Emerging Nuclear Medicine Imaging of Atherosclerotic Plaque Formation
Abstract
:1. Introduction
2. Evolution of an Atherosclerotic Plaque
2.1. Fatty Streaks
2.1.1. Labeled Lipoproteins
2.1.2. Oxidized LDL
2.1.3. Adhesion Molecules
2.2. Macrophage Migration
2.2.1. Migration of Native Monocytes
2.2.2. Glucose Metabolism
2.2.3. Cell Membranes
2.2.4. Scavenger Receptors
2.2.5. Somatostatin Receptors
2.2.6. Mannose Receptor
2.2.7. Folate Receptor
2.2.8. TSPO
2.2.9. Chemokine Receptors
2.2.10. LFA-1
2.2.11. Nicotinic Acetylcholine Receptor
2.2.12. Phagocytic Activity
2.3. Plaque Formation
Interleukin-2 Receptor
2.4. Thin-Capsule Fibroatheromas
2.4.1. Neoangiogenesis
2.4.2. Hypoxia
2.4.3. Macrophage Death
2.4.4. Proteases
2.5. Unstable Plaques
2.5.1. Calcification
2.5.2. Thrombosis
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Herrington, W.; Lacey, B.; Sherliker, P.; Armitage, J.; Lewington, S. Epidemiology of Atherosclerosis and the Potential to Reduce the Global Burden of Atherothrombotic Disease. Circ. Res. 2016, 118, 535–546. [Google Scholar] [CrossRef] [PubMed]
- Kharlamov, A.N. Cardiovascular Burden and Percutaneous Interventions in Russian Federation: Systematic Epidemiological Update. Cardiovasc. Diagn. Ther. 2017, 7, 60–84. [Google Scholar] [CrossRef] [PubMed]
- Sharp, P.F.; Gemmell, H.G.; Murray, A.D. Practical Nuclear Medicine; Springer: Cham, Switzerland, 2005; ISBN 9781852338756. [Google Scholar]
- Hyafil, F.; Vigne, J. Nuclear Imaging Focus on Vascular Probes. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 1369–1378. [Google Scholar] [CrossRef] [PubMed]
- Heo, G.S.; Sultan, D.; Liu, Y. Current and novel radiopharmaceuticals for imaging cardiovascular inflammation. Q. J. Nucl. Med. Mol. Imaging 2020, 64, 4–20. [Google Scholar] [CrossRef]
- Pavlova, D.A.; Efimova, N.Y.; Ryzhkova, D.V. Radionuclide diagnostics of unstable atherosclerotic plaques. Sib. J. Clin. Exp. Med. 2014, 29, 17–24. [Google Scholar] [CrossRef]
- Kondakov, A.; Lelyuk, V. Clinical Molecular Imaging for Atherosclerotic Plaque. J. Imaging 2021, 7, 211. [Google Scholar] [CrossRef] [PubMed]
- Sakakura, K.; Nakano, M.; Otsuka, F.; Ladich, E.; Kolodgie, F.D.; Virmani, R. Pathophysiology of Atherosclerosis Plaque Progression. Heart Lung Circ. 2013, 22, 399–411. [Google Scholar] [CrossRef] [PubMed]
- Ragino, Y.I.; Volkov, A.M.; Cherniavsky, A.M. Developmental stages of an atherosclerotic lesion and types of unstable plaques—Pathophysiological and histological characteristics. Russ. J. Cardiol. 2013, 5, 88–95. [Google Scholar] [CrossRef]
- Thent, Z.C.; Chakraborty, C.; Mahakkanukrauh, P.; Mahmood, N.N.R.K.N.; Rajan, R.; Das, S.; Thent, C.C.Z.C. The Molecular Concept of Atheromatous Plaques. Curr. Drug Targets 2017, 18, 1250–1258. [Google Scholar] [CrossRef]
- Pitman, W.A.; Osgood, D.P.; Smith, D.; Schaefer, E.J.; Ordovas, J.M. The effects of diet and lovastatin on regression of fatty streak lesions and on hepatic and intestinal mRNA levels for the LDL receptor and HMG CoA reductase in F1B hamsters. Atherosclerosis 1998, 138, 43–52. [Google Scholar] [CrossRef]
- Shah, A.S.; Urbina, E.M. Childhood Obesity, Atherogenesis, and Adult Cardiovascular Disease. In Pediatric Obesity: Etiology, Pathogenesis and Treatment; Freemark, M.S., Ed.; Springer International Publishing: Cham, Switzerlnad, 2018; pp. 527–538. ISBN 978-3-319-68192-4. [Google Scholar]
- Vallabhajosula, S.; Paidi, M.; Badimon, J.J.; Le, N.-A.; Goldsmith, S.J.; Fuster, V.; Ginsberg, H.N. Radiotracers for low density lipoprotein biodistribution studies in vivo: Technetium-99m low density lipoprotein versus radioiodinated low density lipoprotein preparations. J. Nucl. Med. 1988, 29, 1237–1245. [Google Scholar] [PubMed]
- Vallabhajosula, S.; Goldsmith, S.J. 99mTc-Low Density Lipoprotein: Intracellularly Trapped Radiotracer for Noninvasive Imaging of Low Density Lipoprotein Metabolism in Vivo. Semin. Nucl. Med. 1990, 20, 68–79. [Google Scholar] [CrossRef]
- Moerlein, S.M.; Daugherty, A.; Sobel, B.E.; Welch, M.J. Metabolic imaging with gallium-68- and indium-111-labeled low-density lipoprotein. J. Nucl. Med. 1991, 32, 300–307. [Google Scholar]
- Rosen, J.M.; Butler, S.P.; Meinken, G.E.; Wang, T.S.; Ramakrishnan, R.; Srivastava, S.C.; Alderson, P.O.; Ginsberg, H.N. Indium-111-Labeled LDL: A Potential Agent for Imaging Atherosclerotic Disease and Lipoprotein Biodistribution. J. Nucl. Med. 1990, 31, 343–350. [Google Scholar] [PubMed]
