
Journal of

Imaging

Article

Classification Efficiency of Pre-Trained Deep CNN Models on
Camera Trap Images

Adam Stančić 1,* , Vedran Vyroubal 1 and Vedran Slijepčević 2

����������
�������

Citation: Stančić, A.; Vyroubal, V.;

Slijepčević, V. Classification Efficiency

of Pre-Trained Deep CNN Models on

Camera Trap Images. J. Imaging 2022,

8, 20. https://doi.org/10.3390/

jimaging8020020

Academic Editor: Pier Luigi Mazzeo

Received: 27 September 2021

Accepted: 12 December 2021

Published: 20 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Engineering, Karlovac University of Applied Sciences, Ivana Meštrovića 10,
47000 Karlovac, Croatia; vedran.vyroubal@vuka.hr

2 Department of Wildife Management and Nature Protection, Karlovac University of Applied Sciences,
Trg J. J. Strossmayera 9, 47000 Karlovac, Croatia; vedran.slijepcevic@vuka.hr

* Correspondence: adam.stancic@vuka.hr; Tel.: +385-47-843-525 (ext. 109)

Abstract: This paper presents the evaluation of 36 convolutional neural network (CNN) models,
which were trained on the same dataset (ImageNet). The aim of this research was to evaluate the
performance of pre-trained models on the binary classification of images in a “real-world” application.
The classification of wildlife images was the use case, in particular, those of the Eurasian lynx (lat.
“Lynx lynx”), which were collected by camera traps in various locations in Croatia. The collected
images varied greatly in terms of image quality, while the dataset itself was highly imbalanced in
terms of the percentage of images that depicted lynxes.

Keywords: classification; CNN; efficiency; pre-trained; camera trap

1. Introduction

In the present article, the authors suggest the use of various convolutional neu-
ral network models as a tool to help scientists classify images according to their con-
tent. All classified images were collected as part of other projects that have studied
animal behavior and migration in mountainous and wooded parts of Croatia, Gorski Ko-
tar (https://en.wikipedia.org/wiki/Gorski_Kotar, accessed on 25 September 2021), Risn-
jak (https://en.wikipedia.org/wiki/Risnjak, accessed on 25 September 2021), and Lika
(https://en.wikipedia.org/wiki/Lika, accessed on 25 September 2021). The initial purpose
of this paper was to help our colleagues of the Wildlife and Environmental/Nature Protec-
tion Department at our institution speed up the analysis and classification of the massive
number of camera trap images collected. One of the projects focused on the exploration of
lynx behavior, habits, and migration and monitoring the number of individual animals in
the population. The number of collected images depicting lynxes was extremely low due
to the fact that the lynx is an endangered species with a very small population.

It is important to emphasize that all the CNN models used were pre-trained on the
same set of images and that each model can be downloaded, while no additional retraining
of the models with images collected in the field was conducted. The CNN models described
in this paper have different architectures, numbers of parameters, and complexities, which
influence their classification rate and accuracy.

This paper is structured as follows: In the Introduction Section, we describe the
problem of the classification of the images collected by the camera traps and the phases of
the research. The second section describes the questions this paper aimed to address. The
third section presents the properties of the various CNN architectures used in the process
of image classification. The fourth section compares the machine learning frameworks and
describes the chosen framework. The fifth section describes the properties of 36 different
pre-trained classification models, the collected images, and the evaluation metrics. The
results of the research are presented in the sixth section. The research was conducted in five
phases: the collection of the images, the selection of the image classification models, the

J. Imaging 2022, 8, 20. https://doi.org/10.3390/jimaging8020020 https://www.mdpi.com/journal/jimaging

https://www.mdpi.com/journal/jimaging
https://www.mdpi.com
https://orcid.org/0000-0001-5287-2052
https://orcid.org/0000-0001-8876-1768
https://orcid.org/0000-0002-0508-6224
https://doi.org/10.3390/jimaging8020020
https://doi.org/10.3390/jimaging8020020
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://en.wikipedia.org/wiki/Gorski_Kotar
https://en.wikipedia.org/wiki/Risnjak
https://en.wikipedia.org/wiki/Lika
https://doi.org/10.3390/jimaging8020020
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com/article/10.3390/jimaging8020020?type=check_update&version=2


J. Imaging 2022, 8, 20 2 of 26

pre-processing of the collected images for the classification process, the classification of the
images, and the analysis of the results. In the image collection phase, the camera traps were
installed at various locations where the animals are known to gather. The selection of the
appropriate locations was conducted by an expert wildlife preservation team. The camera
traps collected both still images and videos. They collected images triggered by either
movement in their field of view or by a timer. The process of image collection resulted in a
dataset of almost 300,000 images (which varied in size, quality, and content).

The criteria for the selection of classification models were that the selected model be
compatible with TensorFlow 1.x, that it uses the TensorFlow-Slim library, be pre-trained on
the ImageNet dataset, and be publicly available. All selected models were optimized and
“frozen” to improve their inference rate. The process of the optimization and “freezing” of
models did not affect the model classification accuracy.

In the pre-processing phase, images were extracted from the video files, with a fre-
quency of two images per second. The extracted images were added to the collection of
the captured still images. Duplicate and unsuitable (damaged) files were excluded from
the image dataset. All collected images were labeled according to the camera’s location,
designation, and timestamp. The last step in the pre-processing phase was the resizing of
all collected images, according to the default input size of the particular model.

Every image in the collected dataset was processed with all 36 selected classification
models, and the results were stored in a database for later analysis.

The evaluation of the classification models, using a range of different metrics, was
performed exclusively on a local computer. It is important to emphasize that all evaluated
models were pre-trained on the ImageNet dataset, but in this research, the classification
efficiency was evaluated with “real-world” camera trap images.

Aim of the Research

In the binary classification process conducted with two class labels (“lynx”, “no lynx”),
we focused on finding the answers to the following questions:

• How successful are heterogeneous CNN models at classifying images according to
their content?

• What is the CNN model’s efficiency based on the different evaluation metrics?
• Is there a correlation between the model’s complexity, accuracy, and inference rate?
• Can multi-model ensembles of three, four, and five of the top-performing classification

models perform better than the best-performing standalone classification model?

2. Image Classification

According to LeCun et al. [1], conventional machine-learning methods are limited in
their ability to process natural data in their original raw form—in this case, image pixel
intensity values captured for each color channel are presented as three two-dimensional
arrays. The authors stated that deep-learning methods are suitable for the extraction of
the image properties that are important for image classification and object detection tasks.
Deep-learning methods (CNN with three or more layers, deep CNN [1]) can learn very
complex functions by using groups of nonlinear modules that transform the input data
(starting with a captured image) to a higher, more abstract level [1]. The CNN is the most-
used architecture in image classification models [2]. Through the use of different types of
layers (convolution, pooling, fully connected, etc.), activation functions, computational
techniques, and the hyperparameters’ setup, convolutional neural networks are able to
extract the image features needed for the classification [3,4]. The process of predicting what
object is in an image with the calculated confidence score is called image classification. In
order to correctly predict an object in the image, a classification model must be constructed,
trained, and evaluated. In the present research, several CNN architectures were used:
AlexNet, DenseNet, Inception, MobileNet, NASNet, PNASNet, VGG, and Xception; these
architectures are further discussed in the following sections. Training is the process of
learning, or simply “teaching” the model how to classify objects in an image. Depending



J. Imaging 2022, 8, 20 3 of 26

on CNN architecture and the number of images used for training, the process can be very
demanding and require significant computation, memory, and storage resources. The
same CNN models can be trained using different learning parameters (i.e., the metrics,
loss function, optimizer, etc.) and training hyperparameters (i.e., the set values for the
learning rate, epoch, batch size, early stopping, etc.) in order to find a suitable model,
which makes the training process even more time consuming. It is worth mentioning that
dataset images must be processed into a suitable data format before training or inference
process, which can also be time consuming, especially with a large number of images. In
the present research, all models were trained with the identical set of images (dataset)
labeled and divided into 1000 different classes. In this research, we used an image dataset
called ImageNet [5,6]. The dataset is also divided into two subsets—namely, the training
set, which is used only for model training (and training validation), and test set, which is
used only for the classification accuracy evaluation of the completely trained model [5,6].
It should be noted that classification can neither detect multiple objects nor their locations
in the examined image; rather, it will output the probabilities of the image representing
each of the labels it was trained on.

3. Machine Learning Framework

In order to prepare the input data, train, evaluate, and use the image classification
model, we needed to use some sort of tools, library, or interface called machine learning
(ML) framework. There are many different ML framework solutions on the market such
as Amazon ML [7], Google TensorFlow [8], Microsoft Cognitive Toolkit [9], Facebook
PyTorch [10], Apache MXNet [11], Theano [12], Berkeley AI Research Caffe [13], etc. In the
present research, 36 different CNN models were pre-trained and stored in TensorFlow ML
framework checkpoint files. Models were pre-trained with the ImageNet, ILSVRC-2012-
CLS [14] image classification dataset. ImageNet consists of 1,200,000 images in the training
set and 50,000 in the test set divided into 1000 object categories [14]. The pre-trained model
can be additionally retrained with another dataset that has a different distribution of classes.
Transfer learning (or domain adaptation) is a technique in which only newly added layers
are optimized, while weights (and biases) of the original (pre-trained) model are kept
unchanged [15]. In the second technique, called fine-tuning, both weights (and biases) of
the newly added classification layers and some of the layers of the original (pre-trained)
model are optimized in a retraining process [15].

TensorFlow is an open-source framework suited for numerical computations and
large-scale machine learning created by the Google Brain team for deep neural networks
(DNNs) [8,16]. The TensorFlow core is written in high-performance C++, while TensorFlow
has Application Programming Interfaces (APIs) available in several languages: Python,
Julia, JavaScript, C++, Java, Go, and Swift. Google highlights that Python API is (at present)
the easiest and most complete, so the entire presented research herein was made with
Python and several auxiliary libraries. TensorFlow applications are divided into the two
parts: computational graph definition and graph execution. The neural network structure
is defined in the computational graph—nodes of the graph represent the tensor objects
(constants, variables, placeholders, and operations), while network edges represent the
data flow (in form of tensors) between computational operations. Graph execution is
performed by the usage of the session object, which places graph operations on Central
Processing Unit (CPU)), Graphics Processing Unit (GPU)) or Google’s custom-developed
application-specific integrated circuits named Tensor Processing Unit (TPU) [17]. Writing
the TensorFlow code may become a complex and cumbersome task, so there are some
high-level (or abstraction) libraries that run on the top of TensorFlow. Current versions
of TensorFlow supports two abstraction libraries—namely, TensorFlow-Slim [18,19] and
Keras [20]. Both libraries help the user to construct, train, evaluate, and use neural network
models, with only a few lines of code. In this research, TensorFlow-Slim abstraction library
was used for all 36 pre-trained models [18,19].



J. Imaging 2022, 8, 20 4 of 26

4. Image Classification Models

Image classification models can be created and trained from scratch, but in this case,
pre-trained models were used, because of the computationally intensive nature of the
training process, which can also be prohibitively expensive if application-specific hardware
is used in order to speed up the process [17]. Configuration and building TensorFlow
from source is a complex task but results in the optimized binaries for local computer
hardware configuration. Better TensorFlow out-of-the-box performance results from using
high-level APIs [21] in order to use the instructions supported by the target CPU, GPU, or
TPU [22]. TensorFlow also supports different strategies for task distribution across multiple
nodes [23]. Even if the TensorFlow environment is optimized for specific hardware, the
training process can require days or even weeks to complete [18].

