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Abstract: Hypertrophic cardiomyopathy (HCM) is a genetic disorder that exhibits a wide spectrum of
clinical presentations, including sudden death. Early diagnosis and intervention may avert the latter.
Left ventricular hypertrophy on heart imaging is an important diagnostic criterion for HCM, and
the most common imaging modality is heart ultrasound (US). The US is operator-dependent, and its
interpretation is subject to human error and variability. We proposed an automated computer-aided
diagnostic tool to discriminate HCM from healthy subjects on US images. We used a local directional
pattern and the ResNet-50 pretrained network to classify heart US images acquired from 62 known
HCM patients and 101 healthy subjects. Deep features were ranked using Student’s t-test, and the
most significant feature (SigFea) was identified. An integrated index derived from the simulation was
defined as 100·log10

(
SigFea/

√
2
)

in each subject, and a diagnostic threshold value was empirically
calculated as the mean of the minimum and maximum integrated indices among HCM and healthy
subjects, respectively. An integrated index above a threshold of 0.5 separated HCM from healthy
subjects with 100% accuracy in our test dataset.

Keywords: computer-aided diagnosis tool; deep features; hypertrophic cardiomyopathy; integrated
index; ResNet-50

1. Introduction

Hypertrophic cardiomyopathy (HCM) is an autosomal dominant genetic disorder
caused by mutation of one of several genes coding for various proteins of the cardiac
sarcomere. Morphologically, HCM is characterized by a hypertrophied, nondilated left
ventricle with or without right ventricular involvement in the absence of another cardiac or
systemic disease [1,2]. The prevalence of HCM is approximately 1 in 500 persons in the
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general population [3]. Altered sarcomeric proteoforms have been identified in surgical
samples of HCM patients [4], and the hypertrophied wall is composed of disarrayed my-
ocardial fibers with interstitial fibrosis, which results in reduced ventricular compliance [5]
(see Figure 1). HCM may exhibit clinical vacillation from asymptomatic to sudden cardiac
death in young adults [6–8].
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Figure 1. Coronal sections of the heart depicting morphological differences in normal versus hyper-
trophic cardiomyopathy.

On the cardiac ultrasound (US), the classical form of HCM is typified by asymmetrical
septal hypertrophy, which is defined as an interventricular septal (IVS) thickness of at least
15 mm and increased ratio of the IVS to left ventricular posterior wall thicknesses > 1.3 in
the absence of any valve or systemic disease [9]. In other forms, hypertrophy may involve
different myocardial segments. HCM can be classified into reverse curvature septum,
sigmoid septum, neutral, apical HCM, and midventricular hypertrophy subtypes [10].
Pathophysiologically, this results in both systolic and diastolic left ventricular dysfunc-
tion [11]. This study aimed to develop an automated detection method to discriminate
HCM versus healthy controls on the cardiac US.

Computer-aided diagnostic (CAD) tools are increasingly being used to reduce the time-
cost of diagnosis. In [12], a CAD tool for diagnosing congestive heart failure (CHF) on
electrocardiogram (ECG) signals was described. Other researchers used CAD tools to analyze
US images. The use of CAD tools to categorize infarcted myocardium versus normal on heart
US images [13] and artificial intelligence to analyze cardiovascular US images in general [14]
have been reviewed. In [15], the authors extracted textural features and employed particle
swarm optimization, attaining a maximum accuracy of 99.33% for diagnosing CHF. The same
group used the double-density dual-tree discrete wavelet transform (DD-DTDWT) to identify
coronary artery disease, achieving an accuracy of 96.05% [16]. They extended their work
to screening pulmonary hypertension using entropy features and attained a classification
accuracy of 92% [17]. Notably, the same group has developed a CAD tool to recognize
the four-chamber heart US images of the fetuses of pregnant women with pregestational
diabetes mellitus or gestational diabetes mellitus using the local preserving class separation
technique [18].

