Investigation of Nonlinear Optical Properties of Quantum Dots Deposited onto a Sample Glass Using Time-Resolved Inline Digital Holography
Abstract
:1. Introduction
2. QD Sample Preparation
3. Experimental Setup
4. Analysis of Probe Pulse Inline Holograms Due to NDPM Inside the Glass Substrate
5. Analysis of Probe Pulse Diffraction Due to NDPM on the QDs Deposited onto the Sample Glass
5.1. General Type of Inline Digital Hologram Observed in the Experiment
5.2. Evaluation of Absolute Nonlinear Refractive Index of QDs Deposited onto the Glass Substrate
6. Evaluation of the Optical “Nonlinearity Map”
7. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adair, R.; Chase, L.L.; Payne, S.A. Nonlinear refractive-index measurements of glasses using three-wave frequency mixing. J. Opt. Soc. Am. B 1987, 4, 875. [Google Scholar] [CrossRef]
- Taheri, B.; Liu, H.; Jassemnejad, B.; Appling, D.; Powell, R.C.; Song, J.J. Intensity scan and two photon absorption and nonlinear refraction of C 60 in toluene. Appl. Phys. Lett. 1996, 68, 1317–1319. [Google Scholar] [CrossRef]
- Mbarak, H.; Kodeary, A.; Hamidi, S.; Mohajarani, E.; Zaatar, Y. Control of nonlinear refractive index of AuNPs doped with nematic liquid crystal under external electric field. Optik 2019, 198, 163299. [Google Scholar] [CrossRef]
- Bairy, R.; Haleshappa, D.; Murari, M. The structural, linear and nonlinear optical properties of high-quality Zn1-xPbxO nanostructured thin films for optoelectronic device applications. Appl. Phys. B 2021, 127, 113. [Google Scholar] [CrossRef]
- Montagna, M.; Selleri, S.; Zoboli, M. Nonlinear refractive index in erbium-doped optical amplifiers. Opt. Quantum Electron. 1995, 27, 871–880. [Google Scholar] [CrossRef]
- Flory, F.; Escoubas, L.; Berginc, G. Optical properties of nanostructured materials: A review. J. Nanophotonics 2011, 5, 052502. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Virally, S.; Bao, Q.; Ping, L.K.; Massar, S.; Godbout, N.; Kockaert, P. Z-scan measurement of the nonlinear refractive index of graphene. Opt. Lett. 2012, 37, 1856–1858. [Google Scholar] [CrossRef] [Green Version]
- Mai, H.H.; Kaydashev, V.E.; Tikhomirov, V.K.; Janssens, E.; Shestakov, M.V.; Meledina, M.; Turner, S.; Van Tendeloo, G.; Moshchalkov, V.V.; Lievens, P. Nonlinear Optical Properties of Ag Nanoclusters and Nanoparticles Dispersed in a Glass Host. J. Phys. Chem. C 2014, 118, 15995–16002. [Google Scholar] [CrossRef]
- Golovan, L.; Timoshenko, V.Y. Nonlinear-optical properties of porous silicon nanostructures. J. Nanoelectron. Optoelectron. 2013, 8, 223–239. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Wang, Y.H. Nonlinear optical properties of metal nanoparticles: A review. RSC Adv. 2017, 7, 45129–45144. [Google Scholar] [CrossRef] [Green Version]
- Henari, F.Z.; Dakhel, A.A. Linear and nonlinear optical properties of gold nanoparticle-Eu oxide composite thin films. J. Appl. Phys. 2008, 104, 033110. [Google Scholar] [CrossRef]
- Bai, S.; Li, Q.; Zhang, H.; Chen, X.; Luo, S.; Gong, H.; Yang, Y.; Zhao, D.; Qiu, M. Large third-order nonlinear refractive index coefficient based on gold nanoparticle aggregate films. Appl. Phy. Lett. 2015, 107, 141111. [Google Scholar] [CrossRef]
