Fluoroscopic 3D Image Generation from Patient-Specific PCA Motion Models Derived from 4D-CBCT Patient Datasets: A Feasibility Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Datasets
2.2. Fluoroscopic 3D Image Estimation
2.2.1. 4D-CBCT-Based Motion Model Estimation
2.2.2. Optimization
2.3. Evaluation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Keall, P.J.; Mageras, G.S.; Balter, J.M.; Emery, R.S.; Forster, K.M.; Jiang, S.B.; Kapatoes, J.M.; Low, D.A.; Murphy, M.J.; Murray, B.R.; et al. The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med. Phys. 2006, 33, 3874–3900. [Google Scholar] [CrossRef]
- Vedam, S.S.; Keall, P.J.; Kini, V.R.; Mostafavi, H.; Shukla, H.P.; Mohan, R. Acquiring a four-dimensional computed tomography dataset using an external respiratory signal. Phys. Med. Biol. 2003, 48, 45–62. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Chee, G.; O’Connell, D.; Dhou, S.; Fu, J.; Singhrao, K.; Ionascu, D.; Ruan, D.; Lee, P.; Low, D.A.; et al. Reconstruction of a high-quality volumetric image and a respiratory motion model from patient CBCT projections. Med. Phys. 2019, 46, 3627–3639. [Google Scholar] [CrossRef] [PubMed]
- Fassi, A.; Tagliabue, E.; Tirindelli, M.; Sarrut, D.; Riboldi, M.; Baroni, G. PO-0884: Respiratory motion models from Cone-Beam CT for lung tumour tracking. Radiother. Oncol. 2016, S424. [Google Scholar] [CrossRef] [Green Version]
- Fassi, A.; Bombardieri, A.; Ivaldi, G.B.; Liotta, M.; Tabarelli de Fatis, P.; Meaglia, I.; Porcu, P.; Riboldi, M.; Baroni, G. EP-1629: Lung tumor tracking using CBCT-based respiratory motion models driven by external surrogates. Radiother. Oncol. 2017. [Google Scholar] [CrossRef]
- Zhang, Q.; Hu, Y.C.; Liu, F.; Goodman, K.; Rosenzweig, K.E.; Mageras, G.S. Correction of motion artifacts in cone-beam CT using a patient-specific respiratory motion model. Med. Phys. 2010, 37, 2901–2909. [Google Scholar] [CrossRef]
- Fassi, A.; Schaerer, J.; Fernandes, M.; Riboldi, M.; Sarrut, D.; Baroni, G. Tumor tracking method based on a deformable 4D CT breathing motion model driven by an external surface surrogate. Int. J. Radiat. Oncol. Biol. Phys. 2014, 88, 182–188. [Google Scholar] [CrossRef]
- Li, R.; Lewis, J.H.; Jia, X.; Zhao, T.; Liu, W.; Wuenschel, S.; Lamb, J.; Yang, D.; Low, D.A.; Jiang, S.B. On a PCA-based lung motion model. Phys. Med. Biol. 2011, 56, 6009–6030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhou, S.; Hurwitz, M.; Mishra, P.; Berbeco, R.; Lewis, J. 4DCBCT-based motion modeling and 3D fluoroscopic image generation for lung cancer radiotherapy. In Proceedings of the Medical Imaging 2015: Image-Guided Procedures, Robotic Interventions, and Modeling, Orlando, FL, USA, 21–26 February 2015. [Google Scholar]
- Dhou, S.; Hurwitz, M.; Mishra, P.; Cai, W.; Rottmann, J.; Li, R.; Williams, C.; Wagar, M.; Berbeco, R.; Ionascu, D.; et al. 3D fluoroscopic image estimation using patient-specific 4DCBCT-based motion models. Phys. Med. Biol. 2015, 60, 3807–3824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurwitz, M.; Williams, C.L.; Mishra, P.; Rottmann, J.; Dhou, S.; Wagar, M.; Mannarino, E.G.; Mak, R.H.; Lewis, J.H. Generation of fluoroscopic 3D images with a respiratory motion model based on an external surrogate signal. Phys. Med. Biol. 2015, 60, 521–535. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Jia, X.; Lewis, J.H.; Gu, X.; Folkerts, M.; Men, C.; Jiang, S.B. Real-time volumetric image reconstruction and 3D tumor localization based on a single x-ray projection image for lung cancer radiotherapy. Med. Phys. 2010, 37, 2822–2826. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.; Li, R.; St. James, S.; Yue, Y.; Berbeco, R.; Mishra, P. Fluoroscopic 3D Images Based on 2D Treatment Images Using a Realistic Modified XCAT Phantom. Int. J. Radiat. Oncol. 2012, 84, S737. [Google Scholar] [CrossRef]
- Mishra, P.; Li, R.; James, S.S.; Mak, R.H.; Williams, C.L.; Yue, Y.; Berbeco, R.I.; Lewis, J.H. Evaluation of 3D fluoroscopic image generation from a single planar treatment image on patient data with a modified XCAT phantom. Phys. Med. Biol. 2013, 58, 841–858. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Yin, F.F.; Segars, W.P.; Ren, L. A technique for estimating 4D-CBCT using prior knowledge and Limited-angle projections. Med. Phys. 2013, 40, 121701. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Lewis, J.H.; Jia, X.; Gu, X.; Folkerts, M.; Men, C.; Song, W.Y.; Jiang, S.B. 3D tumor localization through real-time volumetric x-ray imaging for lung cancer radiotherapy. Med. Phys. 2011, 38, 2783–2794. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Pevsner, A.; Hertanto, A.; Hu, Y.-C.; Rosenzweig, K.E.; Ling, C.C.; Mageras, G.S. A patient-specific respiratory model of anatomical motion for radiation treatment planning. Med. Phys. 2007, 34, 4772–4781. [Google Scholar] [CrossRef] [Green Version]
