomposition at every
sub-band

Improves upon Discrete Wavelet
Transform and the original DWPT Low RR (92.33%)

[84] Variable-scale USSFT coefficients High reliability against blurred
images Low RR (91.89%)

[85] Usage of the Haar Wavelet
Transformation High accuracy (99.80%) Accuracy highly depends on

parameters

[86] Feature enhancement and extraction
using the Radon transformation

Improvement in accuracy
in contacted and contactless

databases
High EER (1.03%)

[87]

Usage of adaptive vector field
estimation using spatial curve filters
through effective curve length field

estimation

Low EER (0.20%), improves
recognition performance compared

with other methods
Performance analysis is missing

[88] Usage of Discrete Wavelet Transform A hardware device is proposed Small dataset

[89] Fusion of the Hilbert–Hung, Radon,
and Dual-Tree wavelet transformations

Low EER (0.014%) and improves
upon other methods

Three vein images from
different parts

4.5. Other Feature Extraction Methods

In 2009, Cong-Li et al. [90] used morphological operations to extract the features from
a finger vein image. First, a set of boundary points of the image is created. Then, for each
boundary point, the image is scanned in various directions by applying the multi-scale top
hat transformation to extract the valleys from the image. Eight connected objects are found
and labeled on the resulting image. A second segmentation is performed for a specific
threshold and the result is optimized by thinning and deburring.

In 2010, Liukui and Zheng [91] extracted the features from a finger vein image by
using a tri-value template. Using predefined threshold values, the finger vein image is
segmented into three areas: the subject area, the background area, and the fuzzy area.
The object area and fuzzy area are then used for matching.

The same year, Mahri et al. [92] used the properties of the Band-Limited Phase Only
Correlation (BLPOC) function for finger vein image matching. After preprocessing the im-
age, four sets of horizontally displaced images are created to overcome the finger vein
displacement errors. Lastly, the BLPOC function is calculated between the input (displaced
and non-displaced) images and the registered images. Xianming et al. [93] proposed
a method based on gray valley-shaped region searching, using profile curve valley-shaped
characteristics of images to achieve vein feature extraction. By analyzing the characteristics
of all the directions of the gray curve, the gray pixels belonging to the valley-shaped region
are determined and then all the results for the different directions are overlaid.
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Tang et al. [94] introduced an Occurrence Probability Matrix (OPM), which consists of
probability values that describe the reliability of each unit in a template. A training set was used
to calculate the OPM, which was also used to create a fused template that represents the finger.

Xi et al. [95] applied a combination of Pyramid Histogram of Texture (PHT), Pyramid
Histogram of Gray (PHG), and Pyramid Histogram of Oriented Gradients (PHOG) to
extract features. The new method, called Pyramid Histograms of Gray, Texture, and Orien-
tation Gradients (PHGTOG), can represent the global spatial layout and local gray, texture,
and shape details. The Least Absolute Shrinkage and Selection Operator (LASSO) algo-
rithm is used on sparse weight vectors to train subjects; thus, the selected features are called
PFS-PHGTOG. Cao et al. [96], after preprocessing a finger vein image and skeletonizing it,
detected minutiae points in the image. A curve tracing algorithm was then deployed and
a Modified Include Angle Chain (MIAC) was applied to encode the curves. The feature
representing the finger vein junction is a vector that consists of the junction coordinates
and the MIAC codes connected with the junction. All the features of the junctions represent
a single finger vein.

In 2014, Rajan and Indu [97] used a Fast Retina Keypoint (FREAK) descriptor to ex-
tract features from finger vein images. The keypoints are found by first applying a Frangi
filter to the finger vein image, and the Features from Accelerated Segment Test (FAST) al-
gorithm is then used to find the keypoints. Liu et al. [98] used the Simple Linear Iterative
Clustering (SLIC) method to generate a superpixel and called this procedure superpixel over-
segmentation. Superpixel-based features (SPFs) extract the superpixel histogram features and
the superpixel distribution features of each finger vein image using statistical techniques.

