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Abstract: Vehicle make and model classification is crucial to the operation of an intelligent transporta-
tion system (ITS). Fine-grained vehicle information such as make and model can help officers uncover
cases of traffic violations when license plate information cannot be obtained. Various techniques
have been developed to perform vehicle make and model classification. However, it is very hard
to identify the make and model of vehicles with highly similar visual appearances. The classifier
contains a lot of potential for mistakes because the vehicles look very similar but have different
models and manufacturers. To solve this problem, a fine-grained classifier based on convolutional
neural networks with a multi-task learning approach is proposed in this paper. The proposed method
takes a vehicle image as input and extracts features using the VGG-16 architecture. The extracted
features will then be sent to two different branches, with one branch being used to classify the vehicle
model and the other to classify the vehicle make. The performance of the proposed method was
evaluated using the InaV-Dash dataset, which contains an Indonesian vehicle model with a highly
similar visual appearance. The experimental results show that the proposed method achieves 98.73%
accuracy for vehicle make and 97.69% accuracy for vehicle model. Our study also demonstrates that
the proposed method is able to improve the performance of the baseline method on highly similar
vehicle classification problems.

Keywords: convolutional neural network; vehicle make and model; multi-task learning

1. Introduction

The advent of Artificial Intelligence (AI) has significantly altered our world. AI
reaches numerous sectors of our lives, including medicine [1], education [2], mining [3],
and transportation [4]. The intelligent transportation system (ITS) is an example of how
AI is used in the transportation sector. The ability of an ITS to read license plates can help
authorized officers with vehicle surveillance and traffic law enforcement. However, license
plate information can be difficult or impossible to obtain under some conditions, such
as: not all roads being equipped with surveillance cameras; the physical condition of the
license plates being badly damaged; or the use of fake license plates on vehicles. Besides
the license plate, the vehicle make and vehicle model are also important pieces of vehicle
information [5].

Vehicle make and vehicle model information can be acquired more easily based on
their physical appearances. In addition, it is still possible to acquire this information even if
the vehicle is at a significant distance. A module that can recognize the vehicle’s make and
model should help officers find the vehicle more rapidly. Researchers have come up with
many different methods to identify the vehicle make and model, such as using K-nearest
neighbors [6], 3D models [7], and deep learning [8–11]. Despite the fact that numerous
methods have been presented in the past, this problem remains unique due to factors such
as the traffic flow, the state of the transportation infrastructure, and the variety of vehicles
in each country.
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In a country such as Indonesia, for example, surveillance cameras are still only installed
on major roads and in major cities. Additionally, the fact that the majority of vehicles on
Indonesian roads are highly similar poses a further challenge. Highly similar vehicles are
vehicles made by different manufacturers and that have different model names, but that
are very similar in terms of physical appearance. This condition can confuse the system
and lead to a high rate of misclassification. So far, only a small amount of research has been
performed on the topic of identifying the make and model of highly similar vehicles.

This study proposes a method based on deep learning for vehicle make and model
recognition, particularly for highly similar vehicles. This study combines vehicle manufac-
turer information into the learning process through a multi-task learning approach in order
to address highly similar vehicles. This is possible due to the close association between
manufacturer information and car model. By concurrently exploring the manufacturer and
model under a supervised learning process, vehicle manufacturer data will naturally pro-
vide hints to the vehicle model and enable the network to make more accurate predictions.
This study uses the InaV-Dash dataset, which was collected using a dashboard camera, as a
potential solution to the limited number of surveillance cameras in Indonesia. In brief, the
main contributions of this study are:

1. Modifications of the CNN architecture by adding multi-task learning have increased
the efficiency of the classification because it can provide two types of output (one for
vehicle make and one for vehicle model) in one recognition cycle;

2. Investigation of multiple CNN base architectures to perform multi-task learning for
two tasks (vehicle brand and vehicle model classification) on highly similar vehicles
has resulted in improved performance for all tasks across all CNN base architectures;

3. Evaluation of the proposed method employing a dataset of images captured by a
dashboard camera has provided a new and unique perspective in comparison to other
existing car datasets.

Numerous experiments have been conducted to evaluate the proposed architectures.
All of the baseline architectures that were used in this research showed that the proposed
network architecture is both efficient and able to improve accuracy.

The paper is organized as follows: Section 2 discusses related work on the classifi-
cation of vehicle makes and models, fine-grained classification, and multi-task learning.
Section 3 presents the InaV-Dash dataset’s characteristics and statistics. Section 4 discusses
some of the theoretical background of the proposed architecture for highly similar vehicle
classifications. Section 4 contains further information on the proposed architecture and
composition of each layer. Section 5 discusses how to train and evaluate the classification
system’s performance. Section 6 will bring the research to a close.

2. Related Works

Numerous academics have proposed methods for vehicle make and model recognition.
Based on the method, vehicle make and model recognition may be divided into two
categories: a hand-crafted feature approach and a deep learning feature approach. The
hand-crafted feature approach utilizes a collection of descriptors to extract significant
vehicle features from an image. Then, these features are given to a classifier. Some hand-
crafted feature approaches that are often used for vehicle make and model recognition
are: Scale Invariant Transform Feature (SIFT) [12,13], Histogram of Oriented Gradients
(HOGs) [14–17], and Speeded-Up Robust Features (SURFs) [18,19].

In contrast to the hand-crafted feature approach, which relies heavily on human-
engineered feature extractors, the deep learning feature approach does not need a human to
create features. The deep learning feature approach will make important features directly
from the data that is input through the learning process. This means that the feature that
comes out of it can improve the classification performance in almost every case, including
vehicle make and model recognition. The use of a deep learning approach for vehicle
make and model recognition has been proposed by several researchers. They use different
CNN architectures, including: ResNet50 [20,21], ResNet101 [22], VGG-16 [23,24], and
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Inception [25,26]. In earlier work, researchers measured performance using datasets such
as Stanford Cars, CompCars, and CompCars Surveillance. The results of their studies show
that deep learning features are more accurate than hand-crafted features. This also shows
that CNN’s features are very good at recognizing the make and model of a car.