- Pirich, C.; Sinzinger, H. Evidence for Lipid Regression in Humans In Vivo Performed by 123Iodine-Low-Density Lipoprotein Scintiscanning. Ann. N. Y. Acad. Sci. 1995, 748, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Pietzsch, J.; Bergmann, R.; Wuest, F.; Pawelke, B.; Hultsch, C.; van den Hoff, J. Catabolism of native and oxidized low density lipoproteins: In vivo insights from small animal positron emission tomography studies. Amino Acids 2005, 29, 389–404. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Medina, C.; Binderup, T.; Lobatto, M.E.; Tang, J.; Calcagno, C.; Giesen, L.; Wessel, C.H.; Witjes, J.; Ishino, S.; Baxter, S.; et al. In Vivo PET Imaging of HDL in Multiple Atherosclerosis Models. JACC Cardiovasc. Imaging 2016, 9, 950–961. [Google Scholar] [CrossRef]
- Dweck, M.R.; Newby, D.E. PET Imaging: Hot on the Trail of the HDL Particle. JACC Cardiovasc. Imaging 2016, 9, 962–963. [Google Scholar] [CrossRef]
- Tsimikas, S. Noninvasive imaging of oxidized Low-Density Lipoprotein in atherosclerotic plaques with tagged oxidation-specific antibodies. Am. J. Cardiol. 2002, 90, L22–L27. [Google Scholar] [CrossRef]
- Tsimikas, S.; Willeit, P.; Willeit, J.; Santer, P.; Mayr, M.; Xu, Q.; Mayr, A.; Witztum, J.L.; Kiechl, S. Oxidation-Specific Biomarkers, Prospective 15-Year Cardiovascular and Stroke Outcomes, and Net Reclassification of Cardiovascular Events. J. Am. Coll. Cardiol. 2012, 60, 2218–2229. [Google Scholar] [CrossRef]
- Tawakol, A.; Jaffer, F. Imaging the Intersection of Oxidative Stress, Lipids, and Inflammation. J. Am. Coll. Cardiol. 2018, 71, 336–338. [Google Scholar] [CrossRef] [PubMed]
- Palinski, W.; Ylä-Herttuala, S.; Rosenfeld, M.E.; Butler, S.W.; Socher, S.A.; Parthasarathy, S.; Curtiss, L.K.; Witztum, J.L. Antisera and monoclonal antibodies specific for epitopes generated during oxidative modification of low density lipoprotein. Arterioscler. Off. J. Am. Heart Assoc. Inc. 1990, 10, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, M.; Cheng, K.T.; Spicer, K.M.; Kirsch, W.M.; Fowler, S.D.; Kelln, W.; Griende, S.; Nehlsen-Cannarella, S.; Willerson, R.; Spicer, S.S.; et al. Biodistribution and radioimmunopharmacokinetics of 131I-Ama monoclonal antibody in atherosclerotic rabbits. Nucl. Med. Biol. 1995, 22, 693–697. [Google Scholar] [CrossRef]
- Tsimikas, S.; Shortal, B.P.; Witztum, J.L.; Palinski, W. In Vivo Uptake of Radiolabeled MDA2, an Oxidation-Specific Monoclonal Antibody, Provides an Accurate Measure of Atherosclerotic Lesions Rich in Oxidized LDL and Is Highly Sensitive to Their Regression. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 689–697. [Google Scholar] [CrossRef] [PubMed]
- Senders, M.L.; Que, X.; Cho, Y.S.; Yeang, C.; Groenen, H.; Fay, F.; Calcagno, C.; Meerwaldt, A.E.; Green, S.; Miu, P.; et al. PET/MR Imaging of Malondialdehyde-Acetaldehyde Epitopes With a Human Antibody Detects Clinically Relevant Atherothrombosis. J. Am. Coll. Cardiol. 2018, 71, 321–335. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xue, S.; Ren, F.; Huang, S.; Zhou, R.; Wang, Y.; Zhou, C.; Li, Z. An atherosclerotic plaque-targeted single-chain antibody for MR/NIR-II imaging of atherosclerosis and anti-atherosclerosis therapy. J. Nanobiotechnol. 2021, 19, 1–19. [Google Scholar] [CrossRef]
- Iuliano, L.; Signore, A.; Vallabajosula, S.; Colavita, A.R.; Camastra, C.; Ronga, G.; Alessandri, C.; Sbarigia, E.; Fiorani, P.; Violi, F. Preparation and biodistribution of 99mtechnetium labelled oxidized LDL in man. Atherosclerosis 1996, 126, 131–141. [Google Scholar] [CrossRef]
- Nakano, A.; Kawashima, H.; Miyake, Y.; Zeniya, T.; Yamamoto, A.; Koshino, K.; Temma, T.; Fukuda, T.; Fujita, Y.; Kakino, A.; et al. 123I–Labeled oxLDL Is Widely Distributed Throughout the Whole Body in Mice. Nucl. Med. Mol. Imaging 2017, 52, 144–153. [Google Scholar] [CrossRef]
- Nahrendorf, M.; Keliher, E.; Panizzi, P.; Zhang, H.; Hembrador, S.; Figueiredo, J.-L.; Aikawa, E.; Kelly, K.; Libby, P.; Weissleder, R. 18F-4V for PET–CT Imaging of VCAM-1 Expression in Atherosclerosis. JACC Cardiovasc. Imaging 2009, 2, 1213–1222. [Google Scholar] [CrossRef]
- Broisat, A.; Toczek, J.; Dumas, L.S.; Ahmadi, M.; Bacot, S.; Perret, P.; Slimani, L.; Barone-Rochette, G.; Soubies, A.; Devoogdt, N.; et al. 99mTc-cAbVCAM1-5 Imaging Is a Sensitive and Reproducible Tool for the Detection of Inflamed Atherosclerotic Lesions in Mice. J. Nucl. Med. 2014, 55, 1678–1684. [Google Scholar] [CrossRef]