In 2015, Soundarya et al. [99] combined the Lacunarity and Mandelbrot fractal models
to extract the features of the finger vein. The Lacunarity model is based on the Blanker
technique and helps to differentiate images that are visually different but have similar
fractal dimensions. Later the same year, Jadhav and Nerkar [100] used the Canny edge
detector to extract the edges and curves from finger vein images. You et al. [101], after
preprocessing, thresholding, and skeletonizing a finger vein image, calculated the Potential
Energy Eigenvectors (PEEs) and used features.

In 2017, Bai et al. [102] developed a feature extraction method using a SVM classifier.
After the extraction of the features, the finger vein image is classified into background
pixels and binary vein patterns. Then, the vein pattern is matched with the vein patterns
in databases such as FUSM, ORL, and VP.

In 2018, Banerjee et al. [103] presented a system called ARTeM that uses template
matching. The images are preprocessed (ROI extraction, intensity normalization, fuzzy
contrast enhancement, CLAHE histogram equalization, and directional dilation) and
transformed using an affine transformation model.

A year later, Kovač and Marák [104] proposed an automated identification system
that combines fingerprint and finger vein images in the authentication. For the finger veins,
the feature extraction is done using both the SIFT and SURF algorithms by performing
the first out of five different phases, while the second one is used to detect scale- and
rotation-invariant points. Similarly, Meng et al. [105] designed a framework for the calcula-
tion of a matching score between two finger vein images by fusing three kinds of features.
The features are calculated from pixels matched via a dense SIFT descriptor [106], where
a pixel-to-pixel score, an object value optimization function, and texture displacements
matrices were calculated. The fusion was performed by using the fusion weights that were
learned by a SVM model.

In this category, a number of different methodologies have been proposed over
the years for extracting the unique patterns of humans’ finger veins. Generally, it seems
that the usage of keypoint detection and descriptor methods have been chosen in most
cases. Studies have applied quite a few of the available detectors (SIFT, SURF, FREAK,
and FAST), with the classification using both a matching score and a ML model. In the first
case, a large dataset is not required to match any given example, but it can become harder
to identify in cases of many classes, while the latter can tackle this problem but requires
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a large dataset for the training process. Table 5 sums up the studies mentioned in this
category, showing the key features of each one and the advantages and disadvantages.

Table 5. Characteristics of the remaining feature extraction methodologies.

Ref. Key Features Advantages Disadvantages

[90] Combination of morphological peak
and valley detection

Precise details, better continuity
compared with others, fast,

and robust against noise
Low RR

[91] Application of tri-value template
fuzzy matching

Robust against fuzzy edges and tips,
does not need correspondence among

points, and has a low EER (0.54%)

A set of parameters needs
optimization

[92] Application of BLPOC Simple preprocessing, fast with a low
EER (0.98%)

A set of parameters needs
optimization

[93] Extraction of profile curve
valley-shaped features

Fast, easy to implement,
and satisfactory results

No classification results
provided

[94] Application of OPM Enhances the similarity between
samples in the same class High EER (3.10%)

[95] Application of PHGTOG
Reflects the global spatial layout and
local gray, texture, and shape details

and fast with a low EER (0.22%)

Personalized weights for each
subject, a low RR (98.90%)

[96] Feature code generation from
a modified angle chain Fast with a low EER (0.0582%) Small dataset

[97] Combination of a Frangi filter with
the FAST and FREAK descriptors

Reliable structure and
point-of-interest extraction

No classification results
provided

[98] Utilization of superpixel features Extraction of high-level features
Requires setting of weights for
the matching process, a high

EER (1.47%)

[99] Application of the Mandelbrot
fractal model Fast, a low EER (0.07%) Dataset information is missing

[100] Application of canny edge detection Fast Slow recognition time and a low
RR

[101] Application of Potential Energy
Eigenvectors for recognition

Fast and higher accuracy compared
with minutiae matching, a low EER

(0.97%)
Not reported

[102] Feature extraction using
a SVM classifier Consistent Low accuracy rate (98.59%)