Used image classification models are based on different convolution neural network
architectures. Some CNN architectures have more variations of the same architecture (e.g.,
different number of layers, different input image size or computational techniques etc.)
such as Inception, ResNet, VGG, MobileNet, NASNet, and DenseNet. A significant number
of used models were trained with TensorFlow, while some models were trained in other
frameworks such as Caffe or Keras. Each model trained with Caffe or Keras was converted
to a suitable TensorFlow format.

AlexNet model [24,25] is based on a deep CNN architecture of the same name [26,27],
which was originally trained with the Caffe framework. AlexNet won the ImageNet com-
petition in 2012. It uses features such as Rectified Linear Unit (ReLU)) activation, data
augmentation, dropout, and local response normalization, which are standard parts of
modern classification neural networks [28]. AlexNet is considered as a predecessor of all
modern CNNs. Densely Connected Convolution Network (DenseNet)) models [27,29]
are also based on deep CNN architecture [30] and originally were trained with Keras
framework. In the present research, DenseNet-121 (k = 32), DenseNet-161 (k = 48), and
DenseNet-169 (k = 32) were used in image classification process. The number in the name
of the model denotes the number of layers of the DenseNet model, while parameter k
denotes the number of feature maps’ growth rates. Some advantages of DenseNet models
are reducing the number of parameters, decreasing the vanishing-gradient problem, fea-
ture reuse, and concatenation of the feature maps learned by different layers, in order to
improve efficiency [31]. Google is the author of the Inception model, which is implemented
in several versions: Inception v1 [32], Inception v2 [33], Inception v3 [34], Inception v4 [35],
and a hybrid inception model Inception–Resnet [35]. All used Inception based ImageNet
pre-trained models were downloaded from TensorFlow Slim image classification library
web page [19]. Inception v1 architecture network was introduced in 2014 and won the
ImageNet challenge the same year. The authors of the architecture have taken into account
the fact that the objects in an image may have different sizes—larger objects take up larger
areas, while smaller objects take up smaller regions of the image. The authors proposed
the implementation of inception blocks, which splits the input into different parallel paths
(or towers), and at the end of the inception block, the outputs of the different paths were
concatenated [31]. Inception architecture introduces 1 × 1 convolutions, to reduce the
depth for each path, and uses the global average pooling layers instead of fully connected
ones. The Inception v2 version (or Inception-BN) uses batch normalization, in order to
use much higher learning rates and be more tolerant toward initialization issues. The
improved second version also replaces 5 × 5 convolution kernels with two 3 × 3 kernels,
which reduces the number of calculations and saves memory. Inception v3 version factor-
izes convolutions into smaller convolutions and uses efficient grid size reduction, batch
normalization in the auxiliary classifiers, and several inception grids [31,34]. Both archi-
tectures, Inception v4 and Inception–ResNet, are presented in the same paper. Inception
v4 uses “pure inception architecture” and is a more simplified version of the Inception v3
architecture, with more inception blocks. It also introduces reduction blocks, which are
used to change the width and height of the grid. Inception–Resnet is hybrid architecture,
i.e., residual connection from the ResNet [27,31,36] model is integrated into the convolution



J. Imaging 2022, 8, 20 5 of 26

network in order to make the network deeper and faster during the training process [35,37].
MobileNet architecture is specifically optimized for mobile and embedded applications in
order to meet the resource constraints [27,31]. It uses two simple global hyperparameters
that efficiently trade-off between latency and classification or recognition accuracy [38].
There are three versions of the MobileNet architecture: The first version [38] is based on a
streamlined architecture that uses depth-wise separable convolutions to build light weight
deep CNNs, while the second version [39] additionally implements linear bottlenecks
between the layers and shortcut connections between the bottlenecks. The MobileNet ver. 3
is the third version of the MobileNet architecture [40]. This version uses two algorithms in
order to construct suitable network architecture for a specific problem—the MnasNet [41]
is used to select optimal network configuration, and NetAdapt [42] is used to fine-tune
the proposed configuration. MobileNet ver. 3 is more accurate and faster than MobileNet
ver. 2, but the authors of the algorithm present only top-1 accuracy, while top-5 accuracy is
not mentioned at all. Models are released as MobileNetV3-Large and MobileNetV3-Small
versions, which are targeted for high- and low-resource use cases [40]. Both large and small
model versions use all advanced properties of MobileNetv3 architecture, while the so-called
minimalistic models do not utilize advanced blocks such as 5 × 5 convolutions, squeeze-
and-excite units, and hard swish. In our research four MobileNets ver. 1 (Mob_v1_0.25,
Mob_v1_0.50, Mob_v1_0.75, and Mob_v1_1.0) [43], six MobileNets ver. 2 (Mob_v2_0.35,
Mob_v2_0.50, Mob_v2_0.75, Mob_v2_1.0, Mob_v2_1.3, and Mob_v2_1.4) [44], and four
MobileNets ver. 3 (Mob_v3_lrg, Mob_v3_lrgm, Mob_v3_sml, and Mob_v3_smlm) [44]
pre-trained models were used, with the same image input size of 224 × 244 pixels. The
number besides the model name and version denotes the depth multiplier, which defines
the number of channels in each layer—i.e., value 0.5 will halve the number of channels,
which cuts the number of computations and effectively speeds up classification process
but with lower accuracy. The Neural Architecture Search Network (NASNet) architecture
structure was not predefined by authors, but it was searched by the controller Recurrent
Neural Network (RNN) [27,45]. Main structure cells (or blocks) were searched on smaller
datasets and then transferred to larger datasets. These cells are called normal cell and
reduction cell. A normal cell is a convolution cell that returns a feature map of the same
dimension, while the reduction cell returns the halved feature map of the dimension. The
authors used slightly differently structured normal and reduction cells in the research and
introduced three model versions: NASNet-A, NASNet-B, and NASNet-C. In the presented
research here, NASNet-A architecture was used in two versions: NasNet large and NASNet
mobile [19]. The authors of the Progressive Neural Architecture Search (PNASNet) [46]
propose a Sequential Model-Based Optimization (SMBO) strategy instead of reinforce-
ment learning and evolutionary algorithms introduced in (previously mentioned) NASNet
network architecture. PNASNet is eight times faster in terms of total compute and up
to five times more efficient in the same search space than NASNet [46]. According to
the used number of blocks (and complexity), the PNASNet architecture is denoted from
PNASNet-1 (low complexity) to PNASNet-5 (high complexity). In the present research,
the PNASNet architecture was used in two versions: PNASNet-5 large and PNASNet-5
mobile [19]. The Residual Network (ResNet)) architecture is focused on solving problems
with deep CNNs [27,36]—increasing the convolution network depth leads to network
accuracy degradation. Network depth property is crucial in order to gain a better model
accuracy [32,36,47]. The authors proposed the implementation of the residual block, which
consists of two or three sequential convolutional layers and a shortcut connection between
the input of the first and the output of the last layer [31]. ResNet models can be used for
extremely deep models, but model accuracy decreases, i.e., a 1202-layer network is less
accurate than a 110-layer network [36]. The second version of the ResNet architecture in-
troduced the restructured residual block, with the implementation of identity mappings as
skip connections and after-addition activation [48]. ResNet v1 models [49] were originally
trained with the Caffe framework and converted to TensorFlow format, while ResNet v2
models were trained with TensorFlow. Both ResNet architecture versions in this research



J. Imaging 2022, 8, 20 6 of 26

were used with 50-, 101-, and 152-layer deep networks (ResNet v1 50/101/152 and ResNet
v2 50/101/152) [19]. The pre-trained ResNet v2 models use Inception pre-processing and
input image size of 299 × 299 pixels [19]. The authors from Oxford’s Visual Geometry
Group (VGG) found that convolution layers with larger filters (one 5 × 5 filter) can be
replaced with two convolution layers with smaller 3 × 3 filters (factorized convolution)—
the proposed structure requires lower computational capacities and reduced number of
parameters [31,50]. The VGG architecture [47] consists of multiple blocks with stacked
convolution layers combined with a max-pooling layer and three fully-connected layers;
therefore, final VGG models are computationally expensive and memory inefficient. In the
present research, two ImageNet pre-trained models were used—namely, VGG-16 (16 layers)
and VGG-19 (19 layers) [19]. Both used VGG models were originally trained with Caffe
and converted to suitable TensorFlow formats [51]. The Extreme Inception (Xception)
architecture involves depth-wise separable convolutions instead of Inception modules and
shortcuts between convolution blocks (such as ResNet) [52]. Xception is very similar to
Inception v3 [34] but shows better results [53]. The used Xception pre-trained model was
converted from Keras framework into the TensorFlow checkpoint file [54].

4.1. Pre-Trained Classification Model Properties

The evaluated image classification models, with respect to their properties, structure,
and inference speed, are listed in the next two tables. In the first table, in addition to the
model name, the abbreviated name is noted in order to distinguish model versions. Each
model has default image width and height size in pixels. The pre-trained models have
certain top-n classification accuracy—top-1 is the inference of the model with the highest
probability with regard to the expected answer, while top-5 is a situation when the expected
answer is in the models’ first five inferences with the highest probability. Top-1 and top-5
accuracy values presented in the table refer to the pre-trained models, not to our actual
experiments. As stated, some models were not pre-trained with TensorFlow, so original
training ML library was noted for those model versions, listed alphabetically by the model
name (Table 1).

The structure and complexity of the model varies with each different model and
model variant—number and types of the layers, number of the filters, and filter stride
affect the number of parameters. The number of filters, used activation functions, and
computation techniques affect the calculation speed. TensorFlow saves the trainable CNN
models in two ways—as a checkpoint, which captures the exact value of all parameters,
and as SavedModel, which, in addition to the checkpoint, includes a serialized description
of the computation. SavedModel format is independent of the source code that created the
model and makes it suitable for serving or utilizing in other programming languages [55].
The trained model in form of a checkpoint is stored in four files, in order to separate
model graph structure (model.ckpt.meta), value of the variables (model.ckpt.data0000-of-
0001), index of the variables (model.ckpt.index), and standalone checkpoint information
for older versions of the TensorFlow framework (model.ckpt). Checkpoints files and
a SavedModel can additionally be processed into the “frozen” and optimized Protocol
buffers (protobuf) format [56]. Freezing a model is a process of converting all model graph
variables to constants, while optimization is a process of removing all CNN layers that are
not necessary for the inference process. Furthermore, the size of the network in memory
and on the disc is proportional to the number of parameters, while latency and power
usage of the network corresponds to the number of Floating-point Operations (FLOP ) of
the model. Instead of FLOP, some authors use a number of Multiplication and Addition
(MAdd) operations or a number of Multiply–Accumulates (MACs) [40,57]. In general,
one MAC contains one multiplication and one addition operation, which indicates that
1 MAC = 2 FLOP, but some systems can perform fused multiplication and addition in a
single step [58], which indicates that in such cases, 1 MAC = 1 FLOP. The complexity of
each evaluated model is presented with two values. The first value is the total number of
parameters (trainable and untrainable), retrieved from model checkpoint files with a simple



J. Imaging 2022, 8, 20 7 of 26

inspection script. As mentioned before, checkpoint (ckpt) files were frozen and optimized
in order to speed up image classification process. The second presented value is the number
of FLOPs calculated from the frozen and optimized model (pb) file with the TensorFlow
profiler application [59]. According to some users, the TensorFlow profiler has some issues
with its calculation procedure [60]. All model checkpoint files were downloaded from
websites and converted to a frozen file on a local computer. Both calculated values are
noted in Table 2.