- Broisat, A.; Hernot, S.; Toczek, J.; De Vos, J.; Riou, L.M.; Martin, S.; Ahmadi, M.; Thielens, N.; Wernery, U.; Caveliers, V.; et al. Nanobodies Targeting Mouse/Human VCAM1 for the Nuclear Imaging of Atherosclerotic Lesions. Circ. Res. 2012, 110, 927–937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bala, G.; Blykers, A.; Xavier, C.; Descamps, B.; Broisat, A.; Ghezzi, C.; Fagret, D.; Van Camp, G.; Caveliers, V.; Vanhove, C.; et al. Targeting of vascular cell adhesion molecule-1 by18F-labelled nanobodies for PET/CT imaging of inflamed atherosclerotic plaques. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 1001–1008. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.J.; Gordon, J.L.; Gearing, A.J.H.; Pigott, R.; Woolf, N.; Katz, D.; Kyriakopoulos, A. The expression of the adhesion molecules ICAM-1, VCAM-1, PECAM, and E-selectin in human atherosclerosis. J. Pathol. 1993, 171, 223–229. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, K.; Allen, M.D.; McDonald, T.O.; Chait, A.; Harlan, J.M.; Fishbein, D.; Mccarty, J.; Ferguson, M.; Hudkins, K.; Benjamin, C.D. Vascular cell adhesion molecule-1 is expressed in human coronary atherosclerotic plaques. Implications for the mode of progression of advanced coronary atherosclerosis. J. Clin. Investig. 1993, 92, 945–951. [Google Scholar] [CrossRef] [PubMed]
- Pastorino, S.; Baldassari, S.; Ailuno, G.; Zuccari, G.; Drava, G.; Petretto, A.; Cossu, V.; Marini, C.; Alfei, S.; Florio, T.; et al. Two Novel PET Radiopharmaceuticals for Endothelial Vascular Cell Adhesion Molecule-1 (VCAM-1) Targeting. Pharmaceutics 2021, 13, 1025. [Google Scholar] [CrossRef]
- Nakamura, I.; Hasegawa, K.; Wada, Y.; Hirase, T.; Node, K.; Watanabe, Y. Detection of early stage atherosclerotic plaques using PET and CT fusion imaging targeting P-selectin in low density lipoprotein receptor-deficient mice. Biochem. Biophys. Res. Commun. 2013, 433, 47–51. [Google Scholar] [CrossRef]
- Anderson, C.J.; Ferdani, R. Copper-64 Radiopharmaceuticals for PET Imaging of Cancer: Advances in Preclinical and Clinical Research. Cancer Biother. Radiopharm. 2009, 24, 379–393. [Google Scholar] [CrossRef]
- Li, X.; Bauer, W.; Israel, I.; Kreissl, M.C.; Weirather, J.; Richter, D.; Bauer, E.; Herold, V.; Jakob, P.; Buck, A.; et al. Targeting P-Selectin by Gallium-68–Labeled Fucoidan Positron Emission Tomography for Noninvasive Characterization of Vulnerable Plaques. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 1661–1667. [Google Scholar] [CrossRef]
- Shen, P.; Yin, Z.; Qu, G.; Wang, C. Fucoidan and Its Health Benefits. In Bioactive Seaweeds for Food Applications; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 223–238. ISBN 9780128133125. [Google Scholar]
- Chan, J.M.S.; Jin, P.S.; Ng, M.; Garnell, J.; Ying, C.W.; Tec, C.T.; Bhakoo, K. Development of Molecular Magnetic Resonance Imaging Tools for Risk Stratification of Carotid Atherosclerotic Disease Using Dual-Targeted Microparticles of Iron Oxide. Transl. Stroke Res. 2022, 13, 245–256. [Google Scholar] [CrossRef]
- International Atomic Energy Agency. Radiolabelled Autologous Cells: Methods and Standardization for Clinical Use; International Atomic Energy Agency: Vienna, Austria, 2015; ISBN 9789201013101. [Google Scholar]
- Kircher, M.F.; Grimm, J.; Swirski, F.K.; Libby, P.; Gerszten, R.E.; Allport, J.R.; Weissleder, R. Noninvasive In Vivo Imaging of Monocyte Trafficking to Atherosclerotic Lesions. Circulation 2008, 117, 388–395. [Google Scholar] [CrossRef]
- Poveshchenko, A.F.; Poveshchenko, O.V.; Konenkov, V.I. Modern advances in the development of methods for studying stem cell migration. Bull. Russ. Acad. Med. Sci. 2013, 68, 46–51. [Google Scholar]
- Virgolini, I.; Müller, C.; Fitscha, P.; Chiba, P.; Sinzinger, H. Radiolabelling autologous monocytes with 111-indium-oxine for reinjection in patients with atherosclerosis. Prog. Clin. Biol. Res. 1990, 355, 271–280. [Google Scholar] [PubMed]
- Hartung, M.D.; Narula, J. Targeting the inflammatory component in atherosclerotic lesions vulnerable to rupture. Z. Kardiol. 2004, 93, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Leppänen, O.; Björnheden, T.; Evaldsson, M.; Borén, J.; Wiklund, O.; Levin, M. ATP depletion in macrophages in the core of advanced rabbit atherosclerotic plaques in vivo. Atherosclerosis 2006, 188, 323–330. [Google Scholar] [CrossRef]
- Orbay, H.; Hong, H.; Zhang, Y.; Cai, W. Positron Emission Tomography Imaging of Atherosclerosis. Theranostics 2013, 3, 894–902. [Google Scholar] [CrossRef]
- Bobryshev, Y.V.; Ivanova, E.A.; Chistiakov, D.A.; Nikiforov, N.G.; Orekhov, A.N. Macrophages and Their Role in Atherosclerosis: Pathophysiology and Transcriptome Analysis. BioMed Res. Int. 2016, 2016, 1–13. [Google Scholar] [CrossRef]
- Gurudutta, G.U.; Babbar, A.K.; Shailaja, S.; Soumya, P.; Sharma, R.K. Evaluation of Potential Tracer Ability of 99mTc-Labeled Acetylated LDL for Scintigraphy of LDL-Scavenger Receptor Sites of Macrophageal Origin. Nucl. Med. Biol. 2001, 28, 235–241. [Google Scholar] [CrossRef]
- Amirbekian, V.; Lipinski, M.J.; Briley-Saebo, K.C.; Amirbekian, S.; Aguinaldo, J.G.S.; Weinreb, D.B.; Vucic, E.; Frias, J.C.; Hyafil, F.; Mani, V.; et al. Detecting and Assessing Macrophages in Vivo to Evaluate Atherosclerosis Noninvasively Using Molecular MRI. Proc. Natl. Acad. Sci. USA 2007, 104, 961–966. [Google Scholar] [CrossRef]