However, in most previous studies, vehicle make information was obtained auto-
matically by the classifier based on the vehicle model predictions. In fact, knowing the
manufacturer or vehicle make is an important part of distinguishing between highly similar
vehicles, as it can lead to the correct vehicle model class. Up until now, only a few pieces
of research have examined the use of dedicated networks to generate predictions about
vehicle makes as an output. This is because using a dedicated network to predict the
manufacturer of a vehicle is seen as having a lot of drawbacks, such as increasing the cost
of computation, taking more time, and making the system more complicated. Therefore, in
this study, a multi-task learning (MTL) approach will be used in the deep learning approach
as a way to build vehicle make and vehicle model classifiers separately without making the
system much more complicated.

MTL can be considered as one technique for machines to emulate human learning
processes, as people frequently transfer information across tasks and vice versa when these
tasks are connected. In terms of classification, MTL aims to improve classifier learning by
combining knowledge from several tasks [27]. The use of MTL in deep learning methods
has been carried out by several researchers in various fields, including vehicle classification.
Huo et al. used MTL on the region-based convolutional neural network (RCNN) to
recognize three tasks: the type of vehicle (sedan, van, bus, truck), the point of view (front,
front-side, back-side), and the lighting conditions (day or night) [28]. The method proposed
in that research is evaluated using an own-collected dataset taken using traffic surveillance
cameras. The evaluation results show that the multi-task CNN model is very good at
solving the problem of multi-view vehicle type classification. Xia et al. used CNN with
MTL to recognize vehicle manufacturer logos [29]. The proposed system is not only capable
of outputting the vehicle make as an output but also other attributes related to logo visuals
such as alphabet, symmetry, encircled, and animal-like. A vehicle logo database with 780
images from 15 different vehicle manufacturers was used to measure the performance
of the proposed system. The proposed multi-task CNN model works well for both logo
classification and attribution prediction, with an overall accuracy of 98.14%.

Sun et al. proposed a CNN multi-task method with a soft sharing mechanism that
can recognize vehicle models and vehicle colors [30]. The soft sharing mechanism means
that each task will have a different architecture. In the proposed architecture, the vehicle
model recognition task uses the dense block, while the vehicle color recognition task
uses the convolutional block. The system evaluation was conducted using the PKU-VD
dataset, which was filtered to leave 201 vehicle models and 11 color types, for a total of
500,000 images. The evaluation results indicate that the suggested architecture is capable of
simultaneously learning multiple vehicle properties, which enriches the output and enables
it to achieve a high accuracy (above 94%) for all tasks. However, because each task has its
own architecture, the proposed system becomes more complicated and requires a lot of
computational power. In addition, this study does not go into detail about how similar the
recognized vehicles are, so it does not consider vehicle make information to be an essential
component of classifying vehicle models.

3. Dataset
InaV-Dash Dataset

In this study, we collected vehicle images to form a dataset called the Indonesian
Vehicle Dashboard Dataset (InaV-Dash dataset). This dataset has different characteristics
from other common datasets, such as CompCars and Stanford Cars. The first characteristic
to know about this dataset is that the cars that were collected for it are highly similar, as
explained in the first section. This is intended to adjust to the road conditions in Indonesia,
which are dominated by highly similar vehicles. Therefore, this dataset only consists of four
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vehicle makes and 10 vehicle models, with a total of 4192 images divided into 2934 training
images and 1258 test images. Figure 1 shows some examples of pairs of cars that have a
high degree of similarity.
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Figure 1. A pair of vehicle model images that are highly similar.

Based on Figure 1, it can be seen that the main difference between the pair of vehicle
models is in the logo emblem, which refers to the vehicle make. Due to this, information
about the vehicle’s make is considered important for correctly classifying the model.

The second characteristic of this set of data is that it was collected using a dashboard
camera in a real-life traffic scene. As depicted in Figure 2, the usage of the dashboard
camera presents an additional difficulty as some vehicle images look hazy and others are
obscured by other objects or cars.
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Figure 2. Some examples of challenging images contained in the InaV-Dash Dataset.

The dashboard camera used is set at a Full HD resolution of 1920 × 1080 pixels and
runs at 60 frames per second (fps). Full HD resolution is needed to keep the details on small
parts such as logo emblems, and 60 fps is needed to keep the image from being blurry due
to how fast the vehicle is moving. This is very different from the image characteristics in
the CompCars and Standford Cars datasets, which are generally acquired when the vehicle
is stationary or parked using an SLR camera with more complete setting options. The use
of the dashboard camera also provides five possible key points for each vehicle model that
will be recognized. Figure 3 shows examples of the five key points in this dataset, and
Table 1 shows detailed statistics of the dataset used in this study.
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Table 1. InaV-Dash dataset in statistics.

Vehicle Make Vehicle Model Trainset Testset

Toyota Agya 143 65
Toyota Calya 196 93
Toyota Avanza 767 322
Toyota Innova 526 229

Daihatsu Ayla 138 44
Daihatsu Sigra 117 43
Daihatsu Xenia 277 117
Suzuki Ertiga 235 95
Honda Brio 323 143
Honda Mobilio 212 107

2934 1258

4. Proposed Method

This section discusses the methodology used to build the proposed method, beginning
with a discussion of the numerous theories utilized to rationalize the modifications. Then,
all of the modifications made to the proposed method architecture, including the type of
layer, the number of neurons, and the activation function, are explained in great depth in the
following sections. Finally, the methods for evaluating the proposed method’s performance
are explained in detail.

4.1. Single-Task and Multi-Task Learning

In most studies, the proposed artificial neural network is trained using a single task
learning (STL) method like the study conducted by [31,32]. This means that if we want
to perform another classification task on STL, we then need to develop a new network
with a customized output layer to learn the new task. This approach is considered to
be less effective, especially if both the new and old tasks use the same input. Therefore,
a new approach, namely multi-task learning (MTL), was developed to overcome this
inefficiency by using the knowledge from numerous related tasks and improving the
generalization performance of all the tasks [33]. This approach also has the capacity for
incremental learning, which allows for the subnet of a new task to be added without
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updating previously learned parameters [34]. Figure 4 shows the main differences between
the STL and MTL approaches in terms of network architecture.
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In this study, the MTL approach will be used to classify four vehicle brand classes and
ten vehicle model classes. The use of MTL is intended to improve classification performance,
especially for the vehicle model classification task in the case of highly similar vehicles. The
two tasks are considered closely related because recognizing the vehicle brand can help
identify the vehicle model, especially for highly similar vehicles.

