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Abstract: This paper presents a photometric stereo (PS) method based on the dichromatic reflectance
model (DRM) using colour images. The proposed method estimates surface orientations for surfaces
with non-Lambertian reflectance using diffuse-specular separation and contains two steps. The first
step, referred to as diffuse-specular separation, initialises surface orientations in a specular invariant
colour subspace and further separates the diffuse and specular components in the RGB space. In the
second step, the surface orientations are refined by first initialising specular parameters via solving a
log-linear regression problem owing to the separation and then fitting the DRM using Levenburg-
Marquardt algorithm. Since reliable information from diffuse reflection free from specularities is
adopted in the initialisations, the proposed method is robust and feasible with less observations.
At pixels where dense non-Lambertian reflectances appear, signals from specularities are exploited
to refine the surface orientations and the additionally acquired specular parameters are potentially
valuable for more applications, such as digital relighting. The effectiveness of the newly proposed
surface normal refinement step was evaluated and the accuracy in estimating surface orientations
was enhanced around 30% on average by including this step. The proposed method was also
proven effective in an experiment using synthetic input images comprised of twenty-four different
reflectances of dielectric materals. A comparison with nine other PS methods on five representative
datasets further prove the validity of the proposed method.

Keywords: photometric stereo; dichromatic reflectance model; diffuse-specular separation;
non-lambertian surfaces

1. Introduction

Photometric stereo (PS) estimates surface orientations using images captured from
a fixed viewpoint under various illuminations and is especially powerful in acquisition
of fine surface details at pixel level [1]. Surface orientation is important in a variety of
fields, such as geometry segmentation for three-dimensional (3D) object recognition [2]
and digital re-rendering in computer graphics. Surface geometries, which can be obtained
via integrating surface orientations, have also been proven useful for applications, such
as industrial quality control and reverse engineering. Due to the strength of PS and the
importance of surface orientation acquisition, PS has drawn increasing interests since its
debut [3]. However, making PS for a general real scene remains challenging due to the
diverse reflectance properties of different materials that appear non-Lambertian [4]. This
has given rise to the need for reliable estimation of surface orientations for a wide range
of non-Lambertian reflectance, which essentially requires a proper imaging photometry
model characterizing the forward problem and a subsequent PS method that inversely
derives surface orientations.

Existing PS methods dealing with non-Lambertian reflectance can be classified into
three categories. The first approximates surface reflectance using analytical bidirectional
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reflectance distribution function (BRDF) [5] and formulates the estimation of surface orien-
tations as a nonlinear fitting problem. Nayar et al. [6] derived surface orientations using the
Torrance-Sparrow BRDF [7] and incorporated extended sources to ensure sufficient informa-
tion from specularities. Georghiades [8] inverted the same BRDF to simultaneously estimate
surface orientations and resolve the generalized bas-relief ambiguity. Goldman et al. [9]
assumed that general material reflectance can be represented by a convex combination of
fundamental materials characterized by the Ward BRDF [10] and recovered surface orien-
tations, fundamental material BRDFs and weight maps simultaneously for further scene
editing purpose. Methods in this category exploiting information from surface reflectance
are capable to derive not only surface orientations but also the other parameters in the
analytical BRDFs, allowing more functionalities, such as digital relighting and material
classification. However, due to the nonlinearity of analytical BRDFs and larger number of
parameters to be estimated, these methods are sensitive to initialisations, numerically un-
stable under heavily corrupted outliers (e.g., shadows), and inapplicable when the number
of observations is limited.

The second category of methods infers surface orientations through adopting the gen-
eral properties of BRDF, such as isotropy, monotonicity and reciprocity. Alldrin et al. [11]
developed a non-parametric PS method using bi-variate approximation of the isotropy
property. Higo et al. [12] analyzed the general BRDF constraints and employed the BRDF
properties of monotonicity, isotropy and visibility to vote for the most possible surface
orientations for single-lobed reflectance. Shi et al. [13] proposed a bi-polynomial represen-
tation for low-frequency reflectance that was especially adaptable to the inverse problem
as PS, while Ikehata et al. [14] developed another general isotropic BRDF as sum of lobes
with unknown center directions. Methods in this category capitalize on the most funda-
mental properties of BRDF and therefore have the potential to deal with a broader range
of reflectance. However, these methods are only capable to derive surface orientations
with limited other functionalities and require an even larger set of observations compared
with the first category. To widen the applicability, recent years have seen non-parametric
BRDFs based on machine learning. Santo et al. [15,16] used a deep neural network for
the first time whereas Taniai and Maehara [17] estimated surface normals and BRDFs by
unsupervised learning. Ikehata [18] estimated surface normals more straightforward by
deriving the so-called observation maps and using convolutional neural networks. Such
data-driven approaches clearly improves the accuracy as observations directly create the
BRDF or estimate surface normals. The use of a significantly large set of observations,
which is key to the accuracy, and the expensive training effort using the observations make
the approaches outside the scope of this paper.

Methods in the third category assume that non-Lambertian effects appear sparsely
among observations and treat them as outliers. A substantial corpus of methods rely on
robust statistical techniques for outlier rejection. Wu et al. [19] formulated the PS with
outlier rejection as a global rank minimization problem, while Ikehata et al. [20] employed
sparse Bayesian regression instead. Barsky et al. [21] initiated another line of PS researches
using colour images where they first identified the significance of using specular colour in
the dichromatic reflectance model (DRM) [22] for specularity rejection. Using the cue from
known specular colour under the same theoretical foundation, Zickler et al. [23] derived a
PS method in a novel two-dimensional (2D) specular invariant colour subspace. The major
advantages of methods in the third category are their robustness and requirement for less
images, while they are inefficient in the presence of dense non-Lambertian effects.