- Nyk, M.; Wawrzynczyk, D.; Szeremeta, J.; Samoc, M. Spectrally resolved size-dependent third-order nonlinear optical properties of colloidal CdSe quantum dots. Appl. Phys. Lett. 2012, 100, 041102. [Google Scholar] [CrossRef]
- Pan, H.; Chu, H.; Li, Y.; Qi, N.; Zhao, S.; Li, G.; Li, D. Nonlinear optical properties of colloidal CdSe/ZnS quantum dots in PMMA. Nanotechnology 2020, 31, 195703. [Google Scholar] [CrossRef]
- Song, H.; Zhai, Y.Y.; Zhou, Z.K.; Hao, Z.H.; Zhou, L. Optical Nonlinearity of CdSe and CdSe-C 60 Quantum Dot. Mod. Phys. Lett. B 2008, 22, 3207–3213. [Google Scholar] [CrossRef]
- Wang, X.; Du, Y.; Ding, S.; Wang, Q.; Xiong, G.; Xie, M.; Shen, X.; Pang, D. Preparation and Third-Order Optical Nonlinearity of Self-Assembled Chitosan/CdSe- ZnS Core- Shell Quantum Dots Multilayer Films. J. Phys. Chem. B 2006, 110, 1566–1570. [Google Scholar] [CrossRef]
- Dancus, I.; Popescu, S.T.; Petris, A. Single shot interferometric method for measuring the nonlinear refractive index. Opt. Express 2013, 21, 31303. [Google Scholar] [CrossRef]
- Zhu, L.; Sun, M.; Chen, J.; Yu, J.; Zhou, C. Integrated digital holography for measuring the photothermal effect induced by femtosecond laser pulses. Opt. Eng. 2014, 53, 112311. [Google Scholar] [CrossRef]
- Momgaudis, B.; Guizard, S.; Bilde, A.; Melninkaitis, A. Nonlinear refractive index measurements using time-resolved digital holography. Opt. Lett. 2018, 43, 304. [Google Scholar] [CrossRef]
- Momgaudis, B.; Kudriasov, V.; Vengris, M.; Melninkaitis, A. Quantitative assessment of nonlinearly absorbed energy in fused silica via time-resolved digital holography. Opt. Express 2019, 27, 7699. [Google Scholar] [CrossRef]
- Gomes, J.; Barbano, E.; Misoguti, L. Cross-section profile of the nonlinear refractive index of Gorilla Glass obtained by nonlinear ellipse rotation measurements. Appl. Opt. 2019, 58, 7858–7861. [Google Scholar] [CrossRef]
- Gomes, J.; Barbano, E.; Zilio, S.; Misoguti, L. Observation of strong local inhomogeneity of the optical nonlinearities on polycrystalline zincblende semiconductors. In Nonlinear Optics; Optica Publishing Group: Washington, DC, USA, 2019. [Google Scholar]
- Petrov, N.; Nalegaev, S.; Belashov, A.; Shevkunov, I.; Putilin, S.; Lin, Y.; Cheng, C. Time-resolved inline digital holography for the study of noncollinear degenerate phase modulation. Opt. Lett. 2018, 43, 3481–3484. [Google Scholar] [CrossRef]
- Sheik-Bahae, M.; Wang, J.; DeSalvo, R.; Hagan, D.J.; Van Stryland, E.W. Measurement of nondegenerate nonlinearities using a two-color Z scan. Opt. Lett. 1992, 17, 258. [Google Scholar] [CrossRef] [Green Version]
- Miguez, M.; Barbano, E.; Zilio, S.C.; Misoguti, L. Accurate measurement of nonlinear ellipse rotation using a phase-sensitive method. Opt. Express 2014, 22, 25530–25538. [Google Scholar] [CrossRef] [Green Version]
- Beygi, M.G.; Karimzadeh, R.; Dashtdar, M. Nonlinear refractive index measurement by Fresnel diffraction from phase object. Opt. Laser Technol. 2015, 66, 151–155. [Google Scholar] [CrossRef]
- Nabiev, I.; Sukhanova, A.; Even-Desrumeaux, K.; Chames, P.; Baty, D.; Artemyev, M.; Oleinikov, V. Engineering of ultra-small diagnostic nanoprobes through oriented conjugation of single-domain antibodies and quantum dots. Protoc. Exch. 2012, 10, 1–23. [Google Scholar] [CrossRef]