4.2. Convolutional Neural Network

The emergence of CNN can make up for the shortcomings of conventional machine
learning methods, which are only able to process data in their original raw form. According
to [35], CNNs with three or more layers can learn very complex functions and provide
image features needed for classification [36,37]. CNN is the most popular method for
classifying images at the moment [38], including classifying vehicles [39–42], and there
are many different CNN architectures for many different purposes [43]. In this study,
several CNN architectures will be used, such as VGG [44], ResNet [45], Inception [46], and
MobileNet.

The Visual Geometry Group (VGG) architecture is made up of multiple blocks with
stacked convolution layers, a max-pooling layer, and three fully connected layers. The use of
this large number of layers (deep CNN) often leads to accuracy degradation problems. The
Residual Network (ResNet) is an architecture that was developed to overcome the problems
of using residual learning blocks and shortcut connections [47]. Google announced CNN’s
Inception architecture, which uses Inception blocks [48] and a learning strategy from [49] to
solve various object size problems. Since its introduction, Inception has been updated with
Inception-v2 and Inception-ResNet. Inception-v2 uses less memory and less computational
load than the original [50], while Inception-ResNet can be trained faster [51,52] even though
it has a deeper network. MobileNet is optimized for mobile and embedded applications,
so it is compliant with resource limitations [53–55]. The best thing about MobileNet lies
in its multipliers and depth-wise separable convolution that minimize parameters and
computation [56,57].

4.3. Proposed Multi-Task Convolutional Neural Network

This paper proposed a modification to the CNN architecture to make it easier to
classify the make and model of highly similar vehicles. The modifications made include
implementing the MTL approach to increase CNN efficiency. The proposed architecture
can be seen in Figure 5. In general, the system is divided into two subsystems, namely
the feature extractor using the CNN baseline (marked with a black dotted line) and the
modified classifier with a multi-task approach (marked with a blue dotted line).
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We started our research by investigating several CNN baseline architectures for highly
similar vehicle brand and model classifications. Next, we performed two stages for each
selected baseline CNN architecture. Then, we compared the results obtained from the CNN
baseline architecture and the proposed architecture to see the improvements brought by the
proposed architecture. Initially, we trained the original VGG-16 using 2934 trainset images
from the InaV-Dash dataset to classify the vehicle brand. At this stage, the training results
show that the original VGG-16 was unable to reach convergence. Next, we conducted a
second stage of training, still using the same architecture and trainset as before, but this
time it was aimed at vehicle model classification. The results obtained at this stage are
worse than before because the vehicle model classification task is more difficult than the
vehicle brand classification task, especially in highly similar vehicle conditions. In this
research, these two stages were also used on a few other original CNN architectures to
obtain a baseline for the make and model domains.

In order to improve the performance across classification tasks, we implemented a
proposed architecture to modify the original VGG-16. Changes were made by replacing the
classifier part from the original VGG-16 with a classifier from the proposed architecture and
leaving only five block convolutional layers from the original VGG-16 as a feature extractor
part. After the feature maps of the last convolutional layer in the fifth block are obtained,
these feature maps will be flattened using the global average pooling layer and mapped
into vectors with a size of 1 × 512. After that, the feature vector will pass through two pairs
of layers, namely a dense layer with 256 neurons and a dropout layer, to learn the common
representation feature for all tasks. This feature will then be used as input for two different
branches: the branch for classifying the vehicle model and the branch for classifying the
vehicle make. The layers of these two branches are the same: there are two dense layers
and two dropout layers. The dense layer in both branches has the characteristics of a fewer
number of neurons. This concept is inspired by the convolutional layer block arrangement
in VGG-16, where in each block the size of the feature map becomes smaller. This decreasing
number of neurons is expected to be able to filter important features gradually without
losing too much important information. The difference in the two branches lies in the
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number of neurons in the last layer, namely dense5, which functions as a classifier layer.
The activation function used in dense5 is SoftMax, while in the other layers, the activation
function of the linear unit rectifier is used. Since the classifier in the proposed architecture
already employs a multitask approach, we use a joint loss function during training to
calculate an error value from two task-specific branches.

Modifications to the classifier part were also carried out for several original CNN archi-
tectures and were evaluated to see the improvements brought by the proposed architecture.
This study uses several methods to evaluate the performance of the proposed method, such
as accuracy scores, specificity, sensitivity, and the F1-Score, to provide a comprehensive
performance of the proposed method. In the next section, each module used in the above
proposed architecture will be explained in detail along with its parameter settings.

4.3.1. Convolutional Layer

The convolution layer of the CNN plays a role in carrying out the feature extraction
process for the given input by following Equation (1), where C is the convoluted matrix, I
is the input image with dimensions m× n, and k is the kernel matrix of size i× j. In this
research, the input image size is 224 × 224 and the kernel size is 3 × 3. The convolution
operation is performed with stride = 1 and padding = “same” so that the output feature
maps are the same size as the input feature maps.

C(i, j) = (I × k)(i, j) = ∑
m

∑
n

I(m, n)K(i−m, j− n) (1)

4.3.2. Max-Pool Layer

The main objective of the max-pool layer is to reduce the size of the input while
preserving its key features, and especially its texture feature [58]. Furthermore, because it
is more similar to biological characteristics, it can alleviate the problems of over-fitting and
vanishing gradient to some extent. The operations performed on the max-pool layer can be
written as in Equation (2).

yi = maxR×R
{

yr×r
i

}
f (r, r) (2)

Based on Equation (2), the max-pooling operation result matrix (yi) is obtained from
the max operation in the R × R region where yr×r

i is the i-th output of a window measuring
r× r and f (r, r) represents the window function of the setting blocks. In this research, the
max-pool layer is placed at the end of each block convolutional layer except for the last
block convolutional layer. The max-pool layer operation is executed with a window of size
2 × 2 and stride = 2 × 2 resulting in an output map that is twice as small as the input.