This paper presents a colour PS method to estimate surface orientations using diffuse-
specular separation dealing with non-Lambertian reflectance. The proposed method models
the colour imaging photometry using DRM as the forward problem and inverts it following
a two-step procedure, the diffuse-specular separation and the surface normal refinement.
The first step, initialising surface orientations using known specular colour similarly to [23],
separates the diffuse and specular components in the RGB space and identifies outliers to
reject in the UV space. In the second step, the parameters characterizing the specularity
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are initialised via solving a log-linear regression problem and the surface orientations
are finally refined by fitting the nonlinear DRM using Levenburg-Marquardt algorithm
(LMA). The proposed method robustly initialises surface orientations in a specular-free
colour subspace and further fits for the nonlinear DRM with a newly derived parameter
initialisation strategy. The proposed method preserves the advantage of robustness as the
third category of methods, while it also benefits from the separated specular component
to tackle with dense non-Lambertian reflectance as the first category. Furthermore, DRM
parameters besides the surface orientations can be additionally obtained where dense
non-Lambertian reflectance appears, making more potential applications feasible, such as
digital relighting and material classification.

The rest of the paper is organized as follows. The next section presents the problem
formulation of colour PS incorporating DRM and the relevant PS methods. Section 3 first
overviews the flow and original contribution of the proposed colour DRM-based PS method
and then, elucidates the specific two steps in the subsequent subsections. It follows the
comprehensive evaluations on surface orientation estimation using both synthetic and real
images in Section 4, while the last section summarizes the conclusions and proposes the
future works.

2. Colour PS Incorporating Dichromatic Reflectance Model
2.1. Generic Colour PS Problem Formulation

Figure 1 shows the schematic diagram of the hardware components of the sensor
and the necessary data for the generic colour PS. The hardware components are an RGB
camera and a set of directional point sources whose positions are priorly known. Assume
that ambient light is completely blocked, the colour PS requires that the RGB camera
captures a colour image for the target surface with one source lit at a time. Given the
N colour images illuminated under N different sources, the objective of the colour PS
is to identify surface orientations pixel-wise. More specifically, given the colour image
irradiance measurements at pixel (i, j), {ei,j∗

k }k∈[1,N], under the unit illumination directions,

{l̄i,j
k }k∈[1,N], estimated from the light positions, the colour PS aims to derive the unit surface

normal, n̄i,j, by minimizing the sum of N corresponding square residuals:

εi,j =
N

∑
k=1

[(
ei,j∗

k

)T
w− f

(
n̄i,j, l̄i,j

k

)]2
→ min

n̄i,j
. (1)

where w is a vector of weights for colour channels whereas f is a forward function of
n̄i,j having l̄i,j

k as parameters, which corresponds to the weighted measurements. Note
that (̄) and ()∗ mean the unit version and the measurement of () respectively throughout
the paper.

Figure 1. Schematic diagram for generic colour PS.
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2.2. Colour Image Formation Model

Figure 2 shows the coordinate setups that are necessary for the colour PS to model
the imaging geometry and the light configuration. The coordinate frames are the 3D
camera frame, {C}, the 2D pixel frame, {P}, and the world frame, {W}, where its XY
plane is known and referred to as the reference plane. These coordinate frames follow the
convention given in [24]. A 3D surface point, {C}X̃, is projected to be a 2D image point,
{P}x, in the RGB camera using the perspective projection as:

{P}x =
1

{C}Z
MpK̂{C}X̃ =

1
{C}Z

mx 0 ox
0 my oy
0 0 1

 f 0 0
0 f 0
0 0 1

{C}X̃, (2)

where mx and my are each the number of pixels per unit distance along x and y direction
respectively. ox and oy are the principal point location in {P}, and f is the effective

focal length. Note that {P}x =
[
{P}x, {P}y, 1

]>
and {C}X̃ =

[
{C}X, {C}Y, {C}Z

]>
. {P}x is

rasterized into a regular grid in the camera as:[
j
i

]
= ceil

([
{P}x + 0.5
{P}y + 0.5

])
, (3)

where ceil(·) denotes the ceiling operator. {W} and {C} are related with a 3D rigid
transformation: {C}X̃ = RW

{W}X̃ + tW .

Figure 2. Coordinate setups for modeling imaging geometry and light configuration.

Let the kth light position be {C}S̃k =
[
{C}Xk, {C}Yk, {C}Zk

]>
. {C}S̃k is associated in the

spherical space as: 
{C}Xk =

{C}rk sin {C}θk cos {C}φk
{C}Yk =

{C}rk sin {C}θk sin {C}φk
{C}Zk =

{C}rk cos {C}θk,

(4)

where {C}rk, {C}θk and {C}φk are the radius, zenith and azimuth angle, respectively. The N
lights are configured such that they have the same zenith angle and radius, and uniformly
distributed azimuth angles around the optical axis, i.e., {C}θk = θ, {C}rk = r and {C}φk =
360◦(k−1)

N + φ0.
Having established the imaging geometry and light configuration, the imaging pho-

tometry is then modeled using the physically-based DRM [22]. The DRM properly charac-
terizes reflectance for dielectric materials [25] and is represented by a linear combination of
the diffuse and specular components. Assume that pixel (i, j) is shadow-free, the image
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irradiance for colour channel c after light strength normalisation and vignetting correction
is written as:

ei,j
c = ei,j

d,c + ei,j
s,c = di,j

c f i,j
d + sc f i,j

s , (5)

where ei,j
d,c and ei,j

s,c are the diffuse and specular components, and di,j
c and sc are diffuse and

specular colours which are wavelength-dependent and represented by:
di,j

c =
∫ ∞

0
Φ(λ)Ri,j(λ)Cc(λ)dλ,

sc =
∫ ∞

0
Φ(λ)Cc(λ)dλ. (6)