- Ishino, S.; Mukai, T.; Kuge, Y.; Kume, N.; Ogawa, M.; Takai, N.; Kamihashi, J.; Shiomi, M.; Minami, M.; Kita, T.; et al. Targeting of Lectinlike Oxidized Low-Density Lipoprotein Receptor 1 (LOX-1) with 99mTc-Labeled Anti–LOX-1 Antibody: Potential Agent for Imaging of Vulnerable Plaque. J. Nucl. Med. 2008, 49, 1677–1685. [Google Scholar] [CrossRef]
- Li, D.; Patel, A.R.; Klibanov, A.L.; Kramer, C.M.; Ruiz, M.; Kang, B.-Y.; Mehta, J.L.; Beller, G.A.; Glover, D.K.; Meyer, C.H. Molecular Imaging of Atherosclerotic Plaques Targeted to Oxidized LDL Receptor LOX-1 by SPECT/CT and Magnetic Resonance. Circ. Cardiovasc. Imaging 2010, 3, 464–472. [Google Scholar] [CrossRef]
- Eichendorff, S.; Svendsen, P.; Bender, D.; Keiding, S.; Christensen, E.I.; Deleuran, B.; Moestrup, S.K. Biodistribution and PET Imaging of a Novel [68Ga]-Anti-CD163-Antibody Conjugate in Rats with Collagen-Induced Arthritis and in Controls. Mol. Imaging Biol. 2015, 17, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, S.F.; Sandholt, B.V.; Keller, S.H.; Hansen, A.E.; Clemmensen, A.E.; Sillesen, H.; Højgaard, L.; Ripa, R.S.; Kjær, A. 64Cu-DOTATATE PET/MRI for Detection of Activated Macrophages in Carotid Atherosclerotic Plaques: Studies in Patients Undergoing Endarterectomy. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 1696–1703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bigalke, B.; Phinikaridou, A.; Andia, M.E.; Cooper, M.S.; Schuster, A.; Wurster, T.; Onthank, D.; Münch, G.; Blower, P.; Gawaz, M.; et al. PET/CT and MR imaging biomarker of lipid-rich plaques using [64Cu]-labeled scavenger receptor (CD68-Fc). Int. J. Cardiol. 2014, 177, 287–291. [Google Scholar] [CrossRef] [PubMed]
- Meester, E.J.; Krenning, B.J.; de Blois, E.; de Jong, M.; van der Steen, A.F.W.; Bernsen, M.R.; van der Heiden, K. Imaging Inflammation in Atherosclerotic Plaques, Targeting SST2 with [111In]In-DOTA-JR11. J. Nucl. Cardiol. 2020, 28, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Krebs, S.; Pandit-Taskar, N.; Reidy, D.; Beattie, B.J.; Lyashchenko, S.K.; Lewis, J.S.; Bodei, L.; Weber, W.A.; O’Donoghue, J.A. Biodistribution and radiation dose estimates for 68Ga-DOTA-JR11 in patients with metastatic neuroendocrine tumors. Eur. J. Pediatr. 2018, 46, 677–685. [Google Scholar] [CrossRef]
- Vera, D.R.; Wallace, A.M.; Hoh, C.K. [99mTc]MAG3-mannosyl-dextran: A receptor-binding radiopharmaceutical for sentinel node detection. Nucl. Med. Biol. 2001, 28, 493–498. [Google Scholar] [CrossRef]
- Varasteh, Z.; Hyafil, F.; Anizan, N.; Diallo, D.; Aid-Launais, R.; Mohanta, S.; Li, Y.; Braeuer, M.; Steiger, K.; Vigne, J.; et al. Targeting mannose receptor expression on macrophages in atherosclerotic plaques of apolipoprotein E-knockout mice using 111In-tilmanocept. EJNMMI Res. 2017, 7, 40. [Google Scholar] [CrossRef]
- Varasteh, Z.; Mohanta, S.; Li, Y.; Armbruster, N.L.; Braeuer, M.; Nekolla, S.G.; Habenicht, A.; Sager, H.B.; Raes, G.; Weber, W.; et al. Targeting mannose receptor expression on macrophages in atherosclerotic plaques of apolipoprotein E-knockout mice using 68Ga-NOTA-anti-MMR nanobody: Non-invasive imaging of atherosclerotic plaques. EJNMMI Res. 2019, 9, 5. [Google Scholar] [CrossRef]
- Zanni, M.V.; Toribio, M.; Wilks, M.Q.; Lu, M.T.; Burdo, T.H.; Walker, J.; Autissier, P.; Foldyna, B.; Stone, L.; Martin, A.; et al. Application of a Novel CD206+ Macrophage-Specific Arterial Imaging Strategy in HIV-Infected Individuals. J. Infect. Dis. 2017, 215, 1264–1269. [Google Scholar] [CrossRef]
- Tahara, N.; Mukherjee, J.; De Haas, H.J.; Petrov, A.D.; Tawakol, A.; Haider, N.; Tahara, A.; Constantinescu, C.C.; Zhou, J.; Boersma, H.H.; et al. 2-deoxy-2-[18F]fluoro-d-mannose positron emission tomography imaging in atherosclerosis. Nat. Med. 2014, 20, 215–219. [Google Scholar] [CrossRef]
- Kim, E.J.; Kim, S.; Seo, H.S.; Lee, Y.J.; Eo, J.S.; Jeong, J.M.; Lee, B.; Kim, J.Y.; Park, Y.M.; Jeong, M. Novel PET Imaging of Atherosclerosis with 68Ga-Labeled NOTA-Neomannosylated Human Serum Albumin. J. Nucl. Med. 2016, 57, 1792–1797. [Google Scholar] [CrossRef] [PubMed]
- Hilgendorf, I.; Swirski, F.K. Folate Receptor: A Macrophage “Achilles’ Heel”? J. Am. Heart Assoc. 2012, 1, e004036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandrupatla, D.M.S.H.; Molthoff, C.F.M.; Lammertsma, A.A.; van der Laken, C.J.; Jansen, G. The folate receptor β as a macrophage-mediated imaging and therapeutic target in rheumatoid arthritis. Drug Deliv. Transl. Res. 2018, 9, 366–378. [Google Scholar] [CrossRef] [PubMed]