Very few works have been published on the automated characterization of HCM or
left ventricular hypertrophy using US images [19–22]. In [19], dilated cardiomyopathy and
HCM were diagnosed from heart US parasternal short-axis views. The left ventricle was
segmented using fuzzy c-means clustering, and features were extracted using principal
component analysis and discrete cosine transform, which were then fed to various classifiers.
An overall accuracy of 92.04% was achieved for classifying normal versus abnormal hearts
using principal component analysis (PCA) features with the backpropagation neural network
(BPNN) classifier. In [20], Darwinian particle swarm optimization (DPSO) and fuzzy c-means
(FCM) clustering were used for segmenting the left ventricle on the parasternal short-axis
view. For the extracted gray level co-occurrence matrix (GLCM) and discrete cosine transform
(DCT) features, 90% accuracy was achieved using a support vector machine (SVM) classifier.
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In [21], a multilayer convolutional neural network (CNN) model was trained to detect HCM
using the apical four-chamber view, which achieved high discriminant utility with a C statistic
value of 0.93. In [22], texture-based analysis was utilized to characterize HCM by first-order
statistics, and the GLCM, along with the features, were fed to an SVM classifier.

The current work developed CAD tools for assessing HCM using four-chamber heart
US images. The contributions of the paper are as follows:

• Established databanks of four-chamber US images of normal and HCM subjects;
• Created deep features by combining local texture featured images with deep neural

networks; and
• Generated an integrated index to categorize normal versus HCM using a distinctive

number.

The remainder of the paper is organized as follows: Section 2 describes the materials
used and the US image acquisition. Our analysis methodology is outlined in Section 3.
Experimental results and discussion of the results are presented in Sections 4 and 5, respec-
tively. Finally, the concluding remarks of the paper are given in Section 6.

2. Materials

A total of 62 (mean age 50.7 ± 14.3 years) patients diagnosed with HCM who visited the
cardiology outpatient department at a single center were prospectively recruited, and 101 age-
matched healthy individuals (mean age 52.4 ± 15.5 years) attending the same center for
routine health checks were recruited as controls. The institutional ethics committee approved
the study at Kasturba Hospital Manipal (IEC NO.: 48/2020), and informed consent was
obtained from the participants. HCM was diagnosed if the echocardiographic examinations
showed a nondilated, hypertrophic left ventricle (LV) without any known cause; i.e., long-
term hypertension or another cardiac/systemic disease, and the ratio of the thickness of
IVS and posterior wall thickness (PW) was >1.3 with or without left ventricular outflow
tract obstruction (LVOTO), or patients diagnosed with apical HCM. Among HCM patients,
42 (67.74%) presented with symptoms such as chest pain, dyspnea on exertion, and syncope,
and 20 (32.25%) were incidentally diagnosed with HCM. Subjects with hypertension, renal
failure requiring medical intervention, left ventricular ejection fraction < 55%, known ischemic
heart disease, congenital heart disease, and valvular heart disease of more than mild severity
were excluded from the study. All participants underwent heart US examination on a Vivid
S60 system (GE Healthcare) with a 3Sc-RS phased array transducer probe and a frequency
range of 1.3 to 4.5 MHz. Standard parasternal short-axis view at the mid-left ventricular
(papillary muscle) level and apical 2- and 4-chamber views were acquired and archived
digitally. In each participant, one static image at one time frame corresponding to the R wave
on ECG from the cine 4-chamber view was selected for analysis using the CAD. In total,
62 and 101 images of HCM and normal subjects, respectively, were analyzed. Examples of
typical images used are provided in Figure 2.
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3. Methodology

Deep neural networks have achieved excellent performance for pattern recognition [23–26].
Such a model is typically trained on a large dataset in one domain, and the knowledge
gained is then transferred to another domain comprising a smaller dataset [27]. In the
current study, we exploited local descriptors such as the local directional pattern (LDP) [28]
and a pretrained ResNet-50 (RNet50) [29] network to generate deep features. Figure 3
shows the various stages of the proposed system, which include feature generation, feature
selection, and classification. A detailed description of each stage is provided in subsequent
sections.