In the equation, λ is the wavelength, Φ(λ) is the source spectral power density (SPD),
Ri,j(λ) is the spectral body reflectance, and Cc(λ) is the camera spectral sensitivity for the
colour channel. f i,j

d and f i,j
s represent the diffuse and specular geometrical scaling factors

that are characterized by BRDF.
Since the scaling factors are illumination-dependent, let the image irradiance Equation (5)

generalized in the RGB colour space be with the kth illumination as:

ei,j
k = ei,j

d,k + ei,j
s,k = d̄i,j

RGB f i,j
d,k + s̄RGB f i,j

s,k =

d̄i,j
R

d̄i,j
G

d̄i,j
B

 f i,j
d,k +

s̄R
s̄G
s̄B

 f i,j
s,k, (7)

where d̄i,j
RGB = {di,j

c }c=R,G,B and s̄RGB = {sc}c=R,G,B are the unit diffuse and specular
colour, respectively. The diffuse geometrical scaling factor is characterized with the kth unit
illumination direction l̄i,j

k by Lambertian model as:

f i,j
d,k = ki,j

d

(
n̄i,j
)>

l̄i,j
k , (8)

where ki,j
d is the diffuse reflectance factor. Since the surface deviation is small compared with

the light-surface distance, l̄i,j
k can be approximately derived using a vector from the point

intersected by ray (i, j) and the reference plane to {C}S̃k. One of the common options of the
specular geometrical scaling factor, on the other hand, is a model using the Blinn-Phong
BRDF [26] because of its computational efficiency and high performance in characterizing
a wide range of isotropic reflectance [27]:

f i,j
s,k = ki,j

s

((
n̄i,j
)T

h̄i,j
k

)βi,j

, (9)

where ki,j
s is the specular reflectance factor, h̄i,j

k is the unit half vector, and βi,j is the shininess
coefficient. The unit half vector is written as:

h̄i,j
k =

l̄i,j
k + v̄i,j

‖l̄i,j
k + v̄i,j‖

, (10)

where v̄i,j is the unit viewer direction and determined by:vi,j = −
[

j− ox

mx
,

i− oy

my
, f
]>

,

v̄i,j = vi,j/‖vi,j‖. (11)
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2.3. Colour PS Methods Using DRM

Existing colour PS methods using DRM contain two major variants, representative
works of which were developed by Barsky et al. [21] and by Zickler et al. [23]. The PS
method of Barsky finds the unit surface normal n̄i,j and the diffuse reflectance factor ki,j

d

such that the residual between the colour image irradiances weighted by d̄i,j
RGB and the

diffuse geometrical scaling factor is minimised:

εi,j =
Nb

∑
k=1

[(
ei,j∗

k

)>
d̄i,j

RGB − f i,j
d,k

]2
=

Nb

∑
k=1

[(
ei,j∗

k

)>
d̄i,j

RGB − ki,j
d

(
n̄i,j
)>

l̄i,j
k

]2
→ min

n̄i,j ,ki,j
d

, (12)

where Nb(≤ N) is the number of specular-free and shadow-free images. The reason for
the use of Nb instead of N is that the Barsky’s PS method assumes that non-Lambertian
reflectance appears sparsely among observations, which should be rejected as outliers.
As the first process for outlier rejection, the direct principal component analysis (DPCA) [28]

on
[
Ei,j∗

RGB

]>[
Ei,j∗

RGB

]
is performed to estimate d̄i,j

RGB, where
[
Ei,j∗

RGB

]
=
[
ei,j∗

1 , ei,j∗
2 , . . . , ei,j∗

N

]>
.

Given s̄RGB and d̄i,j
RGB, the method then determines f i,j

s,k as:

f i,j
s,k =

(
ei,j∗

k

)T
s̄RGB −

((
ei,j∗

k

)>
d̄i,j

RGB

)((
d̄i,j

RGB

)>
s̄RGB

)
1−

((
d̄i,j

RGB

)T
s̄RGB

)2 . (13)

A threshold on f i,j
s,k is finally used to determine pixels to be rejected as outliers, and this

subsequently determines Nb.
The objective function (12) of this PS method is not different from that of the conven-

tional Lambertian-based PS method [3]. Given {l̄i,j
k }k∈[1,M] a priori, n̄i,j together with ki,j

d ,
which minimizes the objective function (12), is analytically determined as:

ki,j
d =

∥∥∥∥([Li,j]>[Li,j])−1[
Li,j]>[Ei,j∗

RGB

]
d̄i,j

RGB

∥∥∥∥,

n̄i,j =

(
[Li,j]

>
[Li,j]

)−1
[Li,j]

>[
Ei,j∗

RGB

]
d̄i,j

RGB

ki,j
d

,

where
[
Li,j] =

[
l̄i,j
1 , l̄i,j

2 , . . . , l̄i,j
Nb

]>
and rank(

[
Li,j]) = 3. While the effect of specularity

rejection through the use of s̄RGB is exhibited, the estimation of d̄i,j
RGB using DPCA is

erroneous due to the existence of specularities. Furthermore, all the specularities are
rejected as outliers though useful information may be contained.