[103] Feature contrast enhancement and
affine transformation registration

Improved preprocessing, can reach
a RR of 100% and an EER of 0% Results vary highly

[104] Combination of the SIFT and SURF
keypoint descriptors

Robust to finger displacement and
rotation

High EER (6.10%) and a low RR
(93.9%)

[105] Takes into account deformation via
pixel-based 2D displacements Low EER (0.40%) Low timing performance

5. Feature Extraction vs Feature Learning

The feature extraction methods presented in the previous section share the same prop-
erty of being inspired by the prior knowledge of some application experts. The designers
of such feature extraction algorithms need to have knowledge of finger vein anatomy as
well as information coding/representation and computer vision skills. This requirement of
prior knowledge makes the design of these methods a difficult and demanding task.

One of the reasons for the rise of deep learning is the automation and optimization of
the feature extraction procedure. For example, Convolutional Neural Networks (CNNs),
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which are the most popular deep learning models for computer vision applications, consist
of several feature extraction layers before the final decision layers. The feature extraction
layers learn to extract optimized feature representations (convolutional kernels) from
the training images. In this context, the process of using prior knowledge to extract
the useful features from an image has been transformed into a feature learning task based
on a massive number of training images.

The first attempt to deploy deep learning models in finger vein biometrics was by
Radzi et al. [107] in 2016. In this work, a preprocessing procedure was first applied to
the finger vein image in order to extract a ROI of 55 × 67 pixels in size. Then, the image was
fed to a customized four-layer CNN with a 5–13–50–50 architecture. The performance of this
method for an in-house finger vein dataset was very promising. The same methodology was
also adopted by Itqan et al. [108] to develop a user authentication application in MATLAB IDE.

In 2017, Hong et al. [109] proposed the application of the pre-trained VGGNet-16 [110]
CNN model, which consists of 13 convolutional layers, 5 pooling layers, and 3 fully
connected layers (FCLs). Initially, an ROI of 224 × 224 pixels in size that includes the finger
vein is detected using the method described in [111] and the difference between the input
image and the enrolled image is fed to the CNN for recognition.

The following year, the number of attempts to apply deep learning models increased
significantly. More precisely, Yang et al. [112] used stacked the Extreme Learning Machine
(ELM) deep learning model and Canonical Correlation Analysis (CCA) [113] to build
a multi-modal biometric system, called the S-E-C model, based on face and finger vein
biometrics. Firstly, a stacked ELM is used to produce a hidden-layer representation of
the finger vein images (along with the face images). Then, the CCA method is used to
convert the representation produced by the stacked ELM to a feature vector, which is finally
passed through to an ELM classifier.

Kim et al. [114] proposed a multi-modal biometric methodology utilizing the finger
shape and finger vein patterns for authentication purposes. The introduced method
includes a preprocessing stage for compensating for the in-plane rotation and extracting
the ROI of the finger vein. Moreover, this method makes use of an ensemble model
consisting of two CNNs, based on the ResNet-50 and ResNet-101 architectures, without
the output layer. Hu et al. [115] proposed a customized CNN architecture, called FV-Net,
that uses the first seven layers of the pre-trained VGGFace-Net [116] model and the addition
of three more convolutional layers that learn the specific vein-like features.

Fairuz et al. [117] proposed a CNN architecture of five convolutional and four fully
connected layers, while the input images should be 227 × 227 × 3 pixels in size. They
evaluated their model using an in-house dataset of 1560 images. In the same year,
Das et al. [118] also used a customized CNN consisting of five convolutional layers, three
max-pooling layers, one ReLU, and a Softmax layer. The reported advantage of this model
is the ability of the CNN to handle non-square images since the input image has a size of
65 × 153 × 1 pixels and the used kernels are of an optimized size.