Table 1. List of image classification models pre-trained on ImageNet dataset, model abbreviations,
top-1 and top-5 accuracy, and original machine learning library for training.

Model Name and Version Abbreviation Top-1 Top-5 ML Library

AlexNet AlxNet 57.2 80.3 Caffe
DenseNet 121 DnsNet_121 74.9 92.2 Keras
DenseNet 161 DnsNet_161 77.6 93.8 Keras
DenseNet 169 DnsNet_169 76.1 93.1 Keras
Inception-Resnet version 2 Inc_Res_v2 80.4 95.3 Tensorflow
Inception version 1 Inc_v1 69.8 89.6 Tensorflow
Inception version 2 Inc_v2 73.9 91.8 Tensorflow
Inception version 3 Inc_v3 78.0 93.9 Tensorflow
Inception version 4 Inc_v4 80.2 95.2 Tensorflow
MobileNet version 1 0.25 Mob_v1_0.25 49.8 74.2 Tensorflow
MobileNet version 1 0.50 Mob_v1_0.50 63.3 84.9 Tensorflow
MobileNet version 1 0.75 Mob_v1_0.75 68.4 88.2 Tensorflow
MobileNet version 1 1.0 Mob_v1_1.0 70.9 89.9 Tensorflow
MobileNet version 2 0.35 Mob_v2_0.35 60.3 82.9 Tensorflow
MobileNet version 2 0.50 Mob_v2_0.50 65.4 86.4 Tensorflow
MobileNet version 2 0.75 Mob_v2_0.75 69.8 89.6 Tensorflow
MobileNet version 2 1.0 Mob_v2_1.0 71.8 91.0 Tensorflow
MobileNet version 2 1.3 Mob_v2_1.3 74.4 92.1 Tensorflow
MobileNet version 2 1.4 Mob_v2_1.4 75.0 92.5 Tensorflow
MobileNet version 3 1.0 large Mob_v3_lrg 75.2 N/A Tensorflow
MobileNet ver. 3 1.0 large mini. Mob_v3_lrgm 72.3 N/A Tensorflow
MobileNet version 3 1.0 small Mob_v3_sml 67.5 N/A Tensorflow
MobileNet ver. 3 1.0 small mini. Mob_v3_smlm 61.9 N/A Tensorflow
NasNet large Ns_lrg 82,7 96.2 Tensorflow
NasNet mobile Ns_mob 74.0 91.6 Tensorflow
PnasNet-5 large Pns_lrg 82.9 96.2 Tensorflow
PnasNet-5 mobile Pns_mob 74.2 91.9 Tensorflow
ResNet 50 version 1 Rs_v1_50 75.2 92.2 Caffe
ResNet 101 version 1 Rs_v1_101 76.4 92.9 Caffe
ResNet 152 version 1 Rs_v1_152 76.8 93.2 Caffe
ResNet 50 version 2 Rs_v2_50 75.6 92.8 Tensorflow
ResNet 101 version 2 Rs_v2_101 77.0 93.7 Tensorflow
ResNet 152 version 2 Rs_v2_152 77.8 94.1 Tensorflow
VGG 16 Vgg_16 71.5 89.8 Caffe
VGG 19 Vgg_19 71.1 89.8 Caffe
Xception version 1 Xcp_v1 79.0 94.5 Keras

Listed in alphabetical order.

Top-5 and bottom-5 values of the total number of parameters (NoPs) in checkpoint
file and the number of floating-point (FLOP) operations in millions for the frozen graph
are displayed in the graphs of Figure 1.



J. Imaging 2022, 8, 20 8 of 26

Table 2. Image classification models complexity as number of parameters (NoPs) and number of
floating-point (FLOP) operations in millions.

Model NoP FLOP [mil] Model NoP FLOP [mil]

AlxNet 60,965,224 1450.58 Mob_v2_1.4 24,490,213 1138.56
DnsNet_121 8,062,505 5439.98 Mob_v3_lrg 16,501,740 431.58
DnsNet_161 28,900,937 15,113.90 Mob_v3_lrgm 15,751,077 410.94
DnsNet_169 14,307,881 6491.70 Mob_v3_sml 10,199,749 106.24
Inc_Res_v2 59,244,595 2776.56 Mob_v3_smlm 8,207,269 94.82
Inc_v1 6,633,210 3856.10 Ns_lrg 187,048,393 47,607.92
Inc_v2 11,199,138 11,421.58 Ns_mob 15,483,149 1121.80
Inc_v3 27,182,195 24,529.78 Pns_lrg 181,655,509 49,896.78
Inc_v4 46,074,067 26,330.24 Pns_mob 15,029,139 1168.20
Mob_v1_0.25 1,892,263 77.44 Rs_v1_50 25,610,156 6744.48
Mob_v1_0.50 5,350,311 289.74 Rs_v1_101 44,654,508 14,177.45
Mob_v1_0.75 10,378,151 636.92 Rs_v1_152 60,344,236 21,612.43
Mob_v1_1.0 16,975,783 1118.98 Rs_v2_50 76,802,109 6744.49
Mob_v2_0.35 6,727,717 109.80 Rs_v2_101 133,935,165 14,177.46
Mob_v2_0.50 7,898,389 186.02 Rs_v2_152 181,004,349 21,612.44
Mob_v2_0.75 10,577,461 406.04 Vgg_16 138,357,548 30,786.80
Mob_v2_1.0 14,058,725 584.54 Vgg_19 143,667,244 39,111.70
Mob_v2_1.3 21,598,085 997.98 Xcp_v1 22,910,480 16,731.28

Listed in alphabetical order.

Figure 1. NoP and FLOP top-5 and bottom-5 values.

In order to check model inference (or classification) rate, 1000 images were resized to
suitable input size, model files were "frozen", and SQLite database [61] was prepared to
store top-5 inference results. All images, models, and the database were stored in RAM disk.
Model inference speed depends on computer hardware and software configuration—the
presented inference speed is the average value of three consecutive measuring processes on
(old and cheap) configuration: CPU: AMD A8-6600K APU [62] and GPU: Gigabyte GeForce
GTX 1070 8 GB [63]. The inference rate of a particular model is presented in Table 3 and
Figure 2.

It is noticeable that CNN architecture complexity influences the models’ inference rate,
which confirms the claim that CNN models are a trade-off between inference speed and
accuracy—models with faster inference speed results are less accurate and vice versa [43].

There is an additional procedure to speed up the image inference speed on the system,
which is using NVIDIA GPU—TensorRT [64,65]. TensorRT will restructure the saved model
or the frozen model graph by removing unused output layers and conducts horizontal and
vertical layer fusion in order to speed up the inference process. TensorRT also supports
different types of calculation precision: 32 FP, 16 FP, and 8 INT, which can additionally
improve performance.



J. Imaging 2022, 8, 20 9 of 26

Table 3. Classification model image input size and inference rate in number of images processed per
second (img/s).

Model Input Size img/s Model Input Size img/s

AlxNet 227 × 227 27.79 Mob_v2_1.4 224 × 224 29.66
DnsNet_121 224 × 224 23.04 Mob_v3_lrg 224 × 224 29.37
DnsNet_161 224 × 224 18.66 Mob_v3_lrgm 224 × 224 31.94
DnsNet_169 224 × 224 20.94 Mob_v3_sml 224 × 224 31.56
Inc_Res_v2 224 × 224 16.51 Mob_v3_smlm 224 × 224 34.17
Inc_v1 224 × 224 28.53 Ns_lrg 331 × 331 13.34
Inc_v2 224 × 224 27.77 Ns_mob 224 × 224 22.71
Inc_v3 299 × 299 22.33 Pns_lrg 331 × 331 13.56
Inc_v4 299 × 299 18.65 Pns_mob 224 × 224 22.34
Mob_v1_0.25 224 × 224 33.68 Rs_v1_50 224 × 224 25.15
Mob_v1_0.50 224 × 224 33.69 Rs_v1_101 224 × 224 21.91
Mob_v1_0.75 224 × 224 33.61 Rs_v1_152 224 × 224 19.59
Mob_v1_1.0 224 × 224 32.07 Rs_v2_50 299 × 299 26.09
Mob_v2_0.35 224 × 224 31.15 Rs_v2_101 299 × 299 22.32
Mob_v2_0.50 224 × 224 30.98 Rs_v2_152 299 × 299 19.79
Mob_v2_0.75 224 × 224 31.15 Vgg_16 224 × 224 10.02
Mob_v2_1.0 224 × 224 30.67 Vgg_19 224 × 224 9.73
Mob_v2_1.3 224 × 224 30.22 Xcp_V1 299 × 299 22.67

Listed in alphabetical order: img/s, higher is better.

Figure 2. Inference rates; top-5 and bottom-5.

4.2. Collected Images

As mentioned earlier, the present research was conducted in order to speed up the
analysis and classification of a massive number of collected camera trap images. The
research of the Eurasian lynx (Lynx lynx) [66] population using photo traps (automatic
cameras with IR sensor) was carried out in the period between 2011 and 2019 as a part of
two research projects in regions covering an area of about 10,000 km2. All photo traps were
housed in metal housings at a height of about 40 cm from the ground and were set up in
a way that they recorded images the whole time the animal was present in the camera’s
field of view. Unfortunately, a camera trap can be triggered by any moving objects such as
small or large animals, vegetation in the wind or rain, larger insects and birds, or passing
humans and vehicles.

Image quality directly influences the outcome of the classification process, either by
humans or machines. Many factors and circumstances have direct impacts on the quality
of the image, which can be divided into a few groups—namely, technical properties of the
used equipment, location (environment) conditions, and animal behavior. All mentioned
properties can have a cumulative effect on the quality of the collected images: the ease
of detection of the animal (dependent on the details and textures of the animals and the
environment), color palette of the images, clear or vague depiction of an animal, and the
deposition of moisture or dirt on the camera lens.

Lynx is a nocturnal and very cautious animal; hence, an extremely low number of
high-quality images were captured on the surveilled locations. During the period between
2011 and 2019, camera traps recorded 293,604 images. All images were carefully examined,
and lynx was detected on 1630 images (0.55%) by a human operator. It is important
to emphasize that 600 images (36.87%) had very low quality and that process of image



J. Imaging 2022, 8, 20 10 of 26

classification was very demanding even for a human. The following few examples illustrate
quality variations of the camera trap images (Figure 3).

The first three images in the first row depict very rare situations when good-quality
images were collected in the field. The first two images in the second row are very dark,
and it is very hard to detect the lynx (the highlighted rectangle is manually added). The
last image in the second row depicts a small part of the lynx. In this case, the characteristic
tail of the lynx made recognition possible. The last row depicts some situations where
classification process was very difficult; for instance, the lynx was either too close or too
fast (motion blur) or the image was overexposed (tuft of black hair on ears is another lynx
characteristic).

Figure 3. Examples of varying qualities of camera trap images, ranging from very easy to detect to
very difficult.

5. Results of the Classification Process

The following tables show the classification results for all evaluated models. All
models were utilized in the classification of an identical set of camera trap images. During
the classification process, image name, flag whether the image depicts the lynx (detection
by human), and the first five classification results were stored in a database. Based on
the results of the classification process and the boolean flag whether the lynx was really
depicted in the image, basic confusion matrix parameters TP, TN, FP, and FN were calcu-
lated. These parameters were used for the calculation of all other derived confusion matrix
parameters. Basic confusion matrix values are listed in Table 4 (a detailed description of
the parameters can be found in Appendix A.