4.3.3. Global Average Pooling Layer

Similar to the max-pool layer, the global average pooling layer reduces the dimensions
of the input matrix without losing its key features, hence reducing the computational load.
The difference is that global average pooling uses all the values in the matrix and takes
the average as the final output. In this study, the global average pooling layer replaces the
normal flattening process before features from the last convolutional layer (conv5_3) pass
to the dense layer.

4.3.4. Dense Layer

A dense layer is another name for a fully connected layer in the form of a 1-D array. In
this study, the dense layer gets 1D input from the results of the global average pooling layer
as described in the previous section. The number of dense layers and the chosen activation
functions determine whether a network can solve non-linear problems [59]. This study
uses eight dense layers in the classifier part of the proposed architecture, with two layers
being outside the branch, three layers being inside the vehicle model recognition branch,
and three more layers being inside the vehicle brand recognition branch. The number of
nodes in each dense layer tends to shrink towards the output layer.
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4.3.5. Dropout Layer

The dropout layer was introduced by Hinton et al. [60] and is commonly used in
conjunction with dense layers to overcome the over-fitting issue [61]. The dropout layer
works by randomly dropping units and freezing their incoming and outgoing connec-
tions [62]. This can lower the computational cost and help find the most unique features
of its inputs [63]. The selection process of units to be dropped is set using a probability of
retention parameter p with a range values of p, 0 < p < 1. In this study, the p value used is
p = 0.1 for all the evaluated architectures.

4.3.6. Activation Functions

An activation function is applied to an artificial neural network in order to help the
network learn complex data patterns and solve non-linear problems [64]. In this study,
two types of activation functions were used, namely the rectified linear unit (ReLU) and
Softmax functions. The ReLU function is the most often used activation function [35],
which returns a zero for an input on the origin and over the negative domain and returns a
linear value on the positive domain [65], as can be seen in Equation (3).

ReLU =

{
0, x ≤ 0
x, x > 0

(3)

In the proposed architecture, the ReLU function is used on all convolutional layers
and on several dense layers in each branch (dense1 to dense4). As for the output layer
(dense5), the proposed architecture employs a Softmax activation function. The Softmax
function is a combination of several sigmoid functions in the form of nodes [66], which
can generate class probabilities for each task as output [67]. The probabilities are derived
from the output of each sigmoid node, which can only yield values between 0 and 1. The
node with the highest probability will determine the class that is used as the final network
output. Mathematically, the Softmax function can be expressed as Equation (4):

σ(z)j =
ezj

∑K
k=1 ezk

for j = 1, . . . , K (4)

where σ(z)j is the probability value for the jth class, ezj is the output of the jth node, ezk is
the output of each existing node, and K is the number of classes. In this study, the Softmax
function is implemented in the last dense layer in each branch (dense5) with a value of
K = 4 for the vehicle make recognition branch and K = 10 for the vehicle model recognition
branch.

4.3.7. Loss Function

The loss function is a function that is used to measure the success of the network in
classifying during the training process. Since the proposed network can yield two outputs
in one round of propagation, the loss function must also take this into account. Therefore,
the author uses a combined loss function as in Equation (5):

Ljoint = λ1 · Lvehicle_model_loss + λ2 · Lvehicle_brand_loss (5)

where Ljoint is the joint loss function for the proposed architecture, Lvehicle_model_loss is the
loss function produced by the vehicle model recognition branch, Lvehicle_brand_loss is the loss
function yielded by the vehicle make recognition branch, λ1 and λ2 are the two-branch
loss weights. Meanwhile, Lvehicle_model_loss and Lvehicle_brand_loss are defined as the typical
cross-entropy loss as in Equation (6):

L = −log[P(yi|xi, θ)] (6)
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where xi, yi, and θ denote input, label, and the network parameter, respectively. The above
loss function will be able to measure how well each branch in the proposed architecture
works and give a better update to the weights so that convergence can happen more rapidly.

4.4. Performance Evaluation Method

The performance evaluation of a machine learning classifier is a crucial aspect of any
research because it shows how well the classifier can guess the input image correctly [68]. In
this study, a categorical accuracy method was used to provide a single and general accuracy
score for each task, i.e., vehicle make recognition and vehicle model recognition. The
formula for calculating categorical accuracy scores in this study can be seen in Equation (7):

Accuracy =
Number o f correct prediction
Total number o f prediction

(7)

After knowing the classifier performance score in general, we conducted another
evaluation to obtain the performance of the proposed method in guessing each class. This
evaluation is conducted by creating a confusion matrix and calculating the values of true
positive (TP), true negative (TN), false positive (FP), and false negative (FN). To make it
easier to understand the meaning of the TP, TN, FP, and FN values used in this study, we
will take as an example the calculation for the Toyota class. The TP value represents the
number of images that are predicted to be Toyota and that are indeed from Toyota’s class
ground truth. The TN value represents the number of images that are predicted to be a
brand other than Toyota and have a non-Toyota ground truth. The FP value represents
the number of incorrectly predicted images as belonging to the Toyota class, while the
FN value represents the number of images in which the Toyota class image is incorrectly
predicted as a class other than Toyota. After getting the TP, TN, FP, and FN values for all
existing classes, the next step is to find the precision (PR) and recall (RE) values for each
class using Equations (8) and (9).

PR =
TP

TP + FP
(8)

Precision (PR), also known as positive predictive value (PPV), denotes the frequency
with which the model correctly predicts the class. It indicates the proportion of accurate
model predictions.

RE =
TP

TP + FN
(9)

Recall (RE) describes the degree to which the positive predictions of a machine learning
model correspond to reality. It measures the proportion of our ground truth classes that are
also predicted by the model.

After the PR and RE values for each class are calculated, we used these values to
calculate the F1-Score as a harmonic mean of precision and recall [69]. The F1-Score can help
us demonstrate how the classification model is “confused” when making predictions [70].
The F1-Score value for each class (F1Scorei) can be calculated using Equation (10).

F1Scorei = 2
PR× RE
PR + RE

(10)

However, instead of using the F1-Score for each class as a classifier performance
reference, this study will summarize the F1-Score values into two tasks, namely the F1-Score
for the vehicle make recognition task and the F1-Score for the vehicle model recognition
task. The technique used to summarize is the macro average technique. This technique
is very appropriate to be applied to imbalanced datasets such as the InaV-Dash dataset,
wherein the data are spread over several classes in an imbalanced manner but all classes
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have the same level of importance. The formula for calculating the F1-Score using the
macro average technique in this study is shown in Equation (11).