In 2019, Xie and Kumar [119] used a Siamese CNN model after image preprocessing,
enhancement, and supervised discrete hashing [120] for finger vein identification. They
compared the results of different configurations of the Light CNN (LCNN) and the VGG-
16 models. On the other hand, Lu et al. [121] presented the CNN competitive order
(CNN-CO) local descriptor, which is generated by using a CNN that is pre-trained on
ImageNet. After selecting the effective CNN filters from the first layer of the network,
the CNN-CO computes the CNN-filtered images, builds the competitive order image, and,
lastly, generates the CNN-CO pyramid histogram. Song et al. [122] proposed a modified
version of the DenseNet-161 [123] model, which is applied after image preprocessing,
restoring of the empty regions, and constructing composite and difference images using
the enrolled and input images. Finally, Li and Fang [124] proposed an end-to-end Graph
Neural Network (GNN), called FVGNN, consisting of the EmbedNet CNN for feature
extraction and the EdgeNet. The authors examined three different types of CNNs for
the case of the EmbedNet: VGG-based, ResNet-based, and Inception-based networks.
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The next year, Kuzu and Maiorana [125] introduced an ad hoc acquisition architecture
comprised of CNNs and RNNs. A CNN was used to extract features from images of
four finger veins, which were then fed to a Long-Short Term Memory (LSTM) model,
as a sequence, for classification. Noh et al. [126] used both texture images and finger
vein shape images to train two CNN models. After stacking the enrolled and input
images onto a three-channel image, they fed them into the corresponding CNNs. Each
CNN outputs a matching score between the images, which is then corrected with a shift
matching algorithm. Lastly, the two scores are fused together to provide the final decision.
Cherrat et al. [127], in their finger vein system, used a CNN as a feature extractor combined
with a Random Forest model for the classification, while Zhao et al. [128] used a lightweight
CNN for the classification and focused on the loss function by using the center loss function
and dynamic regularization. Hao et al. [129] proposed a multi-tasking neural network that
performs both ROI and feature extraction sequentially, through two branches. The model
is similar to the Faster RCNN and makes use of the SmoothL1 loss function for the ROI
detection branch and the ArcFace loss functions for the feature extraction branch. Lastly,
Kuzu et al. [130] investigated the application of transfer learning by using pre-trained CNN
models trained on the ImageNet dataset, with satisfactory results.

It is worth mentioning that the incorporation of deep learning models into finger
vein recognition systems is mainly focused on the substitution of the manual feature
extraction with an automatic feature learning approach. However, the main disadvantage
of these approaches is the need for large datasets, which at this moment are not available,
a weakness that is managed by incorporating data augmentation techniques. Studies have
made use of transfer learning methodologies without achieving results as good as those
from some of the methodologies mentioned in the previous sections. The reason for this is
the nature of the images captured from the device, as these types of images have unique
characteristics compared with the images included in the ImageNet dataset (which most
pre-trained models have been trained on). Despite that, CNNs have been shown to achieve
very good results if a large amount of data exists to train them on. Table 6 summarizes
the studies mentioned in this category.

Table 6. Characteristics of the feature-learning-based methodologies.

Ref. Key Features Advantages Disadvantages

[127] Application of a reduced complexity
CNN with convolutional subsampling

Fast with very high accuracy
(99.27%), does not require

segmentation or noise filtering
More testing is required

[108] Application of the smaller LeNet-5 Not reported Small dataset, low accuracy
(96.00%)

[109] Usage of a difference image as input
to VGG-16

Robust to environmental changes,
a low EER (0.396%)

Performance heavily depends
on image quality

[112] Application of stacked ELMs and CCA Does not require iterative fine tuning,
efficient, and flexible

Slow with low accuracy
(95.58%)

[114] Application of an ensemble model of
ResNet50 and ResNet101

Better performance than other
CNN-based models, a low EER

(0.80%)

Performance depends on correct
ROI extraction

[115] Application of FV-Net Extracts spatial information, a low
EER (0.04%) Performance varies per dataset

[117] Application of a customized CNN Very high accuracy (99.17%)
Performance depends on

training/testing set size, more
testing is required

[118] Application of a customized CNN Evaluated in four popular datasets
Low accuracy (95.00%),

illumination and lighting affect
performance
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Table 6. Cont.