Unlike Barsky’s PS method, which performs PS in the RGB colour space, the PS
method of Zickler estimates surface orientations in the SUV colour space, or the UV colour
space as S is not considered:

εi,j =
N

∑
k=1

[(
ei,j∗

UV,k

)T
d̄i,j

UV − αi,j
(

n̄i,j
)T

l̄i,j
k

]2
→ min

n̄i,j
, (14)

where αi,j is a scaling factor. The UV colour subspace includes more observations than the
RGB colour space in surface orientation estimation. To operate in the SUV space, the colour
image irradiance is transformed from RGB to SUV as:

ei,j
SUV,k , ei,j

k = Rsei,j
k = d̄i,j

SUV f i,j
d,k + s̄SUV f i,j

s,k, (15)
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where d̄i,j
SUV =

[
d̄i,j

U , d̄i,j
V , d̄i,j

S

]T
, s̄SUV = [0, 0, 1]T , and Rs ∈ SO(3) is any transformation

that yields s̄SUV = Rs s̄RGB = [0, 0, 1]T . UV forms a specular-free colour subspace that is
invariant to f i,j

s,k. The Zickler’s PS method first estimates d̄i,j
UV of unit length using DPCA on[

Ei,j∗
UV

]>[
Ei,j∗

UV

]
. It then becomes the conventional Lambertian-based PS problem and the

solution is obtained in the similar form to Equation (14). Compared with the Barsky’s PS,
the Zickler’s PS utilizes more observations and advantageously performs PS in the specular-
free UV colour subspace. Shape information from specularities is however neglected again,
and the method can only provide diffuse component up to the normalised RGB space.
The diffuse-specular separation in the RGB space remains open.

3. DRM-Based Colour PS Method Using Diffuse-Specular Separation
3.1. Overview of the Proposed Color PS Method

Figure 3 shows the flow and original contributions of the proposed DRM-based colour
PS method using the diffuse-specular separation. The proposed method consists of two
processes: Step 1, which is diffuse-specular separation using a PS, and Step 2, which is the
surface normal refinement. Step 1 identifies good approximate surface normals, whereas
Step 2 further refines and finalizes them with maximum accuracy. The steps are marked by
red boxes.

Step 1 is composed of four sub-processes: diffuse colour estimation, diffuse-specular
separation in RGB space, PS in UV space and the outlier estimation. After completing
shadow rejection as a preprocess, and generating the shadow-free image irradiance matrix[

Ei,j∗
RGB

]
, Step 1 begins with the diffuse colour estimation using the robust principal compo-

nent analysis (RPCA) proposed in this paper and derives d̄i,j
RGB. Note that () is a quantity

of () after shadow rejection. The diffuse color estimation also outputs a specularity map,
which describes the distribution of specular reflection. The diffuse-specular separability
is then checked for each pixel by deriving the diffuse-specular chromatic angle ψi,j in
RGB space. For separable pixels, the proposed method performs PS in the specular-free
UV colour subspace similarly to Zickler’s PS method and derives the initial guess of the
unit surface normal

(
n̄i,j)

1 and the diffuse reflectance factor
(

ki,j
d

)
1

similarly to Barsky’s

PS. ()1 means the initial guess of (). In parallel, the specular geometrical scaling factors,(
fi,j

s

)
1
, are derived through the diffuse-specular separation process using Equation (13) for

the subsequent surface normal refinement. Observations not in the specularity map are
clamped to zero in

(
fi,j

s

)
1
. The surface normals and the other parameters are then refined

by fitting the nonlinear DRM using LMA with regularisation.
In Step 2, the initial guess of the specular parameters,

(
ki,j

s

)
1

and
(

βi,j)
1, are drived

from
(
n̄i,j)

1 and
(

fi,j
s

)
1
. Finally, PS for the surface normal refinement derives n̄i,j and

ki,j
d with enhanced accuracy while additionally updating ki,j

s and βi,j. The strength of the
proposed method lies in this PS with the diffuse-specular separation. For pixels where
sparse non-Lambertian reflectances appear, the first step is sufficient to reliably estimate
the surface orientations. To tackle with more general problems with dense non-Lambertian
reflectances, the second step is additionally required to exploit surface normal information
from specularities in the DRM with the designed parameter initialisation strategy. The rest
of this section elucidates the proposed method in detail.
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Figure 3. Flows and the original contribution of the DRM-based colour PS.

3.2. Diffuse-Specular Separation
3.2.1. Diffuse Color Estimation

The proposed RPCA derives d̄i,j
RGB and the specularity map as follows:

1. Perform principle component analysis (PCA) for
[
Ei,j∗

RGB

]>[
Ei,j∗

RGB

]
to estimate d̄i,j

RGB;

2. Compute residual matrix:
[
Ri,j

d

]
=
[
Ei,j∗

RGB

]
d̄i,j

RGB

(
d̄i,j

RGB

)>
−
[
Ei,j∗

RGB

]
.

3. Compute residual vector: ri,j
d =

√(
ri,j

d,1

)◦2
+
(

ri,j
d,2

)◦2
+
(

ri,j
d,3

)◦2
, where

[
Ri,j

d

]
=[

ri,j
d,1, ri,j

d,2, ri,j
d,3

]
and ◦2 denotes the hadamard square.

4. If the mean of ri,j
d , mean(ri,j

d ), is smaller than the threshold Td, terminate RPCA and

output the current estimate of d̄i,j
RGB and the specularity map. Otherwise, find the

element that provides the maximal value of
(

ri,j
d −mean(ri,j

d )

std(ri,j
d )

)
and register (i, j) in the

specularity map. Remove the corresponding row vector in
[
Ei,j∗

RGB

]
and repeat from

step 1.

The RPCA eliminates image irradiances that are inappropriate for diffuse colour
estimation.