Macro Average F1Score =
1
n

n

∑
i=1

F1Scorei (11)

where n is the number of classes in one task (i.e., n = 4 for the vehicle brand recognition
task and n = 10 for the vehicle model recognition task) and i is the class in each task.

5. Results and Discussion
5.1. Experimental Setup

We use the Python programming language, which runs on Windows 10, to conduct this
research. The Keras Library, which is connected to the TensorFlow backbone, was utilized
to construct all CNN architectures during the experiment. Although network weights
can be acquired through the training of networks from scratch, in this study, pre-trained
models were employed because the training from scratch is computationally complex and
can be prohibitively expensive if it requires application-specific hardware. Moreover, the
use of a pre-trained CNN with proper fine-tuning outperformed or, in the worst situation,
performed comparably to a CNN built from scratch [71]. In this study, we used ImageNet
pre-trained weight as a starting point for training on the proposed architectures. The initial
value for the learning rate is set at 0.002 and the weight decay is set to 0.5. We trained
the network for 50 epochs using the SGD optimizer with momentum = 0.9. The training
procedure is conducted using a batch model with a batch size of 16. All of the results of the
experiments were measured on a single computer with the specs shown in Table 2.

Table 2. Hardware and software.

Item Content

Processor Intel core i7-6700(CPU) with 3.4 GHz
Graphical Processing Unit (GPU) NVIDIA GeForce GTX 980 Ti

Memory 8.0 GB
Operating System Windows 10

Python Python 3.6.4
Cuda CUDA 9.0

CuDNN CuDNN 7.0.5

5.2. Experimental Results on Single-Task CNN

This subsection will discuss the performance of the CNN baseline architecture in
identifying the vehicle manufacturer and model in the InaV-Dash dataset. This subsection
is divided into two experiments. The first experiment aims to see the performance of
several CNN baseline architectures in the context of vehicle brand classification in the
InaV-Dash dataset. In this experiment, each baseline architecture has two different versions
of the output layer. The output layer of the first version is a SoftMax layer containing four
neurons, which is used to identify the vehicle manufacturer, while the output layer of the
second version is a SoftMax layer containing 10 neurons, which is used to identify the
vehicle model. This experiment uses a learning curve as an evaluation measure for the
CNN baseline architecture in the training process. Figure 6 shows the learning curve made
by the training loss value for the task of recognizing the brand of a vehicle with the CNN
baseline architecture.
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According to Figure 6, the baseline CNN architecture of the ResNet, Inception, and
MobileNet families is able to reach a convergent state after going through 16 epochs. How-
ever, the VGG-16 and VGG-19 architectures do not exhibit a trend towards convergence.
VGG-16 and VGG-19 consistently produce high loss values during training, with significant
differences compared to other architectures. After training VGG-16 and VGG-19 for vehicle
brand classification, the lowest loss values are 6.92 and 7.20, respectively. This shows that
the architecture of the VGG family is not able to find sufficient distinguishing features for
each recognized vehicle manufacturer. To ensure the training results, the accuracy score
and F1-Score were used as evaluation measures. This measurement was performed using a
testset of the InaV-Dash dataset. A comparison of accuracy scores and F1-Scores for each
CNN baseline architecture can be seen in Table 3.

Table 3. Performance comparison for vehicle brand classification using CNN baseline architectures.

No. CNN
Architecture

Vehicle Brand
Accuracy

F1-Score
Daihatsu

F1-Score
Honda

F1-Score
Suzuki

F1-Score
Toyota

Macro Average
F1-Score

1. VGG-16 56.36 0.00 0.00 0.00 0.72 0.18

2. VGG-19 56.36 0.00 0.00 0.00 0.72 0.18

3. ResNet50 95.39 0.87 0.99 0.98 0.96 0.95

4. Inception 94.83 0.85 1.00 0.98 0.96 0.95

5. InceptionResNet 94.75 0.85 1.00 0.98 0.95 0.95

6. MobileNet 91.49 0.75 0.99 0.98 0.93 0.91

The accuracy score shows that there is a close relationship between the loss curve
formed from the training results and the CNN’s ability to classify. For the vehicle brand
classification task, four CNN baseline architectures that were able to achieve convergence
on the learning curve, namely ResNet50, Inception, InceptionResNet, and MobileNet, were
able to obtain an accuracy score above 93%. On the other hand, the VGG-16 and VGG-19
architectures that did not reach convergence on the learning curve only produced a 56%
accuracy. However, when viewed in more detail, this 56% accuracy score is obtained by
issuing the class prediction results as Toyota for all test images. This prediction result is
clearly influenced by the imbalance condition in the InaV-Dash dataset, which has the
highest number of images with the Toyota brand among other manufacturers. This can
also be seen from the F1-Score for three classes other than Toyota, which obtained a score
of 0.00, which means that VGG-16 and VGG-19 were not able to guess any image from the
Daihatsu, Honda, and Suzuki classes correctly.
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ResNet-50 became the baseline architecture with the highest accuracy score, reaching
95.39%. The architecture of the Inception family, namely Inception and InceptionResNet,
has a slightly lower accuracy than ResNet50, but it has an F1-Score of 1.00 for Honda man-
ufacturers. This shows that the architecture of the Inception family is able to find unique
characteristics for the vehicle image with the Honda manufacturer so that it can make pre-
dictions correctly. When viewed as a whole, the ResNet-50 and Inception-InceptionResNet
architectures actually have the same ability to make predictions. Meanwhile, MobileNet
has a slightly lower performance than ResNet and Inception. From the results of this
evaluation, it is also known that the Daihatsu manufacturer is the most difficult class to
predict. This could be influenced by the fact that vehicles from the Daihatsu manufacturer
have many similarities with vehicles from the Toyota manufacturer when viewed from the
point of view of the logo and body shape of the vehicle. This means some of the images of
Daihatsu vehicles are wrongly classified as Toyota class.