Ref. Key Features Advantages Disadvantages

[119] Application of a Siamese network with
supervised discrete hashing Smaller template size A larger dataset is needed,

a high EER (8.00%)

[121] Application of CNN-CO
Exploits discriminative features, does

not require a large-scale dataset,
a low EER (0.93%)

Performance varies per dataset

[122]
Stacking of ROI images into

a three-channel image as input to
a modified DenseNet-161

Robust against noisy images, a low
EER (0.44%)

Depends heavily on correct
alignment and clear capturing

[124] Application of FVGNN
Does not require parameter tuning or

preprocessing, very high accuracy
(99.98%)

More testing is
required

[125] Combination of a V-CNN and LSTM Ad hoc image acquisition, high
accuracy (99.13%) High complexity

[126]
Stacking of both texture and vein

images, application of CNNs to extract
matching scores

Robust to noise, a low EER (0.76%) Model is heavy, long processing
time

[127] Combination of a CNN, Softmax,
and RF High accuracy (99.73%) Small dataset

[128]
Application of a lightweight CNN with

a center loss function and dynamic
regularization

Robust against a bad-quality sensor,
faster convergence, and a low EER

(0.50%)

The customized CNN needs
improvement

[129] Application of a multi-task CNCN for
ROI and feature extraction Efficient, interpretable results Performance varies per dataset

[130] Transfer learning on a modified
DenseNet161

Low EER (0.006%), does not require
building a network from scratch Performance varies per dataset

6. Implementation Aspects

The three basic building blocks for implementing and evaluating a finger-vein-based
authentication system are: (1) a set of a sufficient number of fingerprint images (benchmark
images), (2) a software framework/library in which the authentication methodology will
be developed, and (3) the hardware used by the methodology. These three implementation
aspects are considered as areas of decision for each researcher working in the field and for
this reason the possible options that exist will be discussed in this section, as they have
emerged from the previously presented literature.

6.1. Benchmark Datasets

For the development and evaluation of any method of authentication with finger
veins, but also of any computer vision application, the use of sets of images commonly
used in the literature is required. In a significant number of works discussed in previous
sections, in-house image datasets that are not available to the scientific community were
used. However, in several papers benchmark datasets were used, the characteristics of
which are shown in Table 7.

It is worth noting the software [138] proposed by The Hong Kong Polytechnic Univer-
sity for the synthetic generation of finger vein images.

From Table 7, it can be deduced that the size of the benchmark datasets is small to
medium and, although these data seem to be sufficient to train shallow machine learning
models, for the case of deep learning models these datasets are not sufficient to provide
high accuracy rates. Table 7 brings to light the problem of the non-availability of large
datasets able to train deep architectures, e.g., CNNs, and highlights the need to design
larger and better-quality benchmark datasets.
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Table 7. Characteristics of the benchmark datasets used in the examined studies.

Database Name Number of
Classes

Number of
Fingers

Samples per
Finger Total Size Image Size Link

(accessed on 17 April 2021)

SDUMLA-HMT [131] 106 6 6 3816 320 × 240 http://www.wavelab.at/sources/
Prommegger19c/

UTFV [132] 60 6 4 1440 200 × 100 https://pythonhosted.org/bob.db.utfvp/

MMCBNU_6000 [133] 100 6 10 6000 640 × 480 http://wavelab.at/sources/Drozdowski20a/

THU-FVFD [134] 220 1 1 440 720 × 576 https://www.sigs.tsinghua.edu.cn/labs/
vipl/thu-fvfdt.html

PLUSVein-FV3 [135] 60 6 5 1800 736 × 192 http://wavelab.at/sources/PLUSVein-FV3/

VERA [136] 110 2 2 440 665 × 250 https:
//www.idiap.ch/dataset/vera-fingervein

FV-USM [137] 123 8 6 5904 640 × 480 http://drfendi.com/fv_usm_database/

6.2. Software Frameworks/Libraries

Recently, there has been an increasing trend to develop open-source software libraries
to promote the development of a scientific discipline. At the same time, many researchers
provide the source codes they use to implement their methodologies through open-source
platforms, e.g., GitHub.