The validity of the RPCA can be explained as follows. The shadow-free image irradi-
ance matrix

[
Ei,j∗

RGB

]
is expanded from Equation (7) and decomposed as

[
Ei,j∗

RGB

]
= fi,j

d

(
d̄i,j

RGB

)>
+ fi,j

s (s̄RGB)
>

=


f i,j
d,1

f i,j
d,2

. . .
f i,j
d,Np


[
d̄i,j

R d̄i,j
G d̄i,j

B

]
+


f i,j
s,1

f i,j
s,2

. . .
f i,j
s,Np

[s̄R s̄G s̄B
]

(16)

where most entries in fi,j
s are near-zero since images are often near specular-free. In such

a case, a non-zero residual occurs if fi,j
s contains non-negligible entries. The RPCA algo-

rithms robustly and accurately estimate d̄i,j
RGB by keeping rejecting specularities until the

residual becomes smaller than Td. Unlike Barsky’s PS method, which identifies specu-
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larities after d̄i,j
RGB estimation, the proposed algorithms derive d̄i,j

RGB and the specularity
map simultaneously.

While the originality and superiority of the proposed RPCA algorithms have been
identified, the performance of the RPCA algorithms depends on the value of Td. If Td is too
large, the RPCA algorithms are tolerant to specularities and perform similarly to the DPCA
algorithms. If Td is too small, the RPCA algorithms reject innocent pixels as specularities
and make images sensitive to noise.

3.2.2. Diffuse-Specular Separability Check

Having d̄i,j
RGB estimated, the diffuse-specular chromatic angle, used to perform the

separability check, is derived as

cos ψi,j =
(

d̄i,j
RGB

)T
s̄RGB, (17)

Asymptotically, the chromatic angle gives

lim
ψi,j→0

d̄i,j
RGB = s̄RGB (18)

This means that ψi,j should be sufficiently larger than 0 in order for d̄i,j
RGB and s̄RGB to

be distinct and separable. The threshold of the chromatic angle to determine the separability
is Tc. If ψi,j ≥ Tc, d̄i,j

RGB and s̄RGB are sufficiently distinct and pixel (i, j) is considered as
separable. Similarly to Td, Tc should be chosen carefully. A small Tc results in yielding
false separation. Once d̄i,j

RGB and s̄RGB have been identified,
(

fi,j
s

)
1

is then initialised using
Equation (13).

3.2.3. PS in UV Space

Since the PS is performed in the UV colour space, the unit diffuse colour d̄i,j
RGB should

be converted into that in UV colour space d̄i,j
UV . The PS in UV color space allows more

observations as described in the Zickler’s PS method. With Rs, the estimated d̄i,j
RGB is

transformed to the SUV space as d̂i,j =
[
d̂i,j

U , d̂i,j
V , d̂i,j

S

]>
. The diffuse color in UV space d̂i,j

UV
is then given by

d̂i,j
UV =

[
d̂i,j

U , d̂i,j
V

]>
= κ

i,j
z d̄i,j

UV (19)

where d̄i,j
UV =

[
d̄i,j

U , d̄i,j
V

]>
is a unit vector, and

κ
i,j
z =

√(
d̂i,j

U

)2
+
(

d̂i,j
V

)2
> 0. (20)

Image irradiances of separable pixels are also transformed to the SUV colour space
as
[
Ei,j

SUV

]
using the same Rs.

[
Ei,j

UV

]
is then formed by picking the first two columns

of
[
Ei,j

SUV

]
. Due to the presence of image noise, the PS in UV space is modified from
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Equation (15) to reject noise-corrupted image irradiances as outliers using studentised
residuals [29]:

εi,j =
Np

∑
k=1

[(
ei,j∗

UV,k

)>
d̄i,j

UV −
(

κ
i,j
z

)2
f i,j
d,k

]2

=
Np

∑
k=1

[(
ei,j∗

UV,k

)>
d̄i,j

UV −
(

κ
i,j
z

)2(
ki,j

d

)
1

(
n̄i,j
)>

1
l̄i,j
k

]2

→ min
(n̄i,j)1,

(
ki,j

d

)
1

, (21)

where Np is the number of shadow-free images, so Nb ≤ Np ≤ N. The derivation of(
ki,j

d

)
1

in addition to
(
n̄i,j)

1 similarly to the Barsky’s PS method enables full recovery of
the colour diffuse component. Np is used instead of N and Nb because shadow-free images
are effective for reliability.

After the PS, n̄i,j and ki,j
d are initialised as

(
n̄i,j)

1 and
(

ki,j
d

)
1

respectively. The diffuse

component matrix,
[
Ei,j

d,RGB

]
, is then re-rendered as:

[
Ei,j

d,RGB

]
= max

((
ki,j

d

)
1

[
Li,j
](

n̄i,j
)

1
, 0N

)(
d̄i,j

RGB

)T
, (22)

where 0N is an N× 1 vector with all zero entries. The specular component matrix,
[
Ei,j

s,RGB

]
,

is obtained by max
((

fi,j
s

)
1
s̄T

RGB, 0N

)
. With the separated colour diffuse and specular com-

ponents, the proposed method allows the functionality of specular removal and intrinsic
image decomposition.

3.2.4. Outlier Estimation

Let the residual vector ri,j be written as:

ri,j =
[
Ei,j

UV

]
d̄i,j

UV −
[
Li,j
]
ni,j =

[
Ei,j

UV

]
d̄i,j

UV −
[
Li,j
]
ρi,jn̄i,j, (23)

where ni,j = ρi,jn̄i,j is the scaled normal,
[
Li,j
]
=
[
l̄i,j
1 , l̄i,j

2 , . . . , l̄i,j
M

]T
, and ρi,j = ki,j

d κ
i,j
z .