The next experiment is still aimed at looking at the performance of several CNN
baseline architectures, but this time for the context of vehicle model classification on the
InaV-Dash dataset. The learning curve generated by the CNN baseline architecture during
training for vehicle model classification can be seen in Figure 7.
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The learning curve formed in the context of vehicle model classification is still in line
with the learning curve generated in the context of vehicle brand classification. In this
experiment, the four baseline CNN architectures, i.e., ResNet50, Inception, InceptionResNet,
and MobileNet, were again able to achieve convergence in the training phase. Convergent
conditions can be achieved by these four architectures after going through about 15 epochs
of the training process. In contrast, VGG-16 and VGG-19 also exhibited poor results during
training because they failed to reach convergence. The baseline architecture of the VGG
family also produces a greater loss value than the previous experiment. The smallest loss
values from VGG-16 and VGG-19 in training for the vehicle model classification task are
11.89 and 14.37, respectively. This is influenced by the vehicle model classification task,
which is more complicated (10 classes) compared to the vehicle manufacturer classification
task (4 classes). To find more complete evidence regarding the performance of the CNN
baseline architecture, accuracy scores and F1-Scores were used again in this experiment.
Table 4 shows the performance of each CNN baseline architecture used in the context of
vehicle model classification in the InaV-Dash dataset testset.

Performance comparisons using accuracy scores still show the same result as the
resulting learning curve. The VGG-16 architecture, which was not able to achieve conver-
gence during training, was only able to produce an accuracy score of 25%. If viewed in
more detail, this accuracy is obtained because the VGG-16 architecture tends to predict
the test image as an Avanza class. Evidence of this can be seen from the F1-Score for the
Avanza class, which reached 0.41. This phenomenon is also influenced by the imbalance
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condition in the InaV-Dash testset, wherein the image from the Avanza class dominates
compared to other classes. Meanwhile, VGG-19 differs from VGG-16 in terms of predictive
tendencies. VGG-19 tends to produce Brio-class predictions. This is reinforced by the
accuracy of VGG-19, which only reaches 11%, or equivalent to the ratio of Brio class images
on the InaV-Dash dataset testset. This trend can also be seen in the F1-Score belonging to
the VGG-19 architecture, which is all zero except for the Brio class, which produces a value
of 0.20.

Table 4. Performance comparison for vehicle brand classification using CNN baseline architectures.

No. CNN
Architecture

Vehicle
Model

Accuracy

F1-
Score
Agya

F1-
Score

Avanza

F1-
Score
Ayla

F1-
Score
Brio

F1-
Score
Calya

F1-
Score
Ertiga

F1-
Score

Innova

F1-
Score

Mobilio

F1-
Score
Sigra

F1-
Score
Xenia

Macro
Average
F1-Score

1. VGG-16 25.60 0.00 0.41 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04

2. VGG-19 11.37 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.02

3. ResNet50 95.95 0.93 0.96 0.89 0.97 0.97 0.98 0.98 0.99 0.94 0.91 0.95

4. Inception 93.88 0.88 0.93 0.87 0.99 0.92 0.98 0.99 0.99 0.84 0.80 0.92

5. InceptionResNet 90.70 0.80 0.90 0.80 0.97 0.91 0.97 0.97 0.95 0.81 0.75 0.88

6. MobileNet 91.73 0.87 0.90 0.83 0.99 0.92 0.99 0.99 0.99 0.80 0.69 0.90

On the other hand, the four architectures that managed to achieve convergence
recorded a fairly good accuracy score, which is above 90% for the context of vehicle
model recognition. ResNet50 again achieved the highest accuracy score of 95.95%, followed
by Inception, which reached 93.88%. In this experiment, MobileNet was able to be slightly
superior to InceptionResNet by a difference of about 1%. This shows that in the context of
vehicle model recognition with a high degree of similarity, deeper layers in the architecture
will not guarantee a better classification performance. Overall, the performance of these
four architectures is not too different. This can be seen from the F1-Score values generated
by these four architectures for each class of vehicle model, which are not too different.
The results of this experiment also show that the Xenia vehicle model class is the most
difficult class to identify correctly, with an average F1-Score of 0.79. This average is quite
low compared to the average F1-Score for other classes, which is of at least 0.85. At the
same time, the phenomenon strengthens the case that the high level of visual similarity for
the vehicle models in the InaV-Dash dataset can cause network confusion and saturation.
In this case, most of the images of the Xenia class, which failed to be predicted correctly,
were misclassified as the Avanza class. In addition to the very similar visual appearance
of the two classes, the imbalance condition also makes the network tend to provide more
predictions of Avanza class compared to predictions of Xenia class. In the next section, we
will discuss the performance of the proposed architecture in dealing with this problem.

5.3. Experimental Results on Multi-Task CNN

This subsection describes the performance of the proposed multi-task CNN to rec-
ognize vehicle images taken from the InaV-Dash dataset testset. Since the proposed ar-
chitecture already has a branch for each classification task to be worked on, the training
process to identify vehicle brands and vehicle models can be carried out simultaneously. A
learning curve is still a performance measurement technique for the proposed architecture
during the training process. Since the proposed architecture already supports multi-task
learning, the learning curve is drawn based on the combined loss values generated from
the two branches. The learning curve for the proposed method can be seen in Figure 8.

In this experiment, the learning curve shows a different trend from the two previous
experiments. Based on the learning curve that is formed, it is known that every existing line
coincides with each other after going through 46 epochs, which indicates that all baseline
architectures are able to reach convergence. This condition has never happened when using
the single task learning approach in the two previous experiments. In other words, the
proposed architecture is able to improve network performance during training, especially
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for networks that use the VGG-16 and VGG-19 architectures. The training results reveal
that VGG-16 and VGG-19 achieved the lowest loss values of 0.05 and 0.32, respectively.
This result is comparable to the loss levels achieved by four other architectures, which fall
between 0.01 and 0.04. Even though the VGG family architecture does not have the lowest
loss compared to other architectures, the best-performing architecture cannot be decided
only by the loss value. We continue the evaluation by comparing each architecture’s
accuracy scores to see how they compare in terms of performance. Table 5 shows a
comparison of accuracy scores for vehicle model and brand recognition on the InaV-Dash
dataset using the proposed architecture. To distinguish the baseline architecture from
the proposed architecture, we add the MT code (short for Multi-Task) behind the CNN
architecture name. Based on the accuracy score, the proposed architecture shows a very
promising improvement in performance.
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Figure 8. Training loss for both vehicle brand and vehicle model classification using proposed
architectures.