- Ayala-López, W.; Xia, W.; Varghese, B.; Low, P.S. Imaging of Atherosclerosis in Apoliprotein E Knockout Mice: Targeting of a Folate-Conjugated Radiopharmaceutical to Activated Macrophages. J. Nucl. Med. 2010, 51, 768–774. [Google Scholar] [CrossRef] [PubMed]
- Müller, A.; Beck, K.; Rancic, Z.; Müller, C.; Fischer, C.R.; Betzel, T.; Kaufmann, P.A.; Schibli, R.; Kramer, S.D.; Ametamey, S.M. Imaging Atherosclerotic Plaque Inflammation via Folate Receptor Targeting Using a Novel 18 F-Folate Radiotracer. Mol. Imaging 2014, 13, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Silvola, J.M.U.; Li, X.-G.; Virta, J.; Marjamäki, P.; Liljenbäck, H.; Hytönen, J.P.; Tarkia, M.; Saunavaara, V.; Hurme, S.; Palani, S.; et al. Aluminum fluoride-18 labeled folate enables in vivo detection of atherosclerotic plaque inflammation by positron emission tomography. Sci. Rep. 2018, 8, 9720. [Google Scholar] [CrossRef]
- Pugliese, F.; Gaemperli, O.; Kinderlerer, A.R.; Lamare, F.; Shalhoub, J.; Davies, A.H.; Rimoldi, O.E.; Mason, J.C.; Camici, P.G. Imaging of Vascular Inflammation With [11C]-PK11195 and Positron Emission Tomography/Computed Tomography Angiography. J. Am. Coll. Cardiol. 2010, 56, 653–661. [Google Scholar] [CrossRef]
- Gaemperli, O.; Shalhoub, J.; Owen, D.R.J.; Lamare, F.; Johansson, S.; Fouladi, N.; Davies, A.H.; Rimoldi, O.E.; Camici, P.G. Imaging intraplaque inflammation in carotid atherosclerosis with 11C-PK11195 positron emission tomography/computed tomography. Eur. Heart J. 2011, 33, 1902–1910. [Google Scholar] [CrossRef]
- Hellberg, S.; Liljenbäck, H.; Eskola, O.; Morisson-Iveson, V.; Morrison, M.; Trigg, W.; Saukko, P.; Ylä-Herttuala, S.; Knuuti, J.; Saraste, A.; et al. Positron Emission Tomography Imaging of Macrophages in Atherosclerosis with 18F-GE-180, a Radiotracer for Translocator Protein (TSPO). Contrast Media Mol. Imaging 2018, 2018, 9186902. [Google Scholar] [CrossRef]
- Schollhammer, R.; Lepreux, S.; Barthe, N.; Vimont, D.; Rullier, A.; Sibon, I.; Berard, X.; Zhang, A.; Kimura, Y.; Fujita, M.; et al. In vitro and pilot in vivo imaging of 18 kDa translocator protein (TSPO) in inflammatory vascular disease. EJNMMI Res. 2021, 11, 1–7. [Google Scholar] [CrossRef]
- Liu, Y.; Pierce, R.; Luehmann, H.P.; Sharp, T.L.; Welch, M.J. PET Imaging of Chemokine Receptors in Vascular Injury–Accelerated Atherosclerosis. J. Nucl. Med. 2013, 54, 1135–1141. [Google Scholar] [CrossRef] [PubMed]
- Hyafil, F.; Pelisek, J.; Laitinen, I.; Schottelius, M.; Mohring, M.; Döring, Y.; van der Vorst, E.P.C.; Kallmayer, M.; Steiger, K.; Poschenrieder, A.; et al. Imaging the Cytokine Receptor CXCR4 in Atherosclerotic Plaques with the Radiotracer 68Ga-Pentixafor for PET. J. Nucl. Med. 2016, 58, 499–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Heber, D.; Leike, T.; Beitzke, D.; Lu, X.; Zhang, X.; Wei, Y.; Mitterhauser, M.; Wadsak, W.; Kropf, S.; et al. [68Ga]Pentixafor-PET/MRI for the detection of Chemokine receptor 4 expression in atherosclerotic plaques. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 558–566. [Google Scholar] [CrossRef] [PubMed]
- Weiberg, D.; Thackeray, J.T.; Daum, G.; Sohns, J.M.; Kropf, S.; Wester, H.-J.; Ross, T.L.; Bengel, F.M.; Derlin, T. Clinical Molecular Imaging of Chemokine Receptor CXCR4 Expression in Atherosclerotic Plaque Using 68Ga-Pentixafor PET: Correlation with Cardiovascular Risk Factors and Calcified Plaque Burden. J. Nucl. Med. 2017, 59, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Kircher, M.; Tran-Gia, J.; Kemmer, L.; Zhang, X.; Schirbel, A.; Werner, R.A.; Buck, A.K.; Wester, H.-J.; Hacker, M.; Lapa, C.; et al. Imaging Inflammation in Atherosclerosis with CXCR4-Directed 68Ga-Pentixafor PET/CT: Correlation with 18F-FDG PET/CT. J. Nucl. Med. 2020, 61, 751–756. [Google Scholar] [CrossRef]
- Bartlett, B.; Ludewick, H.P.; Lee, S.; Verma, S.; Francis, R.J.; Dwivedi, G. Imaging Inflammation in Patients and Animals: Focus on PET Imaging the Vulnerable Plaque. Cells 2021, 10, 2573. [Google Scholar] [CrossRef]
- Lu, X.; Calabretta, R.; Wadsak, W.; Haug, A.R.; Mayerhöfer, M.; Raderer, M.; Zhang, X.; Li, J.; Hacker, M.; Li, X. Imaging Inflammation in Atherosclerosis with CXCR4-Directed [68Ga]PentixaFor PET/MRI—Compared with [18F]FDG PET/MRI. Life 2022, 12, 1039. [Google Scholar] [CrossRef]
- English, S.J.; Sastriques, S.E.; Detering, L.; Sultan, D.; Luehmann, H.; Arif, B.; Heo, G.S.; Zhang, X.; Laforest, R.; Zheng, J.; et al. CCR2 Positron Emission Tomography for the Assessment of Abdominal Aortic Aneurysm Inflammation and Rupture Prediction. Circ. Cardiovasc. Imaging 2020, 13, e009889. [Google Scholar] [CrossRef]
- Tanaka, T. Leukocyte Adhesion Molecules. Encycl. Immunobiol. 2016, 3, 505–511. [Google Scholar] [CrossRef]