J. Imaging 2022, 8, x FOR PEER REVIEW 4 of 19 
 

 

 
Figure 2. Example apical 4-chamber US images of normal versus hypertrophic cardiomyopathy par-
ticipants. 

3. Methodology 
Deep neural networks have achieved excellent performance for pattern recognition 

[23–26]. Such a model is typically trained on a large dataset in one domain, and the 
knowledge gained is then transferred to another domain comprising a smaller dataset 
[27]. In the current study, we exploited local descriptors such as the local directional pat-
tern (LDP) [28] and a pretrained ResNet-50 (RNet50) [29] network to generate deep fea-
tures. Figure 3 shows the various stages of the proposed system, which include feature 
generation, feature selection, and classification. A detailed description of each stage is 
provided in subsequent sections. 

 
Figure 3. Schema of the deep-features-based proposed architecture. 

3.1. Preprocessing 
Unwanted information such as labels, signals, etc., was first removed from the apical 

4-chamber heart US image. A mask was then generated to extract the region of interest to 
increase system efficacy, and a median filter of size 5 × 5 was applied to it to reduce the 
noise level. The filtered image was then resized using the bicubic interpolation technique 
for further processing [30]. Figure 4 shows the created mask and preprocessed image. 
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3.1. Preprocessing

Unwanted information such as labels, signals, etc., was first removed from the apical
4-chamber heart US image. A mask was then generated to extract the region of interest to
increase system efficacy, and a median filter of size 5 × 5 was applied to it to reduce the
noise level. The filtered image was then resized using the bicubic interpolation technique
for further processing [30]. Figure 4 shows the created mask and preprocessed image.
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3.2. Feature Generation

This stage generated the features used to characterize the 4-chamber heart US image.

3.2.1. Local Directional Pattern (LDP)

The LDP is a descriptor that uses Kirsch compass kernels to extract the directional
component [28], and is an improvement on the traditional local binary pattern. For a
given central pixel ic of an image, with 3 × 3 neighborhood pixels of intensity values
in , n = 0, 1 . . . , 7, Kirsch edge detectors of 3 × 3 with eight possible orientations centered
at (xc, yc) were considered to obtain responses Mn, n = 0, 1, . . . , 7 corresponding to pixel
value in. Based on the kth Kirsch activation (i.e., Mk), all neighboring pixels with higher
Kirsch responses were set to 1, while the rest were set to a null value, as we were only
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interested in generating the LDP pattern with the most evident directions. Then, the LDP
value of (xc, yc) with various directional responses was given by:

LDP =
7

∑
n=0

b(Mn −Mk)·2n (1)

b(x) =
{

1; x ≥ 0
0; otherwise

(2)

The complete process to compute the LDP is illustrated in Figure 5.
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Figure 5. Computation of local directional pattern. Kirsch mask responses (M0, M1, M2, . . . M7)
are obtained for a central pixel within the image with eight Kirsch masks that are rotated through
the eight compass directions (east, north-east, north, . . . south-east). The neighboring pixel with the
maximum Kirsch mask output determined the local direction. To form the local directional pattern,
all eight neighboring pixels are sorted by the output (M0, M1, M2, . . . M7), and “one” and “zero”
assigned to the highest and lowest four pixels, respectively (b0, b1, b2, . . . b7). The process is repeated
throughout the image.