Table 5. Vehicle brand and vehicle model recognition accuracy scores were obtained from the
proposed method.

No. CNN
Architecture

Vehicle Brand
Accuracy

Vehicle Model
Accuracy

1. VGG-16 MT 98.73 97.69

2. VGG-19 MT 96.58 92.77

3. ResNet50 MT 97.62 96.50

4. Inception MT 96.90 96.66

5. InceptionResNet MT 97.38 96.66

6. MobileNet MT 96.42 95.47

The training results are able to achieve convergence, as evidenced by an accuracy score
of above 95% for vehicle brands and above 92% for vehicle models for all architectures.
VGG-16, which in previous experiments always failed to achieve convergence in training,
performed the best among other architectures with an accuracy score of 98.73% for vehicle
brand recognition and 97.69% for vehicle model recognition. A significant increase also
occurred in the VGG-19, which was able to produce an accuracy score of 96.58% for vehicle
brand recognition. In the context of vehicle model recognition, VGG-19 is the architecture
with the lowest score compared to other architectures. However, the application of the
proposed method on VGG-19 provides the highest increase in accuracy, reaching 81.40%.
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The proposed method is also proven to be able to improve accuracy for the other four
CNN architectures for both vehicle brand and vehicle model recognition tasks. Accuracy
improvements for the other four CNN architectures are in the range of 0.5–5.9%. Moreover,
F1-Score analysis can be used to see the recognition capabilities in more detail.

After comparing the accuracy scores, we conducted a validity test on the architecture
with the highest accuracy scores: VGG-16. A validity test was conducted to obtain speci-
ficity (PR) and sensitivity (RE) scores for each classification task. Initially, two confusion
matrices are generated to facilitate the calculation process, as can be seen in Figure 9.
After that, Equations (8) and (9) were used to calculate specificity and sensitivity scores
for each class. Tables 6 and 7 show the calculation results of the validity test for each
classification task.
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Figure 9. Confusion matrices generated based on VGG-16 MT results: (a) confusion matrix for vehicle
brand classification task; (b) confusion matrix for vehicle model classification task.

Table 6. Validity test result for vehicle brand classification task from VGG-16 MT.

No. Vehicle Brand Specificity/Precision
(PR)

Sensitivity/Recall
(RE)

1. Daihatsu 0.99 0.95

2. Honda 1.00 1.00

3. Suzuki 1.00 0.97

4. Toyota 0.98 1.00

Table 7. Validity test result for vehicle model classification task from VGG-16 MT.

No. Vehicle Model Specificity/Precision
(PR)

Sensitivity/Recall
(RE)

1. Agya 0.89 0.95

2. Avanza 0.98 0.99

3. Ayla 0.97 0.89

4. Brio 1.00 0.97

5. Calya 1.00 0.97

6. Ertiga 1.00 0.97
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Table 7. Cont.

No. Vehicle Model Specificity/Precision
(PR)

Sensitivity/Recall
(RE)

7. Innova 0.97 0.99

8. Mobilio 0.96 1.00

9. Sigra 0.98 1.00

10. Xenia 0.99 0.96

The results of the validity test show that the proposed method has a high level of
specificity and sensitivity for the two tasks. All classes were able to achieve a classification
score greater than 0.90 for the vehicle brand classification task. As for the vehicle model
classification task, all classes were able to achieve specificity and sensitivity scores above
0.90 except for the Agya–Ayla vehicle model pair, which was at 0.89. This indicates that this
vehicle model pair is the most challenging class to classify. Validity tests like this are also
carried out for other CNN architectures. However, to provide a comprehensive view, we
use the F1-score obtained from PR and RE scores. Table 8 compares the F1-Score for vehicle
brand and model recognition on the InaV-Dash dataset using the proposed architecture.

Table 8. The F1-Score results for vehicle brand and vehicle model recognition using the proposed
method.

No. CNN
Architecture

F1-Score Vehicle Brand F1-Score Vehicle Model

Daihatsu Honda Suzuki Toyota Macro
Average Agya Avanza Ayla Brio Calya Ertiga Innova Mobilio Sigra Xenia Macro

Average

1. VGG-16
MT 0.97 1.00 0.98 0.99 0.98 0.92 0.98 0.93 0.98 0.98 0.98 0.98 0.98 0.99 0.97 0.97

2. VGG-19
MT 0.94 0.97 0.92 0.98 0.95 0.80 0.97 0.78 0.93 0.92 0.92 0.96 0.91 0.84 0.93 0.90

3. ResNet50
MT 0.93 0.99 0.99 0.98 0.97 0.90 0.96 0.92 0.99 0.95 0.99 0.99 1.00 0.95 0.91 0.96

4. Inception
MT 0.91 1.00 0.99 0.97 0.97 0.96 0.96 0.94 0.99 0.97 0.99 0.99 0.99 0.96 0.88 0.96

5. Inception-
ResNet MT 0.92 1.00 0.99 0.98 0.97 0.94 0.96 0.95 0.99 0.96 0.99 0.98 1.00 0.94 0.92 0.96

6. MobileNet
MT 0.90 0.99 0.96 0.97 0.96 0.92 0.95 0.92 0.99 0.96 0.96 0.98 0.98 0.93 0.88 0.95

In the context of vehicle brand recognition, the VGG-16 architecture has the highest
average F1-Score compared to other architectures. These results prove that the proposed
method is able to handle the imbalance dataset problem, which in the previous experiment
made the network always issue Toyota’s output as the dominant class in the testset. The
VGG-16 is also able to correctly guess the entire image of the Honda manufacturer. The
same improvement occurred in VGG-19, which now has an average F1-Score of 0.95 and
can identify four car brand classes. The other four architectures also experienced an increase
in F1-Score, although it was not as significant as the increase in the VGG architecture. The
increase in F1-Score is most visible for the Daihatsu brand vehicle class, which is the most
difficult vehicle brand class to identify. This indicates that the proposed method is able to
recognize the image of the Daihatsu class better. Moreover, the proposed method does not
reduce the network’s ability to recognize the Honda vehicle brand class that reaches an
F1-Score of 1.0 on the Inception and InceptionResNet architectures. This result also makes
Honda the most recognizable vehicle brand. Meanwhile, Daihatsu, as the most difficult
class to identify, is only 0.06 adrift in the average F1-Score compared to Honda’s vehicle
brand.