Top-5 and bottom-5 values of the confusion matrix basic parameters (TP, TN, FP, and
FN) are displayed in Figure 4.



J. Imaging 2022, 8, 20 11 of 26

Table 4. Values of the confusion matrix basic parameters true positive (TP), true negative (TN), false
positive (FP), and false negative (FN) for label lynx.

Model
Number of Images (NoI)

Model
Number of Images (NoI)

TP TN FP FN TP TN FP FN

AlxNet 143 287,722 4252 1487 Mob_v2_1.4 393 286,262 5712 1237
DnsNet_121 445 289,534 2440 1185 Mob_v3_lrg 277 287,333 4641 1353
DnsNet_161 424 290,306 1668 1206 Mob_v3_lrgm 226 289,858 2116 1404
DnsNet_169 303 290,123 1851 1327 Mob_v3_sml 152 290,222 1752 1478
Inc_Res_v2 767 290,417 1557 863 Mob_v3_smlm 116 289,739 2235 1514
Inc_v1 270 291,069 905 1360 Ns_lrg 861 289,178 2796 769
Inc_v2 430 288,975 2999 1200 Ns_mob 372 290,775 1199 1258
Inc_v3 660 288,636 3338 970 Pns_lrg 900 289,679 2295 730
Inc_v4 783 289,716 2258 847 Pns_mob 381 290,484 1490 1249
Mob_v1_0.25 77 290,337 1637 1553 Rs_v1_50 244 290,113 1861 1386
Mob_v1_0.50 206 290,511 1463 1424 Rs_v1_101 288 289,712 2262 1342
Mob_v1_0.75 262 289,403 2571 1368 Rs_v1_152 383 289,076 2898 1247
Mob_v1_1.0 316 286,020 5954 1314 Rs_v2_50 310 290,951 1023 1320
Mob_v2_0.35 164 289,551 2423 1466 Rs_v2_101 272 290,901 1073 1358
Mob_v2_0.50 229 289,190 2784 1401 Rs_v2_152 406 289,753 2221 1224
Mob_v2_0.75 286 289,899 2075 1344 Vgg_16 276 288,835 3139 1354
Mob_v2_1.0 368 289,669 2305 1262 Vgg_19 275 289,677 2297 1355
Mob_v2_1.3 310 290,706 1268 1320 Xcp_V1 681 287,741 4233 949

Listed in alphabetical order: TP, TN, higher is better; FP, FN, lower is better.

The ImageNet dataset was divided into 1000 categories, but it did not contain category
“lynx”. There were two ImageNet dataset categories of interest in this research: n02127052
(lynx, catamount) and n02125311 (cougar, puma, catamount, mountain lion, painter, panther,
Felis concolor) [14]. The problem is that in addition to the label lynx, there was also a
label catamount, which reappeared in the second category, so there was an “overlap” of
terms. Since these terms are related, we decided to recognize both labels as successful
lynx detection in the image. TP results follow the premise that complex models are more
accurate and vice versa—models with the highest FLOPs (Pns_lrg) have the highest TP
rate, while models with the lowest FLOPs (Mob_v1_0.25) have the lowest TP rate. On the
other hand, TN results are quite surprising—the first version of the Inception architecture
(Inc_v1) shows the best results, while the first version of the MobileNet architecture with
depth multiplier 1.0 (Mob_v1_1.0) shows the worst results. The order of the top and bottom
values of the FP parameters follows the order of the top and bottom values of the TN
parameters, while the top and bottom values of the FN parameters follows the order of the
top and bottom values of the TP parameter.

The following presented parameter values are true-positive rate (TPR or sensitivity),
true-negative rate (TNR or specificity), and positive-predictive value (PPV or precision)
(Table 5). TPR values are dependent on TP parameter values, so TPR follows the order of the
top and bottom values of the TP parameter. TNR values are dependent on TN parameter
values, so TNR follows the order of the top and bottom values of the TP parameter. PPV
is dependent on TP and FP values and does not follow the order of the top and bottom
values of either parameter.



J. Imaging 2022, 8, 20 12 of 26

Figure 4. TP, TN, FP, and FN top-5 and bottom-5 values.

Table 5. Values of the true-positive rate (TPR), true-negative rate (TNR), and positive-predictive
value (PPV) for label lynx.

Model TPR TNR PPV Model TPR TNR PPV

AlxNet 0.08773 0.98544 0.03254 Mob_v2_1.4 0.24110 0.98044 0.06437
DnsNet_121 0.27301 0.99164 0.15425 Mob_v3_lrg 0.16994 0.98410 0.05632
DnsNet_161 0.26012 0.99429 0.20268 Mob_v3_lrgm 0.13865 0.99275 0.09650
DnsNet_169 0.18589 0.99366 0.14067 Mob_v3_sml 0.09325 0.99400 0.07983
Inc_Res_v2 0.47055 0.99467 0.33003 Mob_v3_smlm 0.07116 0.99234 0.04934
Inc_v1 0.16564 0.99690 0.22979 Ns_lrg 0.52822 0.99042 0.23544
Inc_v2 0.26380 0.98973 0.12540 Ns_mob 0.22822 0.99589 0.23679
Inc_v3 0.40491 0.98857 0.16508 Pns_lrg 0.55215 0.99214 0.28169
Inc_v4 0.48037 0.99227 0.25748 Pns_mob 0.23374 0.99490 0.20363
Mob_v1_0.25 0.04724 0.99439 0.04492 Rs_v1_50 0.14969 0.99363 0.11591
Mob_v1_0.50 0.12638 0.99499 0.12343 Rs_v1_101 0.17669 0.99225 0.11294
Mob_v1_0.75 0.16074 0.99119 0.09248 Rs_v1_152 0.23497 0.99007 0.11673
Mob_v1_1.0 0.19387 0.97961 0.05040 Rs_v2_50 0.19018 0.99650 0.23256
Mob_v2_0.35 0.10061 0.99170 0.06339 Rs_v2_101 0.16687 0.99633 0.20223
Mob_v2_0.50 0.14049 0.99046 0.07600 Rs_v2_152 0.24908 0.99239 0.15455
Mob_v2_0.75 0.17546 0.99289 0.12114 Vgg_16 0.16933 0.98925 0.08082
Mob_v2_1.0 0.22577 0.99211 0.13767 Vgg_19 0.16871 0.99213 0.10692
Mob_v2_1.3 0.19018 0.99566 0.19645 Xcp_v1 0.41779 0.98550 0.13858

Listed in alphabetical order: TPR [0,1], TNR [0,1], PPV [0,1]; higher is better.

Top-5 and bottom-5 values of TPR (sensitivity), TNR (specificity), and PPV (precision)
are displayed in Figure 5.



J. Imaging 2022, 8, 20 13 of 26

Figure 5. TPR, TNR, and PPV; top-5 and bottom-5.

The following examined parameters are model accuracy (ACC), error rate (ERR) and
balanced accuracy (BAC) (Table 6). Model accuracy is the most famous evaluation param-
eter, but it can be misleading if the collected image dataset is extremely imbalanced. In
the presented case herein, only 1630 images depict the lynx (TP value), and 291,974 im-
ages do not depict the lynx (TN value), so high TN value has a significant influence on
model accuracy.

Table 6. Values of model accuracy (ACC), error rate (ERR), and balanced accuracy (BAC) for
label lynx.

Model ACC ERR BAC Model ACC ERR BAC

AlxNet 0.98045 0.01955 0.53658 Mob_v2_1.4 0.97633 0.02367 0.61077
DnsNet_121 0.98765 0.01235 0.63232 Mob_v3_lrg 0.97958 0.02042 0.57702
DnsNet_161 0.99021 0.00979 0.62720 Mob_v3_lrgm 0.98801 0.01199 0.56570
DnsNet_169 0.98918 0.01082 0.58977 Mob_v3_sml 0.98900 0.01100 0.54363
Inc_Res_v2 0.99176 0.00824 0.73261 Mob_v3_smlm 0.98723 0.01277 0.53176
Inc_v1 0.99229 0.00771 0.58127 Ns_lrg 0.98786 0.01214 0.75932
Inc_v2 0.98570 0.01430 0.62677 Ns_mob 0.99163 0.00837 0.61206
Inc_v3 0.98533 0.01467 0.69674 Pns_lrg 0.98970 0.01030 0.77214
Inc_v4 0.98942 0.01058 0.73632 Pns_mob 0.99067 0.00933 0.61432
Mob_v1_0.25 0.98914 0.01086 0.52082 Rs_v1_50 0.98894 0.01106 0.57166
Mob_v1_0.50 0.99017 0.00983 0.56068 Rs_v1_101 0.98772 0.01228 0.58447
Mob_v1_0.75 0.98658 0.01342 0.57597 Rs_v1_152 0.98588 0.01412 0.61252
Mob_v1_1.0 0.97525 0.02475 0.58674 Rs_v2_50 0.99202 0.00798 0.59334
Mob_v2_0.35 0.98675 0.01325 0.54616 Rs_v2_101 0.99172 0.00828 0.58160
Mob_v2_0.50 0.98575 0.01425 0.56548 Rs_v2_152 0.98827 0.01173 0.62074
Mob_v2_0.75 0.98836 0.01164 0.58418 Vgg_16 0.98470 0.01530 0.57929
Mob_v2_1.0 0.98785 0.01215 0.60894 Vgg_19 0.98756 0.01244 0.58042
Mob_v2_1.3 0.99119 0.00881 0.59292 Xcp_V1 0.98235 0.01765 0.70165

Listed in alphabetical order: ACC[0,1], BAC[0,1], higher is better; ERR[0,1], lower is better.

Top-5 and bottom-5 values of models accuracy (ACC), error rate (ERR), and balanced
accuracy (BAC) are displayed in Figure 6.

Old and simple Inception version 1 model (Inc_v1) has the highest accuracy of all
models. As mentioned before, the reason is that the collected image dataset is extremely
imbalanced—only 0.55% of the collected images depict the lynx, while 99.45% do not.
As expected, ERR parameter follows the order of the top and bottom values of the ACC



J. Imaging 2022, 8, 20 14 of 26

parameter. The balanced accuracy (BAC) parameter better presents model accuracy and
follows the order of the top and bottom values of the TPR parameter.

Figure 6. ACC, ERR, and BAC; top-5 and bottom-5 values.

The following examined parameters are geometric mean (GM), Youden’s index (YI),
and discriminant power (DP) (Table 7). All parameters are dependent on models TPR (or
sensitivity) and TPN (or specificity), and they are suitable for imbalanced data.

Table 7. Values of model geometric mean (GM), Youden’s index (YI), and discriminant power (DP)
for label lynx.