- Meester, E.J.; Krenning, B.J.; de Blois, R.H.; Norenberg, J.P.; de Jong, M.; Bernsen, M.R.; Van der Heiden, K. Imaging of atherosclerosis, targeting LFA-1 on inflammatory cells with 111In-DANBIRT. J. Nucl. Cardiol. 2018, 26, 1697–1704. [Google Scholar] [CrossRef]
- Van der Heiden, K.; Barrett, H.E.; Meester, E.J.; van Gaalen, K.; Krenning, B.J.; Beekman, F.J.; de Blois, E.; de Swart, J.; Verhagen, H.J.M.; van der Lugt, A.; et al. SPECT/CT imaging of inflammation and calcification in human carotid atherosclerosis to identify the plaque at risk of rupture. J. Nucl. Cardiol. 2021, s12350. [Google Scholar] [CrossRef] [PubMed]
- Alvidrez, R.I.M.; Buglak, N.; Anderson, T.; Norenberg, J.; Bahnson, E. Longitudinal In Vivo Imaging of Atherosclerotic Disease Development in The apoE Deficient Zucker Rat. FASEB J. 2020, 34, 1. [Google Scholar] [CrossRef]
- Yang, T.; Wang, D.; Chen, X.; Liang, Y.; Guo, F.; Wu, C.; Jia, L.; Hou, Z.; Li, W.; He, Z.X.; et al. 18F-ASEM Imaging for Evaluating Atherosclerotic Plaques Linked to α7-Nicotinic Acetylcholine Receptor. Front. Bioeng. Biotechnol. 2021, 9, 684221. [Google Scholar] [CrossRef] [PubMed]
- Nahrendorf, M.; Zhang, H.; Hembrador, S.; Panizzi, P.; Sosnovik, D.E.; Aikawa, E.; Libby, P.; Swirski, F.K.; Weissleder, R. Nanoparticle PET-CT Imaging of Macrophages in Inflammatory Atherosclerosis. Circulation 2008, 117, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Nahrendorf, M.; Keliher, E.; Marinelli, B.; Leuschner, F.; Robbins, C.S.; Gerszten, R.E.; Pittet, M.J.; Swirski, F.K.; Weissleder, R. Detection of Macrophages in Aortic Aneurysms by Nanoparticle Positron Emission Tomography–Computed Tomography. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 750–757. [Google Scholar] [CrossRef] [PubMed]
- Mehta, A.B.; Shah, S. Unstable or High Risk Plaque: How Do We Approach It? Med. J. Armed Forces India 2006, 62, 2–7. [Google Scholar] [CrossRef]
- Glaudemans, A.W.J.M.; Bonanno, E.; Galli, F.; Zeebregts, C.J.; de Vries, E.F.J.; Koole, M.; Luurtsema, G.; Boersma, H.H.; Taurino, M.; Slart, R.H.J.A.; et al. In Vivo and in Vitro Evidence That 99mTc-HYNIC-Interleukin-2 Is Able to Detect T Lymphocytes in Vulnerable Atherosclerotic Plaques of the Carotid Artery. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 1710–1719. [Google Scholar] [CrossRef]
- Annovazzi, A.; Bonanno, E.; Arca, M.; D’Alessandria, C.; Marcoccia, A.; Spagnoli, L.G.; Violi, F.; Scopinaro, F.; de Toma, G.; Signore, A. 99mTc-Interleukin-2 Scintigraphy for the in Vivo Imaging of Vulnerable Atherosclerotic Plaques. Eur. J. Nucl. Med. Mol. Imaging 2006, 33, 117–126. [Google Scholar] [CrossRef]
- Krishnan, S.; Otaki, Y.; Doris, M.; Slipczuk, L.; Arnson, Y.; Rubeaux, M.; Dey, D.; Slomka, P.; Berman, D.S.; Tamarappoo, B. Molecular Imaging of Vulnerable Coronary Plaque: A Pathophysiologic Perspective. J. Nucl. Med. 2017, 58, 359–364. [Google Scholar] [CrossRef]
- Beer, A.J.; Pelisek, J.; Heider, P.; Saraste, A.; Reeps, C.; Metz, S.; Seidl, S.; Kessler, H.; Wester, H.-J.; Eckstein, H.H.; et al. PET/CT Imaging of Integrin Avβ3 Expression in Human Carotid Atherosclerosis. JACC Cardiovasc. Imaging 2014, 7, 178–187. [Google Scholar] [CrossRef]
- Saraste, A.; Laitinen, I.; Weidl, E.; Wildgruber, M.; Weber, A.W.; Nekolla, S.G.; Hölzlwimmer, G.; Esposito, I.; Walch, A.; Leppänen, P.; et al. Diet Intervention Reduces Uptake of Avβ3 Integrin-Targeted PET Tracer 18F-Galacto-RGD in Mouse Atherosclerotic Plaques. J. Nucl. Cardiol. 2012, 19, 775–784. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Niu, G.; Wu, H.; Chen, X. Detection of Vulnerable Atherosclerosis Plaques in a Mice Model by 18F-ML-10 PET/CT Imaging Targeting Apoptotic Macrophages. Theranostics 2016, 6, 78–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, H.; Gorodny, N.; Gomez, L.F.; Gangadharmath, U.B.; Mu, F.; Chen, G.; Walsh, J.C.; Szardenings, K.; Berman, D.S.; Kolb, H.C.; et al. Atherosclerotic Plaque Uptake of a Novel Integrin Tracer 18F-Flotegatide in a Mouse Model of Atherosclerosis. J. Nucl. Cardiol. 2014, 21, 553–562. [Google Scholar] [CrossRef] [PubMed]
- Vancraeynest, D.; Roelants, V.; Bouzin, C.; Hanin, F.-X.; Walrand, S.; Bol, V.; Bol, A.; Pouleur, A.-C.; Pasquet, A.; Gerber, B.; et al. AVβ3 Integrin-Targeted MicroSPECT/CT Imaging of Inflamed Atherosclerotic Plaques in Mice. EJNMMI Res. 2016, 6, 29. [Google Scholar] [CrossRef]
- Yoo, J.S.; Lee, J.; Jung, J.H.; Moon, B.S.; Kim, S.; Lee, B.C.; Kim, S.E. SPECT/CT Imaging of High-Risk Atherosclerotic Plaques using Integrin-Binding RGD Dimer Peptides. Sci. Rep. 2015, 5, 11752. [Google Scholar] [CrossRef]