The hat matrix
[
Hi,j

a

]
[29] is represented by:

[
Hi,j

a

]
=
[
Li,j
]([

Li,j
]T[

Li,j
])−1[

Li,j
]T

. (24)

Diagonal entries in
[
Hi,j

a

]
are leverages and the kth leverage is denoted as hi,j

a,k. These

leverages quantify the influence that the observed
[
Ei,j

UV

]
d̄i,j

UV on their predicted values[
Li,j
]
ni,j. Each entry in the studentized residual vector r̃i,j is then approximated using:

r̃i,j
k =

ri,j
k√

(MSE)i,j
(

1− hi,j
a,k

) , (25)

where (MSE)i,j represents the mean squared error of ri,j. If any entry in |r̃i,j| exceeds To,
this entry is estimated as outliers. The proposed PS rejects outliers until no more can be
detected or (MSE)i,j is smaller than a tolerance, Tm. With the general rule of thumb in
detecting outliers using studentised residuals, To and Tm can be chosen as 2.5 and 9σ2

n ,
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where σn is the standard deviation of additive white Gaussian noise that can be estimated
using the method given by [30].

3.3. Surface Normal Refinement
3.3.1. Specular Parameter Initialisation

If dense non-Lambertian reflectance appears at pixel (i, j), which implies that more
than one entry in

(
fi,j

s

)
1

are in the specularity map, surface normal refinement is necessary
since the sparse non-Lambertian reflectance assumption in the diffuse-specular separation is
violated. With the estimated

(
fi,j

s

)
1
, the next objective is to initialise the specular parameters,(

ki,j
s

)
1

and
(

βi,j)
1. The specific cost functional is given by:

ε
i,j
s =

Nq

∑
k=1

((
f i,j
s,k

)
1
−
(

ki,j
s

)
1

((
h̄i,j

k

)>(
n̄i,j
)

1

)(βi,j)1
)2

→ min(
ki,j

s

)
1
,(βi,j)1

, (26)

where Nq is the number of specularity maps showing pixel (i, j) and Nq ≥ 2. Equation (26)
suggests a nonlinear least-squares problem, while it can be manipulated to the natural
logarithm domain as a linear problem given by:

ε
i,j
ls =

Nq

∑
k=1

(
ln
(

f i,j
s,k

)
1
− ln

(
ki,j

s

)
1
−
(

βi,j
)

1
ln
((

h̄i,j
k

)>(
n̄i,j
)

1

))2
→ min(

ki,j
s

)
1
,(βi,j)1

. (27)

Let
(

fi,j
s

)
1

with Nq rows consist of entries in
(

fi,j
s

)
1

in the specularity map and
[
H
]i,j

=[
h̄i,j

1 , h̄i,j
2 , ..., h̄i,j

Nq

]T
be the matrix comprised of the corresponding unit half vectors. Then,

the solution of ln
(

ki,j
s

)
1

and
(

βi,j)
1 to Equation (27) is given analytically by:

[ (
βi,j)

1
ln
(

ki,j
s

)
1

]
=

([
Si,j
]>[

Si,j
])−1[

Si,j
]>

ln
(

fi,j
s

)
1
, (28)

where [
Si,j
]
=
[
ln
([

H
]i,j(n̄i,j

)
1

)
, 1Nq

]
(29)

and 1Nq is a Nq × 1 vector with all entries equal to 1.

3.3.2. Surface Normal Refinement in DRM

All parameters in the DRM have been initialised up to this point. The LMA is then
employed to iteratively refine these parameters by solving the optimization problem:

εi,j =
N

∑
k=1

((
ei,j

k

)>
s̄RGB − ki,j

d

(
n̄i,j
)>

l̄i,j
k

(
d̄i,j

RGB

)>
s̄RGB − ki,j

s

((
n̄i,j
)>

h̄i,j
k

)βi,j

+Tα

(
1−

(
n̄i,j
)>

n̄i,j
))2

→ min
n̄i,j ,ki,j

d ,ki,j
s ,βi,j

, (30)

where the first three terms are from the generalised formulation, and, the fourth regulariza-
tion term with constant Tα is added. The regularisation term reduces the change of surface
normal refinement from the initial guess of

(
n̄i,j)

1 and prevents overfitting. Larger value of
Tα strengthens the robustness but limits the capability of surface normal refinement.

The strength of the proposed PS method lies in the determination of the surface nor-
mals while separating the diffuse and specular components in RGB space, eliminating
outliers and then tuning the diffuse and specular reflectance factors simultaneously. The de-
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termination considering diffuse and specular reflections simultaneously makes the surface
normal estimation more accurately. In addition, the proposed method can be used for spec-
ular removal [31] and intrinsic image decomposition [32]. Parameters characterizing fs,k
are determined at pixels, so the proposed method could also be used for digital relighting
and material classification where dense non-Lambertian reflectance appears.

4. Performance Evaluation on Surface Orientation Estimation
4.1. Evaluations Using Synthetic Images

The first experiment aims to evaluate the effectiveness of surface normal refinement
for dense non-Lambertian reflectance using synthetic input images. A scene with six
different-coloured spheres were rendered under 32 illuminants using the Blinn-Phong
model. The sphere was adopted as the scene geometry since it samples all the possibili-
ties of surface orientations for the visible surface. Different colours of the spheres were
introduced for more comprehensive evaluations of the proposed PS method on surfaces
with various spectral reflectances. The 32 illuminants were chosen to provide a sufficient
number of pixels with dense non-Lambertian reflectance for evaluation. s̄RGB was set at
[0.5774, 0.5774, 0.5774]T . Three colours of the spheres were red, green and blue with the
same ψi,j of 57.74◦, while the other three spheres were yellow, cyan and magenta with ψi,j of
35.26◦. The 32 light positions were configured with r = 442 mm and θ = 20◦. The reference
plane was located where RW = diag([1,−1,−1]) and tW = [0, 0, 678]T . ki,j

d , ki,j
s and βi,j were

set the same across the field of view as 0.4, 0.2 and 100, respectively. Additive Gaussian
noise was introduced with σn = 0.02. The image irradiance under the first illuminant
is shown by Figure 4a. The parameters of the proposed PS method were configured as:
Td = 0.01, Tc = 5◦, To = 2.5, Tm = 0.0036, Tα = 3, Tx = 0.02 and Ty = 0.02. 100 repeated
tests were conducted and the mean value was adopted for evaluation.