In this context, we identified some software implementations of feature extraction
methods as well as full finger-vein-based authentication methodologies, which may serve
as a good starting point for new researchers in the field and are summarized in Table 8.

Table 8. Some available software frameworks/libraries.

Ref. Implementation
Link (accessed on 17 April 2021)

Programming
Language

[139] https://gitlab.cosy.sbg.ac.at/ckauba/openvein-toolkit Python

[130] https://github.com/ridvansalihkuzu/vein-biometrics Python

[140] https://pypi.org/project/xbob.fingervein/ Python

[65] https://github.com/sohamidha/PBBM MATLAB

[11] https://github.com/dohnto/Max-Curvature C++

[10] https://github.com/dohnto/Repeated-Line-Tracking C++

[141] https://github.com/sandeepkapri/Tri-Branch-Vein-
Structure-Assisted-Finger-Vein-Recognition MATLAB

6.3. Hardware Topologies/Configuration

The last important implementation aspect that has to be considered in developing
finger vein authentication systems is the applied hardware topology along with the char-
acteristics of the used additional hardware components. Table 9 summarizes the main
hardware topologies proposed in the examined studies, as well as information about
the used cameras, camera filters, and NIR LEDs.

Most approaches suggest a (top-down) hardware topology with two different com-
ponent configurations. According to this topology, a camera and a NIR LED are placed
opposite and the finger is placed between them. However, a topology with multiple NIR
LEDs and cameras has also been proposed [125]. Table 8 also reveals the high diversity of
the NIR LED wavelengths that are deployed towards acquiring more descriptive finger
vein images.
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Table 9. Common hardware topologies and configurations.

Topology Camera
Type

NIR LED
Wavelength (nm)

Additional
Hardware

Top-down NIR LED, camera
on the opposite side, with
the finger in the middle

Common CCD 700–1000 NIR filter on camera lens
(in some cases)

Top-down NIR LED, camera
on the opposite side, with
the finger in the middle

Common CCD or
CMOS camera 760–850

Additional LEDs on opposite
sides or an angled hot

mirror for extra contrast

Top-down NIR LED array, array
of cameras on the bottom CMOS NIR 860

Diffusing glass on NIR LEDs,
a 700 nm long pass NIR

filter on the camera array

7. Conclusions and Discussion

This work presents a comprehensive review of the feature extraction methods pro-
posed for finger vein biometrics. This review can be used as a guide for those who are
interested and want a clear view of this research field. As this field is currently in the spot-
light and there is not as much information as on other biometrics, for example, fingerprints,
that can guarantee a low error rate, it could be used as a starting point for newcomers who
want to make a breakthrough in the field. Moreover, despite the fact that finger veins have
a lower accuracy than other biometric traits, they are worth investigating because they
have a number of advantages, such as being very difficult to forge, and a human has more
than one finger, which can be used for authentication purposes.

In the past several years, authentication based on finger vein images has seen an im-
provement as far as the performance goes. The best performance can be seen in the method-
ologies of feature learning, where deep learning is employed. Those have the best per-
formance on average, with many methodologies achieving over 99% of accuracy, despite
the small (for deep learning) datasets available.

Regarding the experiments in the literature, we conclude that most of the studies, espe-
cially in the early years, did not evaluate the proposed methodology on publicly available
datasets. This is mainly attributed to the fact that some the currently available datasets only
became available later on. Moreover, the chosen metric for the performance evaluation varies
across studies, with most of the studies presenting the EER, RR, or ROC scores.

As future work, for comparative reasons, it is highly recommended that researchers
present their proposed methodology’s performance using the same and more interpretable
metrics. Additionally, the splitting of the training and testing set sizes, for those method-
ologies that apply any type of learning procedure, has to be the same too. In this context,
the design of large-scale datasets (big data) that will permit the training and validation of
customized CNN models from scratch is of paramount importance towards the develop-
ment of more reliable finger vein biometric systems.
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