- Berbeco, R.I.; Mostafavi, H.; Sharp, G.C.; Jiang, S.B. Towards fluoroscopic respiratory gating for lung tumours without radiopaque markers. Phys. Med. Biol. 2005, 50, 4481–4490. [Google Scholar] [CrossRef] [PubMed]
- Sonke, J.J.; Zijp, L.; Remeijer, P.; van Herk, M. Respiratory correlated cone beam CT. Med Phys 2005, 32, 1176–1186. [Google Scholar] [CrossRef] [PubMed]
- Dhou, S.; Motai, Y.; Hugo, G.D. Local intensity feature tracking and motion modeling for respiratory signal extraction in cone beam CT projections. IEEE Trans. Biomed. Eng. 2013, 60, 332–342. [Google Scholar] [CrossRef] [PubMed]
- Vergalasova, I.; Cai, J.; Yin, F.F. A novel technique for markerless, self-sorted 4D-CBCT: Feasibility study. Med. Phys. 2012, 39, 1442–1451. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Kim, S.; Yi, B.; Hugo, G.; Gach, H.M.; Motai, Y. A Novel Method of Cone Beam CT Projection Binning Based on Image Registration. IEEE Trans. Med. Imaging 2017, 36, 1733–1745. [Google Scholar] [CrossRef] [PubMed]
- Chao, M.; Wei, J.; Li, T.; Yuan, Y.; Rosenzweig, K.E.; Lo, Y.C. Robust breathing signal extraction from cone beam CT projections based on adaptive and global optimization techniques. Phys. Med. Biol. 2016, 61, 3109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, H.; Wang, X.; Yin, W.; Pan, T.; Ahmad, M.; Mou, X.; Cervino, L.; Jia, X.; Jiang, S.B. Extracting respiratory signals from thoracic cone beam CT projections. Phys. Med. Biol. 2013, 58, 1447–1464. [Google Scholar] [CrossRef] [PubMed]
- Kavanagh, A.; Evans, P.M.; Hansen, V.N.; Webb, S. Obtaining breathing patterns from any sequential thoracic x-ray image set. Phys. Med. Biol. 2009, 54, 4879–4888. [Google Scholar] [CrossRef] [PubMed]
- Sabah, S.; Dhou, S. Image-based extraction of breathing signal from cone-beam CT projections. In Medical Imaging 2020: Image-Guided Procedures, Robotic Interventions, and Modeling; International Society for Optics and Photonics: Houston, TX, USA, 2020; Volume 11315. [Google Scholar]
- Dhou, S.; Docef, A.; Hugo, G. Image-based respiratory signal extraction using dimensionality reduction for phase sorting in Cone-Beam CT Projections. In Proceedings of the 2017 International Conference on Computational Biology and Bioinformatics, Newark, NJ, USA, 18–20 October 2017; pp. 79–84. [Google Scholar]
- Dhou, S.; Ionascu, D.; Williams, C.; Lewis, J. Inter-fraction variations in motion modeling using patient 4D-cone beam CT images. In Proceedings of the 2018 Advances in Science and Engineering Technology International Conferences, Sharjah, United Arab Emirates, 6 February–5 April 2018; 2018; pp. 1–4. [Google Scholar]
- Dhou, S.; Lewis, J.; Cai, W.; Ionascu, D.; Williams, C. Quantifying day-to-day variations in 4DCBCT-based PCA motion models. Biomed. Phys. Eng. Express 2020, 6, 035020. [Google Scholar] [CrossRef]
- Segars, W.P.; Mahesh, M.; Beck, T.J.; Frey, E.C.; Tsui, B.M.W. Realistic CT simulation using the 4D XCAT phantom. Med. Phys. 2008, 35, 3800–3808. [Google Scholar] [CrossRef] [PubMed]
- Segars, W.P.; Sturgeon, G.; Mendonca, S.; Grimes, J.; Tsui, B.M. 4D XCAT phantom for multimodality imaging research. Med. Phys. 2010, 37, 4902–4915. [Google Scholar] [CrossRef] [PubMed]
- Myronakis, M.E.; Cai, W.; Dhou, S.; Cifter, F.; Hurwitz, M.; Segars, P.W.; Berbeco, R.I.; Lewis, J.H. A graphical user interface for XCAT phantom configuration, generation and processing. Biomed. Phys. Eng. Express 2017, 3, 017003. [Google Scholar] [CrossRef]
- Zijp, L.; Sonke, J.-J.; van Herk, M. Extraction of the respiratory signal from sequential thorax cone-beam X-ray images. In Proceedings of the International Conference on the Use of Computers in Radiation Therapy, Seoul, Korea, 10–13 May 2004; pp. 507–509. [Google Scholar]
- Van Herk, M.; Zijp, L.; Remeijer, P.; Wolthaus, J.; Sonke, J.J. On-Line 4D Cone Beam CT for Daily Correction of Lung Tumour Position during Hypofractionated Radiotherapy; ICCR: Toronto, ON, Canada, 2007.