Figure 4. Evaluation of surface normal refinement: (a) Image irradiance under the first illuminant;
(b) Angular error of surface orientations without surface normal refinement in degrees; (c) Angular
error of surface orientations with surface normal refinement in degrees; (d) Improvement of surface
orientation estimation by including surface normal refinement in percentage.

Figure 4b shows the angular error of surface orientation estimation without surface
normal refinement. As is shown, the central regions of the spheres where dense non-
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Lambertian reflectances appear have larger error. By including the proposed surface
normal refinement step, the angular errors of surface orientations around the detected
dense non-Lambertian reflectance region, shown by a ring, are significantly reduced as
shown by Figure 4c. This is where the reflectance parameters are most tuned through
the surface normal refinement. Errors in such regions are even smaller than those with
sparse non-Lambertian reflectance, which further enhances that making specularities as
meaningful signals is beneficial for surface orientation estimation. Figure 4d demonstrates
the improvement percentage for quantitative evaluation. The improvement percentage
is defined reduction of the error divided by the error without surface normal refinement.
The accuracy of surface orientations was enhanced by 34.33% in median and 32.25% on
average. The first and third quantile values of the improvement were 15.76% and 54.23%,
respectively. The performance improvements onto the six different-coloured spheres
are shown in Table 1. The improvements were obvious for all spheres is significant,
implying that the method was applicable to a wide range of surfaces with different spectral
reflectances. For spheres that had larger chromatic angle, ψi,j, the d̄i,j

RGB estimations were

more accurate. The better estimated d̄i,j
RGB led to the more accurate recovery of

(
fi,j

s

)
1
,

resulting in the more reliable initialisation of
(
n̄i,j)

1. Such initialisations of n̄i,j ultimately
affected the different improvement performances. Overall, the accuracy was enhancement
by including the additional surface normal refinement step and for spectral reflectances
with larger chromatic angles, the improvement was more phenomenal.

Table 1. Improvement on different-coloured spheres

Index Colour ψi,j Error of d̄RGBi,jRGBi,jRGBi,j Mean Improvement

1 red 57.74◦ 1.15◦ 23.39%
2 yellow 35.26◦ 1.33◦ 32.85%
3 green 57.74◦ 1.15◦ 23.42%
4 cyan 35.26◦ 1.32◦ 32.04%
5 blue 57.74◦ 1.15◦ 23.15%
6 magenta 35.26◦ 1.33◦ 32.24%

In the second experiment, the performance improvement due to surface normal
refinement was verified onto a wide range of reflectances. Experimental settings and
parameters of the proposed method were the same as the first experiment except that
different values of ki,j

d , ki,j
s and βi,j were applied to represent various surface reflectances

when generating synthetic images. The ratio of κ
i,j
ds = ki,j

d /ki,j
s represents the relative

strength between the diffuse and specular components, whereas βi,j indicates the width of
the specular lobe. The mean, median, first and third quantile values of the improvement
were adopted for evaluation and the angular error of d̄i,j

RGB estimation was used for analyses.
As shown from Table 2, the improvements on all the different reflectances were significant
and more obvious for larger value of βi,j and κ

i,j
ds. Larger value of βi,j suggesting narrower

specular lobe made the d̄i,j
RGB estimation more accurate since the sparse non-Lambertian

reflectance assumption was valid. Similarly, larger value of κ
i,j
ds indicating stronger diffuse

components made better d̄i,j
RGB estimation due to stronger inliers. More accurate d̄i,j

RGB
estimation led to bigger improvement from the surface normal refinement. In summary,
with the additional surface normal refinement step, the accuracy of surface orientation
estimation is enhanced by around 30% on average and the improvement is more obvious
for reflectance that has narrower specular lobe and stronger diffuse component.
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Table 2. Evaluation of the improvement for different reflectances.

kd/ks β Mean Median First Quantile Third Quantile Error of d̄RGB

0.4/0.2 100 32.25% 34.33% 15.76% 54.23% 1.23◦

0.4/0.4 100 31.14% 32.97% 15.21% 53.75% 1.58◦

0.4/0.8 100 30.48% 32.77% 14.27% 52.90% 2.34◦

0.4/0.2 20 27.49% 26.70% 6.80% 51.66% 2.99◦

0.4/0.4 20 25.92% 25.98% 6.67% 51.25% 5.06◦

0.4/0.8 20 25.02% 24.07% 6.57% 50.81% 8.30◦

The third experiment aims to evaluate the overall performance of the proposed colour
PS method onto a wide variety of dielectric material reflectances. Twenty-four material
BRDFs divided into six categories were evaluated, where the different BRDFs were pro-
vided from the MERL database [33]. Experimental settings and the method parameters
were exactly the same as the first experiment except that the BRDFs were replaced. The im-
age irradiance for the first six materials under the first illuminant is shown in Figure 5a.
The angular errors of the surface orientation estimation are given in Figure 5b. As is
shown, the error is not only larger at the near central regions where specularities overlap
but also at the boundaries. Boundary pixels in the spheres have shallow grazing angles
and the error is due to the lack of modeling of the fresnel reflection in the Blinn-Phong
model. Figure 5c shows the performance of surface normal estimation on the 24 materi-
als using box-and-whisker plot. The red and black dot represent the mean and median
value, respectively. The lower and upper bound of the box indicates the first and third
quantile values. The six colours of the boxes suggest the six material categories. As is
shown, the proposed method can accurately estimate n̄i,j for most dielectric materials
within 5 degrees on average. The estimation performances on phenolic, plastic and rubber
were consistent, whereas those on the wood stain, fabric and acrylic were also acceptable
with two exceptions, the violet acrylic and the green fabric. The degradation for violet
acrylic was due to its wide specular lobe with small κ

i,j
ds, while the reason for green fabric

was because of its small ψi,j.