Model GM YI DP Model GM YI DP

AlxNet 0.294028 0.073167 0.448681 Mob_v2_1.4 0.486197 0.221541 0.663033
DnsNet_121 0.520312 0.264649 0.909576 Mob_v3_lrg 0.408947 0.154043 0.608400
DnsNet_161 0.508563 0.254410 0.985547 Mob_v3_lrg-min 0.371006 0.131403 0.741037
DnsNet_169 0.429780 0.179550 0.857060 Mob_v3_sml 0.304454 0.087251 0.679232
Inc_Res_v2 0.684137 0.465219 1.224305 Mob_v3_sml-min 0.265746 0.063511 0.549988
Inc_v1 0.406363 0.162545 0.995748 Ns_lrg 0.723300 0.518645 1.138357
Inc_v2 0.510974 0.253532 0.848468 Ns_mob 0.476743 0.224114 1.023565
Inc_v3 0.632676 0.393475 0.976147 Pns_lrg 0.740140 0.544287 1.209156
Inc_v4 0.690401 0.472635 1.144106 Pns_mob 0.482234 0.228639 0.978718
Mob_v1_0.25 0.216736 0.041633 0.520814 Rs_v1_101 0.418710 0.168940 0.793827
Mob_v1_0.50 0.354608 0.121370 0.804397 Rs_v1_152 0.482325 0.225044 0.819826
Mob_v1_0.75 0.399150 0.151931 0.735634 Rs_v1_50 0.385667 0.143319 0.793460
Mob_v1_1.0 0.435789 0.173473 0.586183 Rs_v2_101 0.407747 0.163196 0.956939
Mob_v2_0.35 0.315877 0.092315 0.621156 Rs_v2_152 0.497177 0.241473 0.902555
Mob_v2_0.50 0.373030 0.130956 0.678430 Rs_v2_50 0.435336 0.186680 1.006538
Mob_v2_0.75 0.417389 0.168353 0.812627 Vgg_16 0.409273 0.158574 0.702280
Mob_v2_1.0 0.473270 0.217872 0.862727 Vgg_19 0.409126 0.160845 0.776746
Mob_v2_1.3 0.435153 0.185841 0.954902 Xcp_V1 0.641665 0.403294 0.931244

Listed in alphabetical order: GM[0,1], YI[0,1], DP[0,3]; higher is better.

Top-5 and bottom-5 values of geometric mean (GM), Youden’s index (YI), and discrim-
inant power (DP) are displayed in Figure 7.



J. Imaging 2022, 8, 20 15 of 26

Figure 7. GM, YI, and DP; top-5 and bottom-5 values.

All three measures are for imbalanced data and depend on models TPR and TNR
values. It can be observed that top-5 and bottom-5 orders for GM and YI model values
have the same order as the top-5 and bottom-5 TPR values. DP values for top-5 model are
listed in almost the same order as PPV values of top-5 models, while DP values of bottom-5
models have exactly the same order as the bottom-5 PPV values.

Finally, the last three classification metric parameters are presented: F1 score (F1),
Matthews correlation coefficient (MCC) and Cohen’s kappa (κ) (Table 8). The F1 score
does not include TN parameter values, which are very high in our particular case, so MCCs
are more suitable parameters in order to evaluate the classification model.

Table 8. Values of model F1 score (F1), Matthew’s correlation coefficient (MCC) and Cohen’s kappa
(κ) for label lynx.

Model F1 MCC κ Model F1 MCC κ
AlxNet 0.04747 0.04477 0.03969 Mob_v2_1.4 0.10162 0.11536 0.09367
DnsNet_121 0.19712 0.19935 0.19138 Mob_v3_lrg 0.08461 0.08919 0.07691
DnsNet_161 0.22783 0.22475 0.22299 Mob_v3_lrgm 0.11380 0.10976 0.10796
DnsNet_169 0.16015 0.15633 0.15481 Mob_v3_sml 0.08602 0.08077 0.08052
Inc_Res_v2 0.38796 0.39008 0.38394 Mob_v3_smlm 0.05828 0.05295 0.05206
Inc_v1 0.19251 0.19130 0.18874 Ns_lrg 0.32570 0.34747 0.32049
Inc_v2 0.16999 0.17534 0.16370 Ns_mob 0.23243 0.22826 0.22822
Inc_v3 0.23454 0.25227 0.22846 Pns_lrg 0.37306 0.38981 0.36841
Inc_v4 0.33526 0.34687 0.33042 Pns_mob 0.21765 0.21349 0.21298
Mob_v1_0.25 0.04605 0.04061 0.04059 Rs_v1_50 0.13066 0.12622 0.12518
Mob_v1_0.50 0.12489 0.11995 0.11994 Rs_v1_101 0.13780 0.13528 0.13192
Mob_v1_0.75 0.11741 0.11548 0.11115 Rs_v1_152 0.15598 0.15907 0.14967
Mob_v1_1.0 0.08000 0.08916 0.07182 Rs_v2_50 0.20925 0.20633 0.20528
Mob_v2_0.35 0.07778 0.07340 0.07146 Rs_v2_101 0.18286 0.17957 0.17873
Mob_v2_0.50 0.09864 0.09655 0.09210 Rs_v2_152 0.19074 0.19054 0.18516
Mob_v2_0.75 0.14332 0.14006 0.13766 Vgg_16 0.10942 0.10989 0.10267
Mob_v2_1.0 0.17104 0.17044 0.16529 Vgg_19 0.13089 0.12825 0.12494
Mob_v2_1.3 0.19327 0.18886 0.18884 Xcp_V1 0.20813 0.23359 0.20147

Listed in alphabetical order: F1[0,1], MCC[−1,1],κ[−1,1]; higher is better.

Top-5 and bottom-5 values of models F1 score (F1), Matthew’s correlation coefficient
(MCC), and Cohen’s kappa (κ) are displayed in Figure 8.



J. Imaging 2022, 8, 20 16 of 26

Figure 8. F1, MCC andκ; top-5 and bottom-5 values.

It can be observed that identical models are listed in the top and the bottom values for
F1, MCC, and Cohen’s parameters—even F1 score, which does not imply TN has the same
list order as top values. As mentioned earlier, MCC values closer to 1 imply better model
prediction capabilities, while values are divided and labeled into several arbitrary ranges.
The first four values listed in MCC top-5 values have correlation coefficients between
0.3 and 0.5, which indicates moderate a degree of correlation [67], while the last (Inc_v3)
model has a low degree of correlation between real and predicted classification. Cohen’s
kappa top-5 values have almost identical list order as the MCC top-5 values. All top-5
parameter values are between 0.2 and 0.4, which indicates a fair agreement between the
actual and predicted classification [68,69]. The list of the MCC bottom-5 values are also
almost identical and indicate extremely low correlation or a slight agreement between
actual and predicted classification.

Finally F1, MCC, and κ values can be shown for all of the 36 evaluated models.
Figure 9 shows how evaluation metrics for selected parameters values of top-5 models
(Inc_Res_v2, Pns_lrg, Inc_v4, Ns_lrg, and Inc_v3) are significantly higher than the values
of all other models. Unfortunately, all examined models had a poor classification efficiency
and, therefore, had limited usability in the present research.

Properties of Classification Model Ensemble

In this research, only pre-trained classification models were used (as mentioned
previously). No additional procedures (e.g., retraining, fine-tuning, transfer learning),
which can influence classification accuracy, were performed on any of the models evaluated
in this paper. In order to speed up the classification process, all pre-trained models were
optimized and "frozen" without repercussions to their accuracy. This research shows
that even the best-performing models still have poor classification results. The authors
proposed a method of improving the classification accuracy, without additional retraining,
by creating an ensemble of a number of best-performing models.



J. Imaging 2022, 8, 20 17 of 26

Figure 9. Values of F1 score (F1), Matthew’s correlation coefficient (MCC), and Cohen’s kappa (κ)
for all examined pre-trained models for label lynx.

The classification results (i.e., the successful detection of the lynx) were stored in a
SQL database, for all of the images in the dataset and all of the pre-trained models. The
method of selection of the models to form a model ensemble and the evaluation of such
ensemble was automated with a Python script. The Python script calculated TP, TN FP,
and FN parameters, based on successful detection of the lynx in the images, for all images
in the dataset. These four parameters were the basis for calculating all other metrics in
the evaluation of each of the models. Out of 36 evaluated models, only 8 were chosen,
based on the cut-off value of kappa being greater than or equal to 0.2 [68,69]. Furthermore,
out of the eight models that fit the criterion, the top-five performing ones were chosen,
based on the fact that the kappa value sharply decreased by 28.7% between the fourth and
fifth best-performing model. To calculate TP, TN, FP, and FN parameters for the model
ensemble, an additional parameter was needed—namely, a threshold value that defined
the minimum number of models that “had to agree” that the lynx was detected in the
image. The threshold parameter could be from 1 to N (all of the models in the ensemble).
The optimal threshold number was calculated by brute force evaluation of all combinations
of thresholds from 1 to 5.

Top five best-performing classification models were chosen according to the F1, MCC,
and Cohen’s kappa values. The chosen models are: Inc_Res_v2, Pns_lrg, Ns_lrg, Inc_v3
and Inc_v4. The classification results from all chosen models were combined into a single
“multimodel” or model ensemble for which a new confusion matrix was created. It is worth
mentioning that the ensemble was created as a union of standalone pre-trained models
and that each model was trained as a standalone model (not as a part of an ensemble).
Out of 293,604 collected camera trap images, lynx was manually detected in 1630 images.
Furthermore, in order to decide whether an ensemble of pre-trained models detects the
lynx, very simple rule was used—i.e., the ensemble detected the lynx only if three or
more models reported lynx detection; otherwise, the ensemble did not detect the lynx in



J. Imaging 2022, 8, 20 18 of 26

the captured image. The ensembles of pre-trained models were named according to the
number of individual models; Multi-5 consists of five (Inc_Res_v2, Pns_lrg, Inc_v4, Ns_lrg,
and Inc_v3), Multi-4 consists of four (Inc_Res_v2, Pns_lrg, Inc_v4, and Ns_lrg), and Multi-3
consists of three (Inc_Res_v2, Pns_lrg, and Inc_v4) pre-trained models. The confusion
matrix for the Multi-5 model is presented in Table 9.

Table 9. Multi-5 confusion matrix parameter values.

TP TN FP * FN * TPR TNR PPV ACC
810 291,039 935 820 0.496933 0.996798 0.464183 0.994023

ERR * BAC GM YI DP F1 MCC κ
0.005977 0.746865 0.703805 0.493730 1.372298 0.480000 0.477278 0.476998

*—lower values are better.

If the ensemble consisted of top-4 models (Inc_Res_v2, Pns_lrg, Ns_lrg, and Inc_v4),
then the same rule could be applied—the ensemble detected the lynx only if three individual
models reported lynx detection. The confusion matrix for the Multi-4 model is presented
in Table 10.

Table 10. Multi-4 confusion matrix parameter values.

TP TN FP * FN * TPR TNR PPV ACC
772 291,314 660 858 0.473620 0.997740 0.539106 0.994830

ERR * BAC GM YI DP F1 MCC κ
0.005170 0.735680 0.687422 0.471359 1.433602 0.504246 0.502721 0.501658

*—lower values are better.

If the ensemble consisted of top-3 models (Inc_Res_v2, Pns_lrg, and Inc_v4), then
similar rule could be applied—the ensemble detected the lynx only if all individual models
reported lynx detection and vice versa. The confusion matrix for the Multi-3 model is
presented in Table 11.

Table 11. Multi-3 confusion matrix parameter values.

TP TN FP * FN * TPR TNR PPV ACC
596 291716 258 1034 0.365644 0.999116 0.697892 0.995600

ERR * BAC GM YI DP F1 MCC κ
0.004400 0.682380 0.604418 0.364761 1.552263 0.479871 0.503265 0.477878

*—lower values are better.

The comparison of the F1, MCC, and κ parameters values between top-5 standalone
models and model ensemble confirms the assumption that the ensemble can reach higher
classification efficiency without the need for retraining, as is shown in Figure 10.