- Belashov, A.V.; Cheng, C.J.; Petrov, N.V. Noncollinear degenerate phase modulation in samples with inhomogeneous optical nonlinear properties [Invited]. Appl. Opt. 2021, 60, B14–B22. [Google Scholar] [CrossRef]
- Petrov, N.V.; Putilin, S.E.; Chipegin, A.A. Time-resolved image plane off-axis digital holography. Appl. Phys. Lett. 2017, 110, 161107. [Google Scholar] [CrossRef]
- Lu, X.; Liu, Q.; Liu, Z.; Sun, S.; Ding, P.; Ding, B.; Hu, B. Measurement of nonlinear refractive index coefficient using emission spectrum of filament induced by gigawatt-femtosecond pulse in BK7 glass. Appl. Opt. 2012, 51, 2045–2050. [Google Scholar] [CrossRef]
- Belashov, A.; Nalegaev, S.; Shevkunov, I.; Putilin, S.; Lin, Y.; Cheng, C.; Petrov, N. Experimental evaluation of inhomogeneous nonlinear refractive index distribution using time-resolved inline digital holography. In Frontiers in Optics; Optica Publishing Group: Washington, DC, USA, 2021; p. JW7A-119. [Google Scholar]
- Kalsoom, U.e.; Yi, R.; Qu, J.; Liu, L. Nonlinear Optical Properties of CdSe and CdTe Core-Shell Quantum Dots and Their Applications. Front. Phys. 2021, 9, 612070. [Google Scholar] [CrossRef]
- Mathew, S.; Saran, A.D.; Singh Bhardwaj, B.; Ani Joseph, S.; Radhakrishnan, P.; Nampoori, V.; Vallabhan, C.; Bellare, J.R. Size dependent optical properties of the CdSe-CdS core-shell quantum dots in the strong confinement regime. J. Appl. Phys. 2012, 111, 074312. [Google Scholar] [CrossRef]
- Balu, M.; Padilha, L.A.; Hagan, D.J.; Van Stryland, E.W.; Yao, S.; Belfield, K.; Zheng, S.; Barlow, S.; Marder, S. Broadband Z-scan characterization using a high-spectral-irradiance, high-quality supercontinuum. J. Opt. Soc. Am. B 2008, 25, 159. [Google Scholar] [CrossRef]
- Antony, M.M.; Suchand Sandeep, C.; Murukeshan, V.M. Hyperspectral z-scan: Measurement of spectrally resolved nonlinear optical properties. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 261, 120005. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belashov, A.V.; Shevkunov, I.A.; Kolesova, E.P.; Orlova, A.O.; Putilin, S.E.; Veniaminov, A.V.; Cheng, C.-J.; Petrov, N.V. Investigation of Nonlinear Optical Properties of Quantum Dots Deposited onto a Sample Glass Using Time-Resolved Inline Digital Holography. J. Imaging 2022, 8, 74. https://doi.org/10.3390/jimaging8030074
Belashov AV, Shevkunov IA, Kolesova EP, Orlova AO, Putilin SE, Veniaminov AV, Cheng C-J, Petrov NV. Investigation of Nonlinear Optical Properties of Quantum Dots Deposited onto a Sample Glass Using Time-Resolved Inline Digital Holography. Journal of Imaging. 2022; 8(3):74. https://doi.org/10.3390/jimaging8030074
Chicago/Turabian StyleBelashov, Andrey V., Igor A. Shevkunov, Ekaterina P. Kolesova, Anna O. Orlova, Sergei E. Putilin, Andrei V. Veniaminov, Chau-Jern Cheng, and Nikolay V. Petrov. 2022. "Investigation of Nonlinear Optical Properties of Quantum Dots Deposited onto a Sample Glass Using Time-Resolved Inline Digital Holography" Journal of Imaging 8, no. 3: 74. https://doi.org/10.3390/jimaging8030074
APA StyleBelashov, A. V., Shevkunov, I. A., Kolesova, E. P., Orlova, A. O., Putilin, S. E., Veniaminov, A. V., Cheng, C. -J., & Petrov, N. V. (2022). Investigation of Nonlinear Optical Properties of Quantum Dots Deposited onto a Sample Glass Using Time-Resolved Inline Digital Holography. Journal of Imaging, 8(3), 74. https://doi.org/10.3390/jimaging8030074