4.2. Evaluations Using Real Images

The proposed method was evaluated on five different datasets comprised of real
images in the DiLigenT database [4]. Parameters of the proposed method were set the same
as the first experiment. s̄RGB was estimated as [0.5774, 0.5774, 0.5774]T . From the first to
fifth column in Figure 6, the results on BUDDHA, BEAR, POT2, READING and GOBLET
are respectively shown. Figure 6a shows the image irradiance under the first illuminant,
while Figure 6b,c demonstrate the estimated normal map and the angular error of surface
orientation estimation, respectively. As is shown from READING, the proposed method is
only feasible for surfaces whose d̄i,j

RGB and s̄RGB are distinct. Figure 6c shows that the dense
non-Lambertian problem where the specularity overlaps is mostly solved for BUDDHA,
BEAR and POT2, while deficits still exist on GOBLET, which is because the DRM is not
proper to characterize metallic reflectance.
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Figure 5. (a) Image irradiance for the first six material BRDFs under the first illuminant; (b) Angular
error of surface orientation estimation for the first six material BRDFs; (c) Angular error of surface
orientation for the twenty-four dielectric materals.

Figure 6. Evaluations on surface oreintation estimation: (a) Image irradiance under the first illu-
minant; (b) Estimated normal map; (c) Angular error of surface orientations; (d) Angular error of
surface orientations on five datasets using ten different PS methods

The results were compared with those of nine other PS methods which are listed in
Table 3. The results from the nine methods were provided from the DiLigenT database and
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these methods were representative and well-recognized. It is to be noted that the results of
the recent machine learning based techniques reviewed in Introduction are not shown for
comparison since the effect of the physics based models is investigated in this paper. Due to
the data availability, refs. [21,23] were not involved in the comparison, while the essence of
their works in using DRM with known s̄RGB was well-inherited by the proposed method.

Table 3. Comparative studies of PS methods

Method Index 1 2 3 4 5 6 7 8 9 10

Reference [3] [9] [11] [12] [19] [20] [13] [34] [14] proposed

Figure 6d shows the results from ten PS methods on the five datasets. The X-axis rep-
resents the method index and the Y-axis indicates the angular error of n̄i,j. The five colours
of the bar represent the different datasets. The angular error of n̄i,j is also demonstrated
using the box-and-whisker plot similar to Figure 5. As is shown, the proposed method
performs well in estimating surface orientations for all the five datasets except GOBLET.
The results suggest that modeling reflectance using DRM is proper for surfaces made of
dielectric materials. The strength of the proposed method lies on the reliable estimation
of d̄i,j

RGB with simultaneous specularity detection. The advantage is also accredited by
exploiting n̄i,j not only from the diffuse components but also from the specularities owing
to the diffuse-specular separation. In spite of its advantages, the proposed method is
not effective for metallic surfaces compared with methods, such as [14]. The limitation
originates from the fundamental assumption of DRM that s̄RGB are the same across the sur-
face. This assumption is violated for metallic surfaces since the wavelength and geometry
exhibit inter-dependency.

5. Conclusions and Future Works

A PS method using colour images dealing with non-Lambertian reflectance has been
proposed. The method formulates the imaging photometry using DRM with known specular
colour. It extracts surface orientations not only from the diffuse components but also specular-
ities owing to the diffuse-specular separation. Introducing the additional surface refinement
step using information from specularities, the proposed method particularly improves the
accuracy for surface orientation estimation at pixels where dense non-Lambertian reflectance
appear. The simultaneously acquired specular parameters can be applied for more potential
functionalities, such as digital relighting and material classification.

From the experiment of validating the effectiveness of the newly proposed surface
normal refinement step on surface where dense non-Lambertian reflectance appears, the re-
sults indicate that with the additional step, the accuracy is enhanced by around 30% on
average and the improvement is more phenominal for surfaces with larger chromatic
angles, stronger diffuse components and narrower specular lobes due to the better esti-
mated unit diffuse colour. The result investigating the proposed method applicability on
24 different reflectances of dielectric materials suggests that the average angular error of
surface orientation estimation for most materials are within 5◦ and bigger errors occur at
surface patches with shallower grazing angles due to the limitation of the Blinn-Phong
model that does not incorporate the fresnel reflection. From the systematic comparison
on five datasets with nine other representative methods, the proposed method shows its
descent performance on reflectances of dielectric materials and degradation on metallic
surface due to the limitation of DRM. The result has also demonstrated that the proposed
method is only feasible for surfaces whose diffuse and specular colour are distinct.

This paper presented the first set of results to estimate surface orientations using
colour images for non-Lambertian reflectance, while it can be extended in a variety of
ways. First, other analytical BRDFs can be employed instead of the Blinn-Phong model
to better account for the fresnel reflection. Second, machine learning based models can
be incorporated to learn and reduce errors of analytical models. Further, an alternative
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method can be proposed specifically for surfaces whose diffuse and specular colours are
close to extend the method’s applicability. Making the method adaptive is one possible
solution. Last but not least, it is also of particular interest to infer surface properties from
the estimated specular parameters for the purpose of material classification.
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