- Feldkamp, L.A.; Davis, L.C.; Kress, J.W. Practical cone-beam algorithm. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 1984, 1, 612–619. [Google Scholar] [CrossRef] [Green Version]
- Rit, S.; Vila Oliva, M.; Brousmiche, S.; Labarbe, R.; Sarrut, D.; Sharp, G.C. The Reconstruction Toolkit (RTK), an open-source cone-beam CT reconstruction toolkit based on the Insight Toolkit (ITK). In Proceedings of the International Conference on the Use of Computers in Radiation Therapy (ICCR’13), Melbourne, Australia, 6–9 May 2013. [Google Scholar]
- Lewis, J.H.; Li, R.; Watkins, W.T.; Lawson, J.D.; Segars, W.P.; Cervino, L.I.; Song, W.Y.; Jiang, S.B. Markerless lung tumor tracking and trajectory reconstruction using rotational cone-beam projections: A feasibility study. Phys. Med. Biol. 2010, 55, 2505–2522. [Google Scholar] [CrossRef]
- Gu, X.; Pan, H.; Liang, Y.; Castillo, R.; Yang, D.; Choi, D.; Castillo, E.; Majumdar, A.; Guerrero, T.; Jiang, S.B. Implementation and evaluation of various demons deformable image registration algorithms on a GPU. Phys. Med. Biol. 2010, 55, 207–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, W.; Hurwitz, M.H.; Williams, C.L.; Dhou, S.; Berbeco, R.I.; Seco, J.; Mishra, P.; Lewis, J.H. 3D delivered dose assessment using a 4DCT-based motion model. Med. Phys. 2015, 42, 2897–2907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, W.; Dhou, S.; Cifter, F.; Myronakis, M.; Hurwitz, M.H.; Williams, C.L.; Berbeco, R.I.; Seco, J.; Lewis, J.H. 4D cone beam CT-based dose assessment for SBRT lung cancer treatment. Phys. Med. Biol. 2015, 61, 554. [Google Scholar] [CrossRef]
- Chen, G.H.; Tang, J.; Leng, S. Prior image constrained compressed sensing (PICCS): A method to accurately reconstruct dynamic CT images from highly undersampled projection data sets. Med. Phys. 2008, 35, 660–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sidky, E.Y.; Pan, X. Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization. Phys. Med. Biol. 2008, 53, 4777–4807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sidky, E.Y.; Duchin, Y.; Pan, X.; Ullberg, C. A constrained, total-variation minimization algorithm for low-intensity x-ray CT. Med. Phys. 2011, 38 (Suppl. 1), S117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, K.; Xing, L.; Koong, A.; Li, R. First study of on-treatment volumetric imaging during respiratory gated VMAT. Med. Phys. 2013, 40, 40701. [Google Scholar] [CrossRef] [Green Version]
- Choi, K.; Wang, J.; Zhu, L.; Suh, T.S.; Boyd, S.; Xing, L. Compressed sensing based cone-beam computed tomography reconstruction with a first-order method. Med. Phys. 2010, 37, 5113–5125. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Koong, A.; Xing, L. Enhanced 4D cone-beam CT with inter-phase motion model. Med. Phys. 2007, 34, 3688–3695. [Google Scholar] [CrossRef] [PubMed]
- Rit, S.; Wolthaus, J.; van Herk, M.; Sonke, J.J. On-the-fly motion-compensated cone-beam CT using an a priori motion model. Med. Image Comput. Comput. Assist. Interv. 2008, 11, 729–736. [Google Scholar]
- Rit, S.; Sarrut, D.; Desbat, L. Comparison of analytic and algebraic methods for motion-compensated cone-beam CT reconstruction of the thorax. IEEE Trans. Med. Imaging 2009, 28, 1513–1525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Ma, J.; Bian, Z.; Zeng, D.; Feng, Q.; Chen, W. High quality 4D cone-beam CT reconstruction using motion-compensated total variation regularization. Phys. Med. Biol. 2017, 62, 3313. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Schreibmann, E.; Yang, Y.; Xing, L. Motion correction for improved target localization with on-board cone-beam computed tomography. Phys. Med. Biol. 2006, 51, 253–267. [Google Scholar] [CrossRef]