F1 score, MCC, and κ maximum values in the data table (Figure 10) are additionally
marked and clearly depict how all ensemble models are more efficient than any standalone
model. Multi-3 and Multi-5 ensembles have a similar F1 and κ values, while Multi-3 and
Multi-4 ensembles have similar MCC values. The Multi-4 ensemble has the best classifi-
cation metric results, i.e., the highest F1 and κ values and slightly lower than maximum
MCC value (Multi-3). The comparison of the best results by model ensembles and the
best-performing pre-trained standalone model (Inc_Res_v2) shows that F1 parameter is
23% higher and that κ is 23.5% higher in the case of a Multi-4 ensemble, while MCC is
22.5% higher in the case of a Multi-3 ensemble.



J. Imaging 2022, 8, 20 19 of 26

Figure 10. F1, MCC andκ parameter values of the top 5 standalone models and model ensembles.

6. Conclusions

In this research, a dataset of images collected by camera traps was used. The images
depicting the Eurasian lynx in its natural habitat were the focus of this research. Due to the
fact that lynx is a nocturnal and very cautious animal, the dataset was imbalanced with
regard to the percentage of images depicting the lynx, while images themselves varied
greatly in quality. In total, 36 CNN models of different architectures and complexities but
trained with the same ImageNet dataset were used for binary classification. Each of the
evaluated models was used in the classification process of 293,604 camera trap images, of
which only 1630 depicted the lynx. The efficiency of the models was evaluated according to
nine distinct evaluation metrics. Based on classification results and information on whether
the image depicts the lynx or not (set by a human observer), the confusion matrix and
evaluation parameters for each CNN model used were generated.

In order to evaluate CNN model classification efficiency, we focused on three eval-
uation metric parameters: F1 score (F1), Matthew’s correlation coefficient (MCC), and
Cohen’s kappa (κ). This research shows that in the case of a highly imbalanced dataset,
Inception–Resnet version 2 (Inc_Res_v2) shows the best results, according to all three (F1,
MCC, and κ) evaluation metric parameters. It is surprising that older and less complex
model such as Inc_Res_v2 has a minor advantage over Pns_lrg. The next two models in the
top-5 list by all evaluation metric parameters are Inception version 4 (Inc_v4) and NasNet
large (Ns_lrg). The Ns_lrg model is more complex and slower than Inc_v4. The difference
between these two models is more obvious than in the cases of Inc_Res_v2 and Pns_lrg.
It is an even greater surprise that the Inception version 3 (Inc_v3) model is listed in top-5
values for F1, MCC, and κ evaluation parameters. The observed evaluation parameters
values for the Inc_v3 model are significantly lower, compared with the other listed top-5
model values but compared with newer and more complex models (i.e., models with VGG
or ResNet architecture), the observed results are better.

Models that showed the worst results in this research were AlexNet and MobileNet
version 1 0.25 (Mob_v1_0.25). Other models listed on the bottom-5 evaluation metric param-
eters list are found in the MobileNet architecture: MobileNet version 1 1.0 (Mob_v1_1.0),
MobileNet version 2 0.35 (Mob_v2_0.35), and MobileNet ver. 3 1.0 small minimalistic
(Mob_v3_smlm). The bottom-5 results are not so surprising because the AlexNet architec-
ture was presented in 2012, making it the oldest of all evaluated CNN models. In addition,
the MobileNet architecture has the simplest model structure, making it more appropriate
for systems with low computational and energy resources.

This research showed that the results of the best-performing models are still rather
poor, which is in some ways to be expected—used pre-trained deep CNN models were
not retrained with additional images collected in the field or altered in any other way. All
models were pre-trained with the ImageNet dataset, which proved to be problematic for
the classification of images collected by camera traps. The ImageNet dataset consists of
clear, high-resolution images, while camera trap images vary in quality and are highly



J. Imaging 2022, 8, 20 20 of 26

dependent on technical properties of the equipment, location conditions, and animal
behavior. High0quality images collected by camera traps are very rare—more of an
exception than the rule. To achieve better performances of evaluated models, the user can
perform training of a new model from scratch or fine-tuning a model from an existing
checkpoint. Regardless of the method chosen (new model or fine-tuning), training (or
retraining) of models with “real-world” collected images is necessary in order to gain
higher values of the model evaluation parameters.

The assumption that less complex CNN models are less accurate but have higher
classification rate (and vice versa is) was proven correct in this research. The listed models
with bottom-5 evaluation parameter values were always the models of lower complexity.
That does not make them unnecessary and superfluous—to achieve better accuracy, model
training with an appropriate dataset is necessary. The less complex model with MobileNet
architecture should be trained, tested, and evaluated with location-specific data in order
to gain higher accuracy—i.e., models can be trained with collected camera trap images
with only two labels, "lynx" and "no lynx". Based on the conducted research, it can be
assumed that training from scratch of all used (pre-trained) CNN models can improve
model classification accuracy and inference rate, no matter how complex they are. This
assumption can be verified in future studies.

The next step of the research was to combine the pre-trained models into a multimodel
(model ensemble). The motivation for this approach was an assumption that such model
ensemble can achieve better classification results, without the need for a costly retraining
process. Three model ensembles were created consisting of three, four, and five top-
preforming pre-trained models (according to F1, MCC, andκ values). The assumption was
proven correct by the results of this research. The Multi-4 ensemble showed significantly
better results than the best-performing standalone pre-trained model.

Future studies on the presented subject should be focused on increasing models classi-
fication efficiency. The analysis in this study has shown that there were images in which
standalone models, as well as model ensembles, failed to detect the lynx, while the animal
was detected “manually” by the expert team from the Wildlife and Environmental/Nature
Protection Department. This research showed that the pre-trained CNN models are not
adequate for the classification of “real-world” images. In order to gain better classification
results, each of the examined models should be retrained with a dataset of camera trap
image dataset. After the retraining process, models should be carefully reexamined with a
new set of images, which are currently being collected by camera traps in various locations.

Author Contributions: Conceptualization, A.S.; methodology, A.S. and V.S.; software, A.S. and V.V.;
validation, A.S., V.V. and V.S.; formal analysis, A.S. and V.V.; investigation, A.S. and V.S.; resources,
V.S. and A.S.; data curation, A.S. and V.V.; writing—original draft preparation, A.S.; writing—review
and editing, A.S. and V.V.; visualization, A.S.; supervision, V.V.; project administration, V.S.; funding
acquisition, V.S. All authors have read and agreed to the published version of the manuscript.

Funding: The creation of the image dataset used in this research was funded by the Croatian State De-
partment for Nature Conservation (2011–2014) and project LIFE Lynx “https://rewildingeurope.com/
rew-project/life-lynx/ (accessed on 25 September 2021) (LIFE16 NAT/SI/000634) (2018-current)”.

Institutional Review Board Statement: Not applicable; the images used in this research were
collected passively, without interactions with animals.

Informed Consent Statement: Not applicable.

Data Availability Statement: Image dataset and instructions to reproduce the results presented in
this paper can be obtained from the following: https://vuka365.sharepoint.com/:f:/s/Lynx/Eh_oqh_
eydxFiyGDU313l5QBDOyiVtVKw30jeeGAGwPG6Q?e=Nv4tNg, https://vuka365.sharepoint.com/:
f:/s/Lynx/Eh_oqh_eydxFiyGDU313l5QBDOyiVtVKw30jeeGAGwPG6Q?e=Nv4tNg (accessed on 25
September 2021).

Acknowledgments: The authors would like to acknowledge and extend their gratitude to Ivana
Selanec, Ivan Budinski, and to BIOM Association (https://www.biom.hr/en/, accessed on 25 Septem-

https://rewildingeurope.com/rew-project/life-lynx/
https://rewildingeurope.com/rew-project/life-lynx/
https://vuka365.sharepoint.com/:f:/s/Lynx/Eh_oqh_eydxFiyGDU313l5QBDOyiVtVKw30jeeGAGwPG6Q?e=Nv4tNg
https://vuka365.sharepoint.com/:f:/s/Lynx/Eh_oqh_eydxFiyGDU313l5QBDOyiVtVKw30jeeGAGwPG6Q?e=Nv4tNg
https://vuka365.sharepoint.com/:f:/s/Lynx/Eh_oqh_eydxFiyGDU313l5QBDOyiVtVKw30jeeGAGwPG6Q?e=Nv4tNg
https://vuka365.sharepoint.com/:f:/s/Lynx/Eh_oqh_eydxFiyGDU313l5QBDOyiVtVKw30jeeGAGwPG6Q?e=Nv4tNg
https://www.biom.hr/en/


J. Imaging 2022, 8, 20 21 of 26

ber 2021), for the collection of image datasets used in this research, during their fieldwork in various
locations in Croatia.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Classification Models Evaluation and Metric

Binary classifier or pre-trained model, in this case, produces two predicted classes,
“true” and “false”. Confusion matrix or error matrix [68] is the table that contains four
outcomes produced by a binary classifier—correct positive prediction or true positive
(TP), incorrect positive prediction or false positive (FP), correct negative prediction or
true negative (TN), and incorrect negative prediction or false negative (FN) [69,70]. The
confusion matrix structure is shown in Figure A1.

Figure A1. Confusion matrix structure.

With these four parameters, additional terms are defined for a two-by-two confusion
matrix [68–70] (Table A1). As mentioned earlier, all listed CNN models classify images
collected from a camera trap. Classification results are listed in form of 1000 ImageNet
classes labels and their probability. The images containing lynx were the focus of this
research. In order to evaluate models’ ability to detect lynx, two aspects are important:
model’s top-5 inference results and whether there is a lynx in the image. If the classifier
top-5 results do list lynx for the image containing the lynx, then this is the case of a correct
positive prediction or true positive (TP). If for a particular image, which depicts the lynx,
the classifier top-5 results do not list a class “lynx”, it is the case of the incorrect negative
prediction or false negative (FN). Furthermore, if classifier top-5 results do not list class
“lynx” for the image which does not depict the lynx, it is the case of the correct negative
prediction or true negative (TN). Finally, if classifier top-5 results do list the class “lynx” for
the image that does not depict the lynx, it is the case of an incorrect positive prediction, or
false positive (FP). From these four values, all other values (listed in the table above) are
derived. These values are as follows:

1. True-positive rate (TPR) or sensitivity: measures the proportion of positives that are
correctly identified as such (i.e., when a lynx is actually in the image, how often the
classification model predicts correctly when a lynx is in the image);

2. True-negative rate (TNR) or specificity: measures the proportion of negatives that are
correctly identified as such (i.e., when a lynx is not actually in the image, how often
the classification model predicts correctly when a lynx is not in the image);

3. Positive-predictive value (PPV) or precision: measures the proportion of predicted
positives that are actually positive (i.e., when classification model predicts the lynx in
the image, or how often the predictions are correct);



J. Imaging 2022, 8, 20 22 of 26

4. Accuracy: the measure of the model’s correct classification;
5. Error rate: the measure of the model’s incorrect classification;
6. Balanced accuracy: used when positive and negative classes are imbalanced;
7. Geometric mean (GM): measures geometric mean of precision and sensitivity;
8. Youden’s index (YI): measures model ability to avoid misclassifications;
9. Discriminant power (DP): measures how successfully the model distinguishes be-

tween positive and negative examples;
10. F1 score: measures the harmonic mean of precision and sensitivity (or balance between

precision and sensitivity);
11. Matthews correlation coefficient: correlation coefficient between the observed and

predicted classifications;
12. Cohen’s Kappa: measures how well the classifier performed, compared (Observed Ac-

curacy) with how well it would have performed simply by chance (Expected Accuracy).