- Golestani, R.; Zeebregts, C.J.; van Scheltinga, A.G.T.; Hooge, M.N.L.-D.; van Dam, G.M.; Glaudemans, A.W.; Dierckx, R.A.; Tio, R.A.; Suurmeijer, A.J.; Boersma, H.H.; et al. Feasibility of Vascular Endothelial Growth Factor Imaging in Human Atherosclerotic Plaque Using 89 Zr-Bevacizumab Positron Emission Tomography. Mol. Imaging 2013, 12, 235–243. [Google Scholar] [CrossRef]
- Mateo, J.; Izquierdo-Garcia, D.; Badimon, J.J.; Fayad, Z.A.; Fuster, V. Noninvasive Assessment of Hypoxia in Rabbit Advanced Atherosclerosis Using 18F-fluoromisonidazole Positron Emission Tomographic Imaging. Circ. Cardiovasc. Imaging 2014, 7, 312–320. [Google Scholar] [CrossRef]
- van der Valk, F.M.; Sluimer, J.C.; Vöö, S.A.; Verberne, H.J.; Nederveen, A.J.; Windhorst, A.D.; Stroes, E.S.G.; Lambin, P.; Daemen, M.J.A.P. In Vivo Imaging of Hypoxia in Atherosclerotic Plaques in Humans. JACC Cardiovasc. Imaging 2015, 8, 1340–1341. [Google Scholar] [CrossRef]
- Joshi, F.R.; Manavaki, R.; Fryer, T.D.; Figg, N.L.; Sluimer, J.C.; Aigbirhio, F.I.; Davenport, A.P.; Kirkpatrick, P.J.; Warburton, E.A.; Rudd, J.H.F. Vascular Imaging With 18 F-Fluorodeoxyglucose Positron Emission Tomography Is Influenced by Hypoxia. J. Am. Coll. Cardiol. 2017, 69, 1873–1874. [Google Scholar] [CrossRef]
- Lapi, S.E.; Lewis, J.S.; Dehdashti, F. Evaluation of Hypoxia With Copper-Labeled Diacetyl-Bis(N-Methylthiosemicarbazone). Semin. Nucl. Med. 2015, 45, 177–185. [Google Scholar] [CrossRef]
- Nie, X.; Laforest, R.; Elvington, A.; Randolph, G.J.; Zheng, J.; Voller, T.; Abendschein, D.R.; Lapi, S.E.; Woodard, P.K. PET/MRI of Hypoxic Atherosclerosis Using 64Cu-ATSM in a Rabbit Model. J. Nucl. Med. 2016, 57, 2006–2011. [Google Scholar] [CrossRef] [PubMed]
- Nie, X.; Elvington, A.; Laforest, R.; Zheng, J.; Voller, T.F.; Zayed, M.A.; Abendschein, D.R.; Bandara, N.; Xu, J.; Li, R.; et al. 64Cu-ATSM Positron Emission Tomography/ Magnetic Resonance Imaging of Hypoxia in Human Atherosclerosis. Circ. Cardiovasc. Imaging. 2020, 13, 9791. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Feng, H.; Zhao, S.; Xu, J.; Wu, X.; Cui, J.; Zhang, Y.; Qin, Y.; Liu, Z.; Gao, T.; et al. SPECT and PET Radiopharmaceuticals for Molecular Imaging of Apoptosis: From Bench to Clinic. Oncotarget 2017, 8, 20476–20495. [Google Scholar] [CrossRef] [PubMed]
- Kietselaer, B.L.J.H.; Reutelingsperger, C.P.M.; Heidendal, G.A.K.; Daemen, M.J.A.P.; Mess, W.H.; Hofstra, L.; Narula, J. Noninvasive Detection of Plaque Instability with Use of Radiolabeled Annexin A5 in Patients with Carotid-Artery Atherosclerosis. N. Engl. J. Med. 2004, 350, 1472–1473. [Google Scholar] [CrossRef] [PubMed]
- Moss, A.J.; Adamson, P.D.; Newby, D.E.; Dweck, M.R. Positron Emission Tomography Imaging of Coronary Atherosclerosis. Future Cardiol. 2016, 12, 483–496. [Google Scholar] [CrossRef] [PubMed]
- Hyafil, F.; Tran-Dinh, A.; Burg, S.; Leygnac, S.; Louedec, L.; Milliner, M.; ben Azzouna, R.; Reshef, A.; ben Ami, M.; Meilhac, O.; et al. Detection of Apoptotic Cells in a Rabbit Model with Atherosclerosis-Like Lesions Using the Positron Emission Tomography Radiotracer [18F]ML-10. Mol. Imaging 2015, 14, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Pang, L.; Hu, Y.; Liu, G.; Cheng, D.; Shi, H. Detection of Vulnerable Atherosclerosis Plaques in a Mice Model by 18F-ML-10 PET/CT Imaging Targeting Apoptotic Macrophages. J. Nucl. Med. 2018, 59, 105. [Google Scholar]
- Temma, T.; Saji, H. Radiolabelled Probes for Imaging of Atherosclerotic Plaques. Am. J. Nucl. Med. Mol. Imaging 2012, 2, 432–447. [Google Scholar]
- Ohshima, S.; Petrov, A.; Fujimoto, S.; Zhou, J.; Azure, M.; Edwards, D.S.; Murohara, T.; Narula, N.; Tsimikas, S.; Narula, J. Molecular Imaging of Matrix Metalloproteinase Expression in Atherosclerotic Plaques of Mice Deficient in Apolipoprotein E or Low-Density-Lipoprotein Receptor. J. Nucl. Med. 2009, 50, 612–617. [Google Scholar] [CrossRef]
- Fujimoto, S.; Hartung, D.; Ohshima, S.; Edwards, D.S.; Zhou, J.; Yalamanchili, P.; Azure, M.; Fujimoto, A.; Isobe, S.; Matsumoto, Y.; et al. Molecular Imaging of Matrix Metalloproteinase in Atherosclerotic Lesions: Resolution with Dietary Modification and Statin Therapy. J. Am. Coll. Cardiol. 2008, 52, 1847–1857. [Google Scholar] [CrossRef]
- Nakahara, T.; Narula, J.; Strauss, H.W. Molecular Imaging of Vulnerable Plaque. Semin. Nucl. Med. 2018, 48, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Kuge, Y.; Takai, N.; Ogawa, Y.; Temma, T.; Zhao, Y.; Nishigori, K.; Ishino, S.; Kamihashi, J.; Kiyono, Y.; Shiomi, M.; et al. Imaging with Radiolabelled Anti-Membrane Type 1 Matrix Metalloproteinase (MT1-MMP) Antibody: Potentials for Characterizing Atherosclerotic Plaques. Eur. J. Nucl. Med. Mol. Imaging 2010, 37, 2093–2104. [Google Scholar] [CrossRef] [PubMed]