The generated LDP patterns were more stable in the presence of noise and changes in
image brightness. Figure 6 shows the preprocessed 4-chamber heart US images and the
corresponding LDP images.
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3.2.2. Deep-Learning Model

RNet50 is a deep-learning neural network for image classification that has been pre-
trained using a subset of images from the ImageNet database [31]. The network is based
on residual learning, and comprises 50 layers. Deep networks facilitate the extraction of
significant features for efficient classification [32]. RNet50 is a deeper network than other
CNN architectures, yet possesses fewer parameters [33]. The stacking of convolutional
layers usually demonstrates good performance initially, but later declines due to gradient
vanishing [33,34]. RNet50 circumvents the degradation issue by incorporating a deep
residual learning framework with identity mapping [33–36]. The latter allows the CNN
model to bypass the present weight layer if not required; therefore, inputs from the present
convolutional layer can be copied to the next one without any alteration. The residual block
is fundamental to the RNet framework. RNet50 contains 16 such residual blocks, on which
it capitalizes to accelerate the network’s training, reduce training errors, and preserve the
accuracy [37]. The residual block for the considered stack of three layers was defined as:

y = F(x, {Wi}) + x (3)

where F is the residual function that needed to be learned, x is the input vector, and y is
the output vector that could be obtained by performing element-wise addition and skip
connection.

The bottleneck residual block for RNet50 consisted of three convolutional layers: the
initial and final 1 × 1 layers reduced and restored the dimensions, respectively; while the
middle 3 × 3 layer dealt with the reduced dimensions [29,38]. This bottleneck architecture
greatly reduced the computational complexity and the number of parameters. The inputs to
RNet50 were RGB images with dimensions of 224 × 224, and the output dimensions were
reduced to 112× 112, 56× 56, 28× 28, 14× 14, 7× 7, and 1× 1 after passing in turn through
the five categories of convolutional and average pool layers [29,39]. These RGB images
were obtained by triplicating the gray level channel. In general, deep layers learn global
features while shallow layers are utilized to capture features such as corners, edges, curves,
etc. (i.e., local features). The knowledge of learned features from a general image dataset
can be transferred to other domains, which helps save training effort and time [27,36,40,41].
The current study used the pretrained RNet50 with its weights unchanged to extract the
local features from heart US images to train the final layers. Here, transfer learning was
a nonlinear function that used the source task and domain knowledge to learn the target
task in the target domain [23]. The complete structure of the feature extraction stage is
illustrated in Figure 7. Note that the LDP (not the raw) image of the heart US image was
input to the pretrained RNet50 to obtain a feature size of 2048. The RNet50 architecture
had been pretrained in the ImageNet database [31] and modified to classify the images into
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two classes: normal and HCM. The weights were updated using the stochastic gradient
descent with the momentum algorithm on a GTX 1070 GPU, with an initial learning rate of
0.0001 and a learn rate drop factor of 0.01. This was done for a mini-batch size of 32, and
the sequence was shuffled every epoch and validated at every 10th epoch.
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3.3. Feature Selection

A Student’s t-test was used for feature selection. This test measures the statistical
difference between two sets by computing the ratio of the difference of the means between
and the variability of the two classes [42]. The null hypothesis is that the means of two
groups are equal, and the hypothesis can be rejected based on the computed t-value:

t =
µx − µy√(

σ2
x

Sx

)
+

(
σ2

y
Sy

) (4)

where µx and µy and σx and σy are the means and standard deviations of the two groups,
respectively, and Sx and Sy denote the total numbers of samples for the two groups [43].
The t-values and the corresponding p-values were calculated for the features of both classes.
The t-value estimated the difference between the two groups, and a significant p-value
implied that the difference had not occurred by chance. Features were ranked by selecting
for higher t-values with lower p-values [44].