The pattern of performance improvement also occurs in the context of vehicle model
recognition using the proposed method. With an average F1-Score of 0.97 for the vehicle
model recognition task, the VGG-16 remains the architecture with the highest performance.
This value also makes VGG-16 record the highest average F1-Score increase compared to
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the previous experiment, up to 0.93. The second highest F1-Score increase was recorded
by VGG-19 with an increase of up to 0.88. As for the other four architectures, the increase
occurred in the range of 0.01–0.08. Although the increase in F1-Score is less than 1%, the
use of the proposed method is still able to improve performance for all existing vehicle
model classes. This can be proven from the fact that the vehicle class of the Xenia model
is no longer the hardest to identify. Xenia has a slightly higher average F1-Score than the
Agya and Ayla, 0.92 compared to 0.91, which makes Agya–Ayla the hardest vehicle model
to classify. Since Agya–Ayla is one of the dataset’s highly similar vehicle model pairs,
this illustrates that highly similar vehicle models cause network difficulties. However,
Agya–Ayla’s class average is not too bad as it is only 0.07 of the Brio–Mobilio and Innova,
which have the highest averages.

Overall, the proposed method improves both tasks, especially on VGG-16 and VGG-19
architectures. The improvements occur because the proposed method is able to take the
two architectures out of the local minima point and towards convergence. The multi-task
learning method can also manage imbalances in the dataset that is being used.

6. Limitations

This study focuses on the vehicle make and vehicle model classification of highly
similar vehicles using CNN-based architecture and a multi-task learning approach. Despite
encouraging results, the proposed method failed to classify certain images due to certain
conditions. Table 9 shows some examples of images that the proposed method did not
correctly classify.

Table 9. Sample images that are incorrectly classified by the proposed method.

Sample Image
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In Table 9, Correct Class represents the ground truth value, while Predicted Class 
represents the output from the proposed method. There are six sample images that failed 
to be classified by the proposed method. Samples 1 through 4 indicate that lighting con-
ditions can considerably impact classification results. From these samples, we can see that 
the lighting conditions make the area around the manufacturer's logo less clear, which 
leads to incorrect classification results. Sample 5 shows a classification failure because the 
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Correct Class Daihatsu Xenia Daihatsu Xenia Daihatsu Ayla

Predicted Class Toyota Avanza Toyota Avanza Toyota Agya

In Table 9, Correct Class represents the ground truth value, while Predicted Class
represents the output from the proposed method. There are six sample images that failed to
be classified by the proposed method. Samples 1 through 4 indicate that lighting conditions
can considerably impact classification results. From these samples, we can see that the
lighting conditions make the area around the manufacturer’s logo less clear, which leads
to incorrect classification results. Sample 5 shows a classification failure because the logo
emblem on the car has been modified, particularly in terms of its color. The use of this
changed emblem is both a limitation of this research and a challenge for future research
in this area. Sample 6 is an example of the most facelifted version of the Ayla car model,
of which there are not many photos in the dataset. This condition causes the classifier to
classify this image as Agya (its vehicle model pair) because Agya has many more photos in
the dataset. We believe this problem can be solved by adding vehicle images with lighting
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condition cases and modified part cases, as well as balancing the number of images in the
dataset for each existing class.

In practice, the proposed method is already rather good at recognizing vehicle images
in real-world traffic scenes. This is because the proposed method uses images that come
directly from the dashboard camera without any image enhancement processes. Based on
the evaluation results, the method works very well in several CNN baseline architectures,
which bodes well for its practical application. However, in this study, we have not built a
computer that can be placed in a car and used as a processing unit to run our proposed
method.

7. Conclusions

In this paper, a novel architecture with a multi-task learning approach has been
proposed for a highly similar vehicle model. Utilizing the CNN baseline architecture as a
feature extractor, a novel architecture is able to produce output for two tasks simultaneously,
namely vehicle brand recognition and vehicle model recognition. VGG-16 MT is the
proposed architecture with the best performance compared to the other five architectures.
The VGG-16 MT reaches an accuracy score of 98.73% for the vehicle brand classification
task and 97.69% for the vehicle model classification task. In terms of validity, the VGG-16
MT produces a macro average F1-Score of 0.98 and 0.97 for the vehicle brand and vehicle
model classification tasks, respectively. In this study, it is known that Daihatsu is the most
difficult brand to classify and Agya–Ayla is the most difficult model pair to classify. Overall,
the proposed method has many advantages over the baseline CNN architecture. First, the
proposed method improves the CNN’s basic architecture by preventing the network from
becoming trapped in a local minimum while it is being trained. Second, the proposed
method can deal with unbalanced and highly similar vehicle datasets. It is inevitable that
the number of car models in the real world will never be balanced, and some of them look
very similar. Last but not least, the proposed method uses a multi-task learning approach
to provide a more efficient solution for vehicle brand and vehicle model classification.
Multi-task learning allows for the proposed method to perform feature extraction once and
then send the results to each branch to perform classification.

The following aspects are currently the subject of ongoing work: First, we will improve
the InaV-Dash dataset by expanding the vehicle model and vehicle brand. Due to the large
number of vehicle models and the fact that almost every year the manufacturer launches a
facelifted version of the existing vehicle model, we are challenged to implement a database-
updating procedure such as the CARUS system [3] at the dataset expansion stage. Although
this procedure is derived from mineral classification problems, it can be applied to any
classification problem. This procedure will determine whether a new image needs to be
added into the dataset after the image is recognized by the classifier. If the new image’s
features are significantly distinct from those of the existing images, it will be added to the
dataset. This procedure should make it easy to add more data to a dataset and create a
feature-rich image dataset. Second, we will create a system that combines the proposed
method with online training and prediction capabilities using input in the form of a video
stream from the dashboard camera. This improvement will bring the proposed method
closer to its practical application.
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