The present research was performed on imbalanced data, so the selection of the
appropriate evaluation model should rely on a set of different measures [71]. There
are several classification metrics presented in this paper: accuracy, balanced accuracy,
geometric mean, Youden’s index, discriminant power, F1 score, Matthews correlation
coefficient, and Cohen’s kappa. Accuracy is not a very good measure of classification
model if positive and negative classes are imbalanced, which was the case in this research;
therefore, we used the balanced accuracy instead. Geometric mean, Youden’s index, and
discriminant power are dependent on TPR and TNR values, and they are, similarly to
balanced accuracy, suitable for imbalanced data. Geometric mean or Fowlkes–Mallows
index measure the balance between classification performances in the majority and minority
classes [72]. Youden’s index or bookmaker informedness measures the model’s ability to
balance precision and sensitivity [72,73], while discriminant power summarizes sensitivity
and specificity [73]. The F1 score is a better metric for model evaluation because accuracy
does not take FP and FN into account, while F1 does. Another metric for classification
model evaluation is Matthews correlation coefficient, which is considered better than
the F1 score because it does not ignore TN values such as the F1 score. While accuracy
highly relies on TP and TN values, the F1 score does not use TN values at all, so the
classification models evaluation can be misleading. Matthew’s correlation coefficient (also
called the measure of the quality of the classifications) takes into account all four values
(TP, TN, FP, and FN) and “MCC is high only if your classifier is doing well on both the
negative and the positive elements [74]”. According to Powers [75], MCC is a special case
of Pearson’s correlation [67], so we can use the same interpretation for Phi Coefficient and
MCC parameters. Cohen’s kappa uses all four values (TP, TN, FP, and FN) in order to
compare classification model observed accuracy and random chance accuracy, especially if
positive and negative classes are imbalanced. Cohen’s kappa coefficients are divided into
several arbitrary divisions that can be used as benchmarks for result interpretation [68].

The next important subject is the interpretation of calculated values. All values derived
from TP, TN, FP, and FN have values in range from 0 to 1. Values of ACC, BAC, TPR,
TNR, PPV, GM, Y1, and F1 range from 0 to 1—a higher value implies better model image
classification performance and vice versa. The parameter ERR also ranges from 0 to 1, but
in this case, lower values are preferable. The following two mentioned parameters range
from −1 to 1. The MCC value of −1 implies that actual and predicted conditions are not
correlated; value 0 implies that the model is no better than accidental guessing, while value
1 implies that the model prediction capabilities are perfect. Cohen’s Kappa values also vary
from −1 to 1. Values lower or equal to 0 indicate no agreement, while value 1 indicates a
perfect agreement between the actual and predicted classification. Parameter DP ranges
from 0 to 3. The model is a poor discriminant if DP < 1, limited discriminant if DP < 2, fair
discriminant if DP < 3, and a good discriminant for all other values.

Although it is common to evaluate classification models for top-1 and top-5 results
(presented in the table with the list of used image classification models), all classification
models are evaluated for top-5 results in this conducted research.



J. Imaging 2022, 8, 20 23 of 26

Table A1. Confusion matrix parameters.

Parameter Calculation

Sensitivity, Recall or
True Positive Rate (TPR)

TPR =
TP

TP + FN
(A1)

Specificity, Selectivity or
True Negative Rate

(TNR)
TNR =

TN
TN + FP

(A2)

Precision or Positive
Predictive Value (PPV)

PPV =
TP

TP + FP
(A3)

Accuracy (ACC) ACC =
TP + TN

TP + TN + FP + FN
(A4)

Error Rate (ERR) ERR = 1− ACC (A5)

Balanced Accuracy
(BAC)

BACC =
TPR + TNR

2
(A6)

Geometric Mean (GM) GM =
√

TPR · TNR (A7)

Youden’s Index (YI) YI = TPR + TNR− 1 (A8)

Discriminant Power
(DP)

DP =

√
3

π
(log(

TPR
1− TPR

) + log(
TNR

1− TNR
)) (A9)

F1 score (F1) F1 =
2TP

2TP + FP + FN
(A10)

Matthews Correlation
Coefficient (MCC)

MCC =
TP · TN − FP · FN√

(TP + FP) · (TP + FN) · (TN + FP) · (TN + FN)
(A11)

Cohen’s Kappa (κ) κ =
po−pe

1− pe
(A12)

Observed Accuracy (po) po =
TP + TN

TP + TN + FP + FN
(A13)

Expected Accuracy (pe) pe =
(TN + FP) · (TN + FN) + (FN + TP) · (FP + TP)

(TP + TN + FP + FN)2 (A14)

References
1. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
2. Aamir, M.; Rahman, Z.; Abro, W.; Tahir, M.; Mustajar, S. An Optimized Architecture of Image Classification Using Convolutional

Neural Network. Int. J. Image Graph. Signal Process. 2019, 11, 30–39. [CrossRef]
3. Hope, T.; Resheff, Y.S.; Lieder, I. Learning TensorFlow: A Guide to Building Deep Learning Systems, 1st ed.; O’Reilly Media, Inc.:

Newton, MA, USA, 2017.
4. Gulli, A.; Kapoor, A. TensorFlow 1.x Deep Learning Cookbook: Over 90 Unique Recipes to Solve Artificial-Intelligence Driven Problems

with Python; Packt Publishing: Birmingham, UK, 2017.
5. ImageNet Image Database. Available online: https://www.image-net.org/ (accessed on 25 September 2021).
6. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In Proceedings of the

2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [CrossRef]
7. Machine Learning on AWS. Available online: https://aws.amazon.com/machine-learning/ (accessed on 25 September 2021).
8. Google TensorFlow. Available online: https://www.tensorflow.org/ (accessed on 25 September 2021).
9. Microsoft Cognitive Toolkit ML Framework. Available online: https://docs.microsoft.com/en-us/cognitive-toolkit/ (accessed

on 25 September 2021).
10. Facebook Pytorch ML Framework. Available online: https://ai.facebook.com/tools/pytorch/ (accessed on 25 September 2021).

http://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.5815/ijigsp.2019.10.05
https://www.image-net.org/
http://dx.doi.org/10.1109/CVPR.2009.5206848
https://aws.amazon.com/machine-learning/
https://www.tensorflow.org/
https://docs.microsoft.com/en-us/cognitive-toolkit/
https://ai.facebook.com/tools/pytorch/


J. Imaging 2022, 8, 20 24 of 26

11. Apache MXNet ML Framework. Available online: https://mxnet.apache.org/ (accessed on 25 September 2021).
12. Theano ML Framework. Available online: https://github.com/Theano/Theano (accessed on 25 September 2021).
13. Caffe Deep Learning Framework. Available online: https://caffe.berkeleyvision.org/ (accessed on 25 September 2021).
14. ImageNet. Large Scale Visual Recognition Challenge 2012 Image Classification Dataset (ILSVRC2012). Available online:

https://image-net.org/challenges/LSVRC/2012/browse-synsets.php (accessed on 25 September 2021).
15. Hvass-Labs TensorFlow Tutorial no.10 Fine-Tunning. Available online: https://github.com/Hvass-Labs/TensorFlow-Tutorials/

blob/master/10_Fine-Tuning.ipynb (accessed on 25 September 2021).
16. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow:

A System for Large-Scale Machine Learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16), Savannah, GA, USA, 2–4 November 2016; USENIX Association: Savannah, GA, USA, 2016;
pp. 265–283.

17. TPU Hardware Accelerator. Available online: https://www.tensorflow.org/guide/tpu (accessed on 25 September 2021).
18. TenorFlow-Slim. Available online: https://github.com/google-research/tf-slim/tree/master/tf_slim (accessed on 25 September 2021).
19. TensorFlow-Slim Image Classification Library. Available online: https://github.com/tensorflow/models/tree/master/research/

slim (accessed on 25 September 2021).
20. TensorFlow Keras. Available online: https://www.tensorflow.org/guide/keras (accessed on 25 September 2021).
21. Tensorflow—Better Performance with tf.function. Available online: https://www.tensorflow.org/guide/function (accessed on

25 September 2021).
22. TensorFlow—Use a GPU. Available online: https://www.tensorflow.org/guide/gpu (accessed on 25 September 2021).
23. Distributed Training with TensorFlow. Available online: https://www.tensorflow.org/guide/distributed_training (accessed on

25 September 2021).
24. AlexNet Pre-Trained Model. Available online: http://www.cs.toronto.edu/~guerzhoy/tf_alexnet/bvlc_alexnet.npy (accessed

on 25 September 2021).
25. Pretrained AlexNet Model for TensorFlow. Available online: https://github.com/huanzhang12/tensorflow-alexnet-model

(accessed on 25 September 2021).
26. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM

2017, 60, 84–90. [CrossRef]
27. Stanford University, CS231n: Convolutional Neural Networks for Visual Recognition, Lecture 9. Available online: http:

//cs231n.stanford.edu/slides/2020/lecture_9.pdf (accessed on 25 September 2021).
28. Kinsley, H.; Kukieła, D. Neural Networks from Scratch in Python: Building Neural Networks in Raw Python; Harrison Kinsley:

2020. Available online: https://www.kickstarter.com/projects/sentdex/neural-networks-from-scratch-in-python (accessed on
25 September 2021).

29. Tensorflow-DenseNet with ImageNet Pretrained Models. Available online: https://github.com/pudae/tensorflow-densenet
(accessed on 25 September 2021).

30. Huang, G.; Liu, Z.; Weinberger, K.Q. Densely Connected Convolutional Networks. Available online: http://arxiv.org/abs/1608
.06993 (accessed on 25 September 2021).

31. Vasilev, I. Python Deep Learning: Exploring Deep Learning Techniques and Neural Network Architectures with PyTorch, Keras, and
TensorFlow; Packt Publishing: Birmingham, UK, 2019; pp. 143–144.

32. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.E.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with
Convolutions. Available online: http://arxiv.org/abs/1409.4842 (accessed on 25 September 2021).

33. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. Available
online: http://arxiv.org/abs/1502.03167 (accessed on 25 September 2021).

34. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. Available
online: http://arxiv.org/abs/1512.00567 (accessed on 25 September 2021).

35. Szegedy, C.; Ioffe, S.; Vanhoucke, V. Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning.
Available online: http://arxiv.org/abs/1602.07261 (accessed on 25 September 2021).

36. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. Available online: http://arxiv.org/abs/1512.0
3385 (accessed on 25 September 2021).

37. Review: Inception-v4—Evolved From GoogLeNet, Merged with ResNet Idea (Image Classification). Available online:
https://towardsdatascience.com/review-inception-v4-evolved-from-googlenet-merged-with-resnet-idea-image-classification-
5e8c339d18bc (accessed on 25 September 2021).

38. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications. Available online: http://arxiv.org/abs/1704.04861 (accessed on
25 September 2021).

39. Sandler, M.; Howard, A.G.; Zhu, M.; Zhmoginov, A.; Chen, L. Inverted Residuals and Linear Bottlenecks: Mobile Networks for
Classification, Detection and Segmentation. Available online: http://arxiv.org/abs/1801.04381 (accessed on 25 September 2021).