- Biguri, A.; Dosanjh, M.; Hancock, S.; Soleimani, M. A general method for motion compensation in x-ray computed tomography. Phys. Med. Biol. 2017, 62, 6532. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Zhang, Y.; Chen, L.; Wang, J. U-net-based deformation vector field estimation for motion-compensated 4D-CBCT reconstruction. Med. Phys. 2020, 47, 3000–3012. [Google Scholar] [CrossRef] [PubMed]
- Riblett, M.J.; Christensen, G.E.; Weiss, E.; Hugo, G.D. Data-driven respiratory motion compensation for four-dimensional cone-beam computed tomography (4D-CBCT) using groupwise deformable registration. Med. Phys. 2018, 45, 4471–4482. [Google Scholar] [CrossRef]
- Sauppe, S.; Kuhm, J.; Brehm, M.; Paysan, P.; Seghers, D.; Kachelrieß, M. Motion vector field phase-to-amplitude resampling for 4D motion-compensated cone-beam CT. Phys. Med. Biol. 2018, 63, 035032. [Google Scholar] [CrossRef]
- Weiss, G.H.; Talbert, A.J.; Brooks, R.A. The use of phantom views to reduce CT streaks due to insufficient angular sampling. Phys. Med. Biol. 1982, 27, 1151–1162. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, T.M.; Gonner, C.; Spitzer, K. Addendum: B-spline interpolation in medical image processing. IEEE Trans. Med. Imaging 2001, 20, 660–665. [Google Scholar] [CrossRef] [PubMed]
- Bertram, M.; Wiegert, J.; Schafer, D.; Aach, T.; Rose, G. Directional view interpolation for compensation of sparse angular sampling in cone-beam CT. IEEE Trans. Med. Imaging 2009, 28, 1011–1022. [Google Scholar] [CrossRef] [PubMed]
- Dhou, S.; Hugo, G.D.; Docef, A. Motion-based projection generation for 4D-CT reconstruction. In Proceedings of the 2014 IEEE International Conference on Image Processing, Paris, France, 27–30 October 2014. [Google Scholar]
- Han, Y.; Ye, J.C. Framing U-Net via Deep Convolutional Framelets: Application to Sparse-View CT. IEEE Trans. Med. Imaging 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, B.; Matthews, T.P.; Anastasio, M.A. Deep Learning-Guided Image Reconstruction from Incomplete Data. arXiv 2017, arXiv:1709.00584. [Google Scholar]
- Madesta, F.; Sentker, T.; Gauer, T.; Werner, R. Self-contained deep learning-based boosting of 4D cone-beam CT reconstruction. Med. Phys. 2020, 47, 5619–5631. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhou, S.; Alkhodari, M.; Ionascu, D.; Williams, C.; Lewis, J.H. Fluoroscopic 3D Image Generation from Patient-Specific PCA Motion Models Derived from 4D-CBCT Patient Datasets: A Feasibility Study. J. Imaging 2022, 8, 17. https://doi.org/10.3390/jimaging8020017
Dhou S, Alkhodari M, Ionascu D, Williams C, Lewis JH. Fluoroscopic 3D Image Generation from Patient-Specific PCA Motion Models Derived from 4D-CBCT Patient Datasets: A Feasibility Study. Journal of Imaging. 2022; 8(2):17. https://doi.org/10.3390/jimaging8020017
Chicago/Turabian StyleDhou, Salam, Mohanad Alkhodari, Dan Ionascu, Christopher Williams, and John H. Lewis. 2022. "Fluoroscopic 3D Image Generation from Patient-Specific PCA Motion Models Derived from 4D-CBCT Patient Datasets: A Feasibility Study" Journal of Imaging 8, no. 2: 17. https://doi.org/10.3390/jimaging8020017
APA StyleDhou, S., Alkhodari, M., Ionascu, D., Williams, C., & Lewis, J. H. (2022). Fluoroscopic 3D Image Generation from Patient-Specific PCA Motion Models Derived from 4D-CBCT Patient Datasets: A Feasibility Study. Journal of Imaging, 8(2), 17. https://doi.org/10.3390/jimaging8020017