3.4. Classification

In this stage, the classes were predicted using the supervised and unsupervised
methodology. Most medical applications use supervised classification techniques, such
as probabilistic neural networks [45,46], SVM [47,48], k-nearest neighbor [49], etc., to
predict the class label of target data. However, the parameter settings required by some
of these classifiers may result in overfitting. To overcome this, many researchers have
employed indexing to reflect the inference of generated features, whereby a distinct number
is formulated to distinguish abnormal from normal images [50–59]. Accordingly, we
formulated an integrated index for HCM (IIHCM) based on the significant features. The
equations were empirically derived from simulation, and are given as:

I IHCM = log10

(
SigFea/

√
2
)
× 100 (5)



J. Imaging 2022, 8, 102 8 of 18

and

Th =
{min(I IHCMhcm) + max(I IHCMnormal)}

2
(6)

where SigFea is the most significant feature selected based on its highest t-value.
Dividing the feature by

√
2 would clutter the data with the same class, but the log10

term would separate the classes to a great extent. The threshold value (Th) was calculated
as the mean of the minimum and maximum integrated indices among HCM and healthy
subjects, respectively, to obtain the definite boundary between the HCM and normal
heart images; i.e., attaining discrimination between normal and HCM classes using a
unique number.

4. Experimental Results

All images were preprocessed to obtain only the region of interest containing the image
of the heart and resized to 224 × 224 for input to the RNet50. For each image, a feature
of size 2048 was generated (i.e., LDPRes). The proposed algorithm was executed using a
system with the following specifications: Intel i7 7700 k quad-core processor @ 4.7 GHz,
8 GB 2400 MHz single-channel memory with NVIDIA GTX 1070 GPU 8 GB VRAM, under
the MATLAB platform. Obtained features with p-values < 0.005 were selected and then
ranked in descending order of t-values. The selected ranked features are shown in Table 1.

Table 1. Ranked Features with Means, Standard Deviations (SD), and p- and t-Values.

Features
Normal HCM

p-Value t-Value
Mean SD Mean SD

LDPRes870 1.0906 0.1285 1.7401 0.1585 5.1 × 10−65 28.6105
LDPRes1731 1.6194 0.3706 2.7880 0.3472 1.58 × 10−45 20.0121
LDPRes1313 2.121 0.3118 1.3068 0.2749 1.57 × 10−37 16.9102
LDPRes1701 0.8078 0.1347 0.4998 0.0998 6.62 × 10−34 15.5594
LDPRes1100 0.9853 0.1107 1.2622 0.1160 5.59 × 10−33 15.2183
LDPRes54 0.0675 0.0336 0.1584 0.0438 4.1 × 10−32 14.9010

LDPRes110 1.1768 0.2628 1.8776 0.3561 9.59 × 10−31 14.4011
LDPRes1351 0.7101 0.2133 0.3076 0.1133 7.92 × 10−29 13.7051
LDPRes223 0.1786 0.0606 0.0634 0.0351 1.58 × 10−28 13.5969
LDPRes770 2.4266 0.2920 1.8258 0.2951 4.83 × 10−26 12.6988

The highest-ranked feature, LDPRes870, was highly significant, and its distribution
is shown in Figure 8a,b. It can be seen that both normal and HCM data were distributed
toward the positive side. Hence, highly significant features of LDPRes870 were used in
Equation (5) for IIHCM. It was noted from Figure 8c that HCM and normal data were
distributed toward the positive and negative sides, respectively. From Equation (6), the
threshold value was calculated as Th ≈ 0.5, a single distinct number that separated the
HCM versus normal cases as shown in the box plots of indexed data in Figure 8d. An
integrated index above a threshold of 0.5 separated HCM from healthy subjects with 100%
accuracy in our test dataset.

Comparative Study

We compared the proposed method to four deep-learning techniques: ResNet-18
(RNet18) [29], AlexNet (ANet) [60], DarkNet (DNet) [61], and GoogLeNet (GNet) [62]. In
the experiments, pretrained networks were used, as the small size of the dataset made
it difficult to fine-tune the parameters. Feature extraction was performed by activating
layers of the pretrained network as features. The details of each network with its generated
feature size for LDP images are given in Table 2.
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Table 2. Architecture details of the various deep-learning methods used in this work.