40. Howard, A.; Sandler, M.; Chu, G.; Chen, L.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; Le, Q.V.; Adam, H.
Searching for MobileNetV3. Available online: http://arxiv.org/abs/1905.02244 (accessed on 25 September 2021).

https://mxnet.apache.org/
https://github.com/Theano/Theano
https://caffe.berkeleyvision.org/
https://image-net.org/challenges/LSVRC/2012/browse-synsets.php
https://github.com/Hvass-Labs/TensorFlow-Tutorials/blob/master/10_Fine-Tuning.ipynb
https://github.com/Hvass-Labs/TensorFlow-Tutorials/blob/master/10_Fine-Tuning.ipynb
https://www.tensorflow.org/guide/tpu
https://github.com/google-research/tf-slim/tree/master/tf_slim
https://github.com/tensorflow/models/tree/master/research/slim
https://github.com/tensorflow/models/tree/master/research/slim
https://www.tensorflow.org/guide/keras
https://www.tensorflow.org/guide/function
https://www.tensorflow.org/guide/gpu
https://www.tensorflow.org/guide/distributed_training
http://www.cs.toronto.edu/~guerzhoy/tf_alexnet/bvlc_alexnet.npy
https://github.com/huanzhang12/tensorflow-alexnet-model
http://dx.doi.org/10.1145/3065386
http://cs231n.stanford.edu/slides/2020/lecture_9.pdf
http://cs231n.stanford.edu/slides/2020/lecture_9.pdf
https://www.kickstarter.com/projects/sentdex/neural-networks-from-scratch-in-python
https://github.com/pudae/tensorflow-densenet
http://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1602.07261
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://towardsdatascience.com/review-inception-v4-evolved-from-googlenet-merged-with-resnet-idea-image-classification-5e8c339d18bc
https://towardsdatascience.com/review-inception-v4-evolved-from-googlenet-merged-with-resnet-idea-image-classification-5e8c339d18bc
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1801.04381
http://arxiv.org/abs/1905.02244


J. Imaging 2022, 8, 20 25 of 26

41. Tan, M.; Chen, B.; Pang, R.; Vasudevan, V.; Le, Q.V. MnasNet: Platform-Aware Neural Architecture Search for Mobile. Available
online: http://arxiv.org/abs/1807.11626 (accessed on 25 September 2021).

42. Yang, T.; Howard, A.G.; Chen, B.; Zhang, X.; Go, A.; Sze, V.; Adam, H. NetAdapt: Platform-Aware Neural Network Adaptation
for Mobile Applications. Available online: http://arxiv.org/abs/1804.03230 (accessed on 25 September 2021).

43. MobileNet Version 1 Pre-Trained Models. Available online: https://github.com/tensorflow/models/blob/master/research/
slim/nets/mobilenet_v1.md (accessed on 25 September 2021).

44. MobileNet Version 2 and MobileNet Version 3 Pre-Trained Models. Available online: https://github.com/tensorflow/models/
blob/master/research/slim/nets/mobilenet/README.md (accessed on 25 September 2021).

45. Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning Transferable Architectures for Scalable Image Recognition. Available online:
http://arxiv.org/abs/1707.07012 (accessed on 25 September 2021).

46. Liu, C.; Zoph, B.; Shlens, J.; Hua, W.; Li, L.; Fei-Fei, L.; Yuille, A.L.; Huang, J.; Murphy, K. Progressive Neural Architecture Search.
Available online: http://arxiv.org/abs/1712.00559 (accessed on 25 September 2021).

47. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015,
arXiv:cs.CV/1409.1556.

48. He, K.; Zhang, X.; Ren, S.; Sun, J. Identity Mappings in Deep Residual Networks. Available online: http://arxiv.org/abs/1603.0
5027 (accessed on 25 September 2021).

49. Deep Residual Networks, ResNet 50, ResNet 101, ResNet 152 Caffe Models. Available online: https://github.com/KaimingHe/
deep-residual-networks (accessed on 25 September 2021).

50. Khan, A.; Sohail, A.; Zahoora, U.; Qureshi, A.S. A Survey of the Recent Architectures of Deep Convolutional Neural Networks.
http://arxiv.org/abs/1901.06032 (accessed on 25 September 2021).

51. Berkeley Vision and Learning Center—Caffe Model Zoo, VGG 16 and VGG 19 Layer Caffe Models. Available online: https:
//github.com/BVLC/caffe/wiki/Model-Zoo#models-used-by-the-vgg-team-in-ilsvrc-2014 (accessed on 25 September 2021).

52. Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. http://arxiv.org/abs/1610.02357 (accessed on 25
September 2021).

53. Keras API Reference/Keras Applications, Xception Accuracy. Available online: https://keras.io/api/applications/ (accessed on
25 September 2021).

54. Xception Pre-Trained Model. Available online: https://drive.google.com/file/d/1sJCRDhaNaJAnouKKulB3YO8Hu3q91KjP/
view (accessed on 25 September 2021).

55. Using the SavedModel Format. Available online: https://www.tensorflow.org/guide/saved_model (accessed on 25 September 2021).
56. Protocol Buffers. Available online: https://developers.google.com/protocol-buffers (accessed on 25 September 2021).
57. Camus, V.; Enz, C.; Verhelst, M. Survey of Precision-Scalable Multiply-Accumulate Units for Neural-Network Processing. In

Proceedings of the 2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS), Hsinchu, Taiwan,
18–20 March 2019; pp. 57–61. [CrossRef]

58. Quinnell, E.; Swartzlander, E.E.; Lemonds, C. Floating-Point Fused Multiply-Add Architectures. In Proceedings of the
2007 Conference Record of the Forty-First Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA,
4–7 November 2007; pp. 331–337. [CrossRef]

59. TensorFlow Profiler. Available online: https://github.com/tensorflow/tensorflow/tree/master/tensorflow/core/profiler
(accessed on 25 September 2021).

60. FLOP Calculation by tf.profiler Might Be Wrong Num. 19746. Available online: https://github.com/tensorflow/tensorflow/
issues/19746 (accessed on 25 September 2021).

61. SQLIte Database. Available online: https://www.sqlite.org/index.html (accessed on 25 September 2021).
62. A8-6600K with Radeon™ HD 8570D Specification. Available online: https://www.amd.com/en/support/apu/amd-series-

processors/amd-a8-series-apu-for-desktops/a8-6600k-radeon-hd-8570d (accessed on 25 September 2021).
63. GeForce GTX 1070 G1 Gaming 8G (rev. 1.0). Available online: https://www.gigabyte.com/hr/Graphics-Card/GV-N1070G1

-GAMING-8GD-rev-10#kf (accessed on 25 September 2021).
64. Accelerating Inference in TF-TRT User Guide. Available online: https://docs.nvidia.com/deeplearning/frameworks/tf-trt-user-

guide/index.html#integrate-ovr (accessed on 25 September 2021).
65. Documentation for TensorRT in TensorFlow (TF-TRT). Available online: https://github.com/tensorflow/tensorrt (accessed on

25 September 2021).
66. Brief Fact Sheet on the Eurasian Lynx (Lynx lynx). Available online: https://www.euronatur.org/en/what-we-do/endangered-

species/lynx/fact-sheet-lynx/ (accessed on 25 September 2021).
67. SPSS Tutorials: Pearson Correlation. Available online: https://libguides.library.kent.edu/SPSS/PearsonCorr (accessed on 25

September 2021).
68. Landis, J.R.; Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics 1977, 33, 159–174. [CrossRef]

[PubMed]
69. Grandini, M.; Bagli, E.; Visani, G. Metrics for Multi-Class Classification: an Overview. arXiv, 2020, arXiv:stat.ML/2008.05756.
70. Provost, F.; Kohavi, R. Glossary of Terms. Mach. Learn. 1998, 30, 271–274. [CrossRef]
71. Akosa, J.S. Predictive Accuracy: A Misleading Performance Measure for Highly Imbalanced Data. In Proceedings of the SAS

Global Forum, Orlando, FL, USA, 2–5 April 2017.

http://arxiv.org/abs/1807.11626
http://arxiv.org/abs/1804.03230
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.md
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.md
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/README.md
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/README.md
http://arxiv.org/abs/1707.07012
http://arxiv.org/abs/1712.00559
http://arxiv.org/abs/1603.05027
http://arxiv.org/abs/1603.05027
https://github.com/KaimingHe/deep-residual-networks
https://github.com/KaimingHe/deep-residual-networks
http://arxiv.org/abs/1901.06032
https://github.com/BVLC/caffe/wiki/Model-Zoo#models-used-by-the-vgg-team-in-ilsvrc-2014
https://github.com/BVLC/caffe/wiki/Model-Zoo#models-used-by-the-vgg-team-in-ilsvrc-2014
http://arxiv.org/abs/1610.02357
https://keras.io/api/applications/
https://drive.google.com/file/d/1sJCRDhaNaJAnouKKulB3YO8Hu3q91KjP/view
https://drive.google.com/file/d/1sJCRDhaNaJAnouKKulB3YO8Hu3q91KjP/view
https://www.tensorflow.org/guide/saved_model
https://developers.google.com/protocol-buffers
http://dx.doi.org/10.1109/AICAS.2019.8771610
http://dx.doi.org/10.1109/ACSSC.2007.4487224
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/core/profiler
https://github.com/tensorflow/tensorflow/issues/19746
https://github.com/tensorflow/tensorflow/issues/19746
https://www.sqlite.org/index.html
https://www.amd.com/en/support/apu/amd-series-processors/amd-a8-series-apu-for-desktops/a8-6600k-radeon-hd-8570d
https://www.amd.com/en/support/apu/amd-series-processors/amd-a8-series-apu-for-desktops/a8-6600k-radeon-hd-8570d
https://www.gigabyte.com/hr/Graphics-Card/GV-N1070G1-GAMING-8GD-rev-10#kf
https://www.gigabyte.com/hr/Graphics-Card/GV-N1070G1-GAMING-8GD-rev-10#kf
https://docs.nvidia.com/deeplearning/frameworks/tf-trt-user-guide/index.html#integrate-ovr
https://docs.nvidia.com/deeplearning/frameworks/tf-trt-user-guide/index.html#integrate-ovr
https://github.com/tensorflow/tensorrt
https://www.euronatur.org/en/what-we-do/endangered-species/lynx/fact-sheet-lynx/
https://www.euronatur.org/en/what-we-do/endangered-species/lynx/fact-sheet-lynx/
https://libguides.library.kent.edu/SPSS/PearsonCorr
http://dx.doi.org/10.2307/2529310
http://www.ncbi.nlm.nih.gov/pubmed/843571
http://dx.doi.org/10.1023/A:1007442505281


J. Imaging 2022, 8, 20 26 of 26

72. Tharwat, A. Classification assessment methods. Appl. Comput. Inform. 2021, 17, 168–192. [CrossRef]
73. Sokolova, M.; Japkowicz, N.; Szpakowicz, S. Beyond Accuracy, F-Score and ROC: A Family of Discriminant Measures for

Performance Evaluation. In AI 2006: Advances in Artificial Intelligence; Sattar, A., Kang, B.H., Eds.; Springer: Berlin/Heidelberg,
Germany, 2006; pp. 1015–1021.

74. Chicco, D.; Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary
classification evaluation. BMC Genom. 2020, 21, 6. [CrossRef] [PubMed]

75. Powers, D.M.W. Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness and Correlation. Available
online: https://arxiv.org/abs/2010.16061 (accessed on 25 September 2021).

http://dx.doi.org/10.1016/j.aci.2018.08.003
http://dx.doi.org/10.1186/s12864-019-6413-7
http://www.ncbi.nlm.nih.gov/pubmed/31898477
https://arxiv.org/abs/2010.16061

	Introduction
	Image Classification
	Machine Learning Framework
	Image Classification Models
	Pre-Trained Classification Model Properties
	Collected Images

	Results of the Classification Process
	Conclusions
	Classification Models Evaluation and Metric
	References