- Watkins, G.A.; Jones, E.F.; Scott Shell, M.; VanBrocklin, H.F.; Pan, M.-H.; Hanrahan, S.M.; Feng, J.J.; He, J.; Sounni, N.E.; Dill, K.A.; et al. Development of an Optimized Activatable MMP-14 Targeted SPECT Imaging Probe. Bioorg. Med. Chem. 2009, 17, 653–659. [Google Scholar] [CrossRef] [PubMed]
- Temma, T.; Ogawa, Y.; Kuge, Y.; Ishino, S.; Takai, N.; Nishigori, K.; Shiomi, M.; Ono, M.; Saji, H. Tissue Factor Detection for Selectively Discriminating Unstable Plaques in an Atherosclerotic Rabbit Model. J. Nucl. Med. 2010, 51, 1979–1986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Overoye-Chan, K.; Koerner, S.; Looby, R.J.; Kolodziej, A.F.; Zech, S.G.; Deng, Q.; Chasse, J.M.; McMurry, T.J.; Caravan, P. EP-2104R: A Fibrin-Specific Gadolinium-Based MRI Contrast Agent for Detection of Thrombus. J. Am. Chem. Soc. 2008, 130, 6025–6039. [Google Scholar] [CrossRef]
- Uppal, R.; Catana, C.; Ay, I.; Benner, T.; Sorensen, A.G.; Caravan, P. Bimodal Thrombus Imaging: Simultaneous PET/MR Imaging with a Fibrin-Targeted Dual PET/MR Probe—Feasibility Study in Rat Model. Radiology 2011, 258, 812–820. [Google Scholar] [CrossRef]
- Manca, G.; Parenti, G.; Bellina, R.; Boni, G.; Grosso, M.; Bernini, W.; Palombo, C.; Paterni, M.; Pelosi, G.; Lanza, M.; et al. 111In Platelet Scintigraphy for the Noninvasive Detection of Carotid Plaque Thrombosis. Stroke 2001, 32, 719–727. [Google Scholar] [CrossRef]
- Arbab-Zadeh, A.; Fuster, V. The Myth of the “Vulnerable Plaque”. J. Am. Coll. Cardiol. 2015, 65, 846–855. [Google Scholar] [CrossRef]
- Moghbel, M.; Al-Zaghal, A.; Werner, T.J.; Constantinescu, C.M.; Høilund-Carlsen, P.F.; Alavi, A. The Role of PET in Evaluating Atherosclerosis: A Critical Review. Semin. Nucl. Med. 2018, 48, 488–497. [Google Scholar] [CrossRef]
- Soret, M.; Bacharach, S.L.; Buvat, I. Partial-Volume Effect in PET Tumor Imaging. J. Nucl. Med. 2007, 48, 932–945. [Google Scholar] [CrossRef]
- Evans, N.R.; Tarkin, J.M.; Chowdhury, M.M.; Warburton, E.A.; Rudd, J.H.F. PET Imaging of Atherosclerotic Disease: Advancing Plaque Assessment from Anatomy to Pathophysiology. Curr. Atheroscler. Rep. 2016, 18, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Stage of a Plaque | Target Pathophysiological Process | RP |
---|---|---|
Thickening of intima, intimal xanthoma, or “fatty streak” | Lipoprotein accumulation | 99mTc, 111In, 68Ga-labeled LDL 89Zr-labeled HDL |
Lipoprotein oxidation | 131I and 125I-labeled antibodies to OSE 89Zr-LA25 | |
Monocyte adhesion and infiltration | VCAM-1: 18F-4V; 99mTc- or 18F labeled cAbVCAM1-5 P-selectin: 64Cu-antibodies, 68Ga-fucoidan | |
Macrophage migration and “foam cell” formation, macrophage activation | Native cells migration | 111In-oxine, 99mTc-exmetazime blood cell labelling |
Increased macrophage glucose uptake and metabolism | 18F-FDG * | |
Increased membrane production | 18F-choline * | |
Scavenger receptor | 99mTc-specific mab to LOX-1 | |
Somatostatin receptor | 68Ga-DOTA-TATE * 111In-DOTA-JR11 | |
Mannose receptors | 68Ga-mannose-specific mab 99mTc-tilmanocept * 18F-FDM 68Ga-NOTA-MSA | |
Folate receptor | 99mTc-EC20 (etarfolatide) 18F-fluorofolic acid | |
TSPO | 11C-PK11195 18F-GE-180 11C-PBR28 | |
Chemokine receptor | 64Cu-DOTA-vMIP-II 68Ga-pentixaphor | |
LFA-1 | 111In-DOTA-butylamino-NorBIRT (DANBIRT) | |
Nicotinic acetylcholine receptor | 18F-ASEM | |
Increased phagocytosis | 64Cu-trimodal nanoparticles 18F-iron oxide nanoparticles | |
Plaque formation | Interleukin-2 receptor | 99mTc-HYNIC-IL-2 |
Neoangiogenesis | 18F-galacto-RGD 18F-Alphatide II 68Ga-NOTA-PRGD2 18F-flotegatide 99mTc-maracyclatide 99mTc-IDA-D—[c(RGDfK)]2 | |
Hypoxia | 18F-FMISO * 18F-HX4 | |
Macrophage apoptosis | 99mTc- and 68Ga-labeled annexin V | |
Proteases | 99mTc-RP805 (MPI), 111In-RP782 | |
Plaque progression and deterioration | Calcification | 18F-sodium fluoride * |
Thrombosis | 99mTc-labeled mab to tissue thromboplastin 111In-labeled platelets |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kondakov, A.; Berdalin, A.; Beregov, M.; Lelyuk, V. Emerging Nuclear Medicine Imaging of Atherosclerotic Plaque Formation. J. Imaging 2022, 8, 261. https://doi.org/10.3390/jimaging8100261
Kondakov A, Berdalin A, Beregov M, Lelyuk V. Emerging Nuclear Medicine Imaging of Atherosclerotic Plaque Formation. Journal of Imaging. 2022; 8(10):261. https://doi.org/10.3390/jimaging8100261
Chicago/Turabian StyleKondakov, Anton, Alexander Berdalin, Mikhail Beregov, and Vladimir Lelyuk. 2022. "Emerging Nuclear Medicine Imaging of Atherosclerotic Plaque Formation" Journal of Imaging 8, no. 10: 261. https://doi.org/10.3390/jimaging8100261
APA StyleKondakov, A., Berdalin, A., Beregov, M., & Lelyuk, V. (2022). Emerging Nuclear Medicine Imaging of Atherosclerotic Plaque Formation. Journal of Imaging, 8(10), 261. https://doi.org/10.3390/jimaging8100261