Parameters RNet50 RNet18 ANet DNet GNet

Input image size 224 × 224 × 3 224 × 224 × 3 227 × 227 × 3 256 × 256 × 3 224 × 224 × 3
No. of deep layers 50 18 8 19 22

Output layer ‘avg pool’ ‘pool5′ ‘pool5′ ‘avg1′ ‘pool5-7 × 7′
No. of features 1 × 2048 1 × 512 1 × 4096 1 × 1000 1 × 1024

Every preprocessed image was applied with the LDP to obtain the local texture feature
and then input to the aforementioned deep-learning architecture. Image feature sizes of
2048, 512, 4096, 1000, and 1024 were obtained using RNet50, RNet18, ANet, DNet, and
GNet, respectively. These features were further ranked using Student’s t-test. Ranked
features obtained from various methods were classified using the SVM classifier with a
polynomial kernel, and various performance measures such as accuracy (Acc.), sensitivity
(Sen.), specificity (Spe.), positive predictive value (PPV) were computed [63]. It was
observed that LDP-RNet50 achieved a remarkable performance using only three features.
Table 3 shows the performance of various methods using three features for a randomly
partitioned training (70%) and test (30%) dataset. Though LDP-RNet50 with SVM achieved
100% accuracy, on the other hand, the proposed IIHCM categorized the HCM and normal
using single integer values with appropriate positive and negative ranges.

We proposed to use LDP derived from US images for training in preference over raw
US images because we believed LDP would be more stable in the presence of noise and
changes in image brightness, which are common quality issues with US. As shown above,
the LDP-RNet50 combination achieved the best performance in our experiments. To assess
the contribution of LDP, we conducted additional experiments using RNet50, as well as
various customized CNNs—CNN-1 and CNN-2, with 12 and 16 layers, respectively [18].
With each learning method, the US image dataset was randomly partitioned into 70%
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training and 30% testing data, and the system was tested 10 times. The average accuracy
rates were 89.65%, 92.51%, and 93.26% for CNN-1, CNN-2, and RNet50, respectively, which
were good, but still lower than the LDP-RNet50 approach.

Table 3. Performance of various methods.

Methods Acc. (%) Sen. (%) Spe. (%) PPV (%) F-Score

LDP-RNet18 95.12 98.38 94.05 91.04 0.9456
LDP-RNet50 100 100 100 100 1
LDP-ANet 87.11 82.25 90.09 83.60 0.8291
LDP-DNet 84.04 83.87 84.15 76.47 0.7999
LDP-GNet 93.25 90.32 95.04 91.80 0.9105

5. Discussion

In this study, the categorization of normal versus HCM was conducted on 163 heart
US images. US image quality is often degraded by noise, and image brightness may
affect interpretation, which scan settings may arbitrarily alter. We used LDP to obtain
reproducible structural patterns. It encoded the texture by employing different directional
responses. In the presence of noise, the relative perspective of edges may change. In
such situations, LDP produces more stable patterns. LDP-based images were input to the
RNet50 network to obtain deep features. This process yielded good separation results (see
Figure 8). The use of a pretrained model allowed us to extract the features from our dataset
with a fixed mechanism using pretrained weights [40], which was faster than training the
model with random weights [64]. The generated deep features were clinically significant,
with p-values < 0.005. The highest-ranked features from all methods were considered,
and their distributions are shown in Table 4 and Figure 9, respectively. In contrast to the
LDP-RNet50 feature, which exhibited good separation, all features from the other deep-
learning approaches demonstrated overlapping between the HCM and normal groups (see
Figure 9).

Table 4. Highest-ranked features using the various deep-learning approaches.

Features
Normal HCM

p-Value t-Value
Mean SD Mean SD

LDP-RNet18
LDPRes492 0.696662 0.155103 1.216885 0.231307 2.98 × 10−38 17.18295

LDP-RNet50
LDPRes870 1.0906 0.1285 1.7401 0.1585 5.1 × 10−65 28.6105

LDP-ANet
LDPAlex1852 0.194477 0.393206 1.13497 0.689104 1.31 × 10−21 11.09695

LDP-DNet
LDPDark616 −0.21708 0.421096 −1.02086 0.402245 3.41 × 10−24 12.03204

LDP-GNet
LDPGoogLe902 0.547527 0.457099 1.890254 0.790567 6.12 × 10−29 13.74575

Using Equations (5) and (6), a single number was formulated for each feature that
could distinguish HCM from normal subjects. IIHCM was also applied to other deep
features (Table 4), but the results from RNet18, ANet, and GNet did not surpass those
derived from the RNet50 network (Figure 10), and could not discriminate as well between
healthy versus HCM subjects. The box plot for DNet is not shown due to its negative
values.
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Figure 10. Index application to RNet18, ANet, and GNet features.

Our best results and integrated index were obtained by training the entire LDP dataset
using the pretrained RNet50 model without fine-tuning. Then, as a sensitivity analysis,
we divided the LDP dataset into 70% training and 30% testing sets (which would have
been a more conventional approach had the learning method not been pretrained), and
repeated the experiment. The integrated index thus derived using identical methodology
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demonstrated excellent separation between normal and HCM (Figure 11), which indicated
that our findings were robust.
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Figure 11. Classification using proposed IIHCM methodology with the LDPRes870 feature on divided
training (70%) and testing data (30%).

We synthetically generated minority class samples using an adaptive synthetic (ADASYN)
sampling approach [65]. ADASYN uses the weighted distribution of minority data and
reduces the bias that is introduced due to an imbalanced dataset. As a result, we obtained
198 samples (i.e., normal = 101 samples and HCM = 97 samples) after ADASYN. Further,
the obtained LDP-RNet50 features of all the samples were analyzed using the t-distributed
stochastic neighbor embedding (t-SNE) technique, which helped to visualize data by
reducing its dimensions [66]. Figure 12 shows the data visualization of ranked LDP-RNet50
features using t-SNE.
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Further, we performed classification using the k-fold cross-validation technique. The
SVM classifier obtained an accuracy of 100%, a sensitivity of 100%, and a specificity of
100% with 10-fold cross-validation (the obtained results were identical when k = 5 and 7).
In addition, it was noted that the proposed system achieved an area under the curve (AUC)
of 1.00 (Figure 13).

In addition, we used various criteria such as entropy, Bhattacharyya, ROC, and
Wilcoxon to access the significance of the generated features [67,68]. It was observed
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that only Student’s t-test and the Wilcoxon signed-rank test determined feature LDPRes870
to be the most significant feature, with p < 0.005 (refer to Tables 4 and 5).
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Table 5. Highest-ranked features using various ranking methods.

Features Using
Various Methods

Normal HCM
Mean SD Mean SD p-Value

Entropy
LDPRes17 0.000195 0.001399 0 0 0.274759

Bhattacharyya
LDPRes17 0.000195 0.001399 0 0 0.274759

ROC
LDPRes28 0 0 0.000952 0.004895 0.052053

Wilcoxon
LDPRes870 1.090677 0.128562 1.740115 0.158587 5.1 × 10−65

However, using these features, the proposed IIHCM achieved an accuracy of 100%.
Table 6 summarizes the state-of-the-art techniques proposed to detect HCM using four-
chamber heart US images. To the best of our knowledge, this is the first work to propose
the index for HCM classification.

This work successfully categorized normal versus HCM heart US images. The advan-
tages of the proposed system are:

• An integrated index based on heart US image features was developed that could
effectively discriminate for HCM subjects.

• The use of a single distinct value simplified the classification and should garner early
clinical adoption, especially in rural and semiurban areas where access to experienced
US operators may be limited.

• The proposed framework can be generalized to image analysis of other imaging
modalities and/or other anatomical regions; e.g., fundus images, brain magnetic
resonance imaging, etc.
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Table 6. Summary of state-of-the-art work using echocardiogram images/videos.

Paper Method Result Dataset

[19] PCA + BPNN
Accuracy = 92.04%

(normal and abnormal (DCM and
HCM))

Echocardiogram
videos: 60

[20] DPSO-FCM + GLCM and DCT +
SVM

For segmentation accuracy: 95%
For classification accuracy: 90%

Echocardiogram videos:
DCM: 40,
HCM: 40,

normal: 10

[21] Multilayer CNN C statistics: 0.93 (for HCM) HCM: 495 studies to train the
model

[22] First-order statistics + GLCM +
SVM

Studied possible texture
myocardial features with

p-value < 0.05

Transthoracic echocardiography
images:

HCM, uremic cardiomyopathy,
and hypertensive heart disease (50

cases for each group)

Ours LDP + ResNet-50 + ADASYN +
IIHCM Accuracy: 100%

Echocardiography images
Normal: 101

HCM: 97

We have shown that the novel combination of LDP and RNet50 helped to extract the
discriminative features automatically without the need for manual input; e.g., measurement
of dimensions or quantitation of degree of curvature. The excellent performance appeared
to be unique to the combination. It was observed that LDP combined with other learning
methods such as ResNet-18, AlexNet, DarkNet, and GoogLeNet did not yield a good
separation of the features. Learning of original US images with RNet50 and without LDP
processing yielded inferior performance. Our novel LDP-RNet50-based method represents
an original contribution toward the automatic classification of HCM versus normal from
images, instead of traditional methods requiring at least some expert knowledge and
input. In addition, we have developed from the LDP-RNet50 an integrated index that
can distinguish HCM from normal based on a diagnostic threshold value that we derived
from our dataset. Unlike simple binary classification, an index is a relatable parameter
that can inform the doctor of how close to the classification threshold value an individual
patient’s analyzed US image would be, which may influence clinical decisions for repeat
confirmatory assessment, especially in cases with borderline index values. An index
with a threshold value thus carries intuitive appeal for the clinician, and features-derived
indices in diverse applications have been reported in the literature [50–59]. This model
was developed using 163 images. It is a prototype developed using images taken from
one center (i.e., Kasturba Hospital Manipal, Manipal). Before deploying for clinical use,
the developed model needs to be validated with more images collected from other centers,
which is a topic for future work. Herein, we have focused on developing a novel index to
discriminate HCM patients from normal patients. HCM is generally depicted as a distinct
cardiomyopathy. Numerous pathologies can cause left ventricular hypertrophy, such as
hypertension, chronic kidney disease, athlete’s heart, etc. The gold standard diagnostic
test is still genetic testing. In this work, automated detection of HCM was a revolutionary
approach in the noninvasive diagnosis of this rare disease.

The limitations of the proposed system are:
The proposed work categorized sample data into HCM or normal with high accuracy,

but did not consider the discernment between HCM and other causes of hypertrophy,
which is clinically relevant. It also did not classify the images according to the grade of
hypertrophy severity. The method should be independently validated, preferably with
larger datasets from multiple centers, before it can be clinically adopted. We plan to address
the possible uncertainty issue in our developed model by acquiring more images from
various centers in our future studies. The system did not classify the types and extent of
hypertrophy patterns among HCM patients. In addition, functional assessment and their
role in prediction of complications associated with the HCM were not studied.
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6. Conclusions

Hypertrophic cardiomyopathy is a genetic disease of the heart. The generated IIHCM
helps to identify the HCM cases with a single threshold value. The proposed indexing
entails easy classification that dispenses with the need to manually label the images. The
results of the current study are promising and can stimulate new studies using different
techniques and more extensive datasets. This approach can help to identify the disease, but
when employed for serial monitoring, it can assist in understanding disease longitudinal
progression. The limitation of this work is that it was developed using a small dataset.
We plan to validate our work with images collected from different centers in the future.
We plan to extend the work with more heart US images to characterize various diseases,
including ischemic heart disease and other causes of the hypertrophied left ventricle, such
as hypertensive heart disease, etc.
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