Image Augmentation Techniques for Mammogram Analysis
Abstract
:1. Introduction
1.1. Research Contribution
1.2. Paper Topology
2. Basic Image Augmentation Techniques
2.1. Geometric Transformations
2.1.1. Flipping
2.1.2. Rotation
2.1.3. Translation
2.1.4. Scaling
2.2. Pixel Level Augmentation
2.3. Pseudo-Colour Augmentation
2.4. Random Erasing
2.5. Kernel Filters
3. Advanced Augmentation Techniques
3.1. GAN-Based Augmentation
3.2. Neural Style Transfer (NST)
3.3. Other Techniques
4. Test-Time Augmentation (TTA)
5. Discussion
Data Augmentation Impact
- 1.
- Oyelade and Ezugwu [8] achieved a 93.75% accuracy rate on anomaly detection from mammograms using a CNN-based technique and basic data augmentation techniques (rotation by 90, 180 and 270 degrees, mirroring and additive Poisson noise).
- 2.
- Conditional infilling GANs for data augmentation in mammogram classification by Dhivya et al. [10] averagely scored 94% accuracy over three different datasets, respectively, MIAS, INBreast and DDSM, which include images having heterogeneous spatial resolution and acquiring device properties. The same method gets to an 88% accuracy rate when only basic data augmentation techniques are adopted.
- 3.
- Razali et al. [84] reached an excellent 99% accuracy rate on InBreast and DDSM with basic augmentation techniques on two datasets. However, it would be worth investigating any further improvement with advanced data augmentation techniques. However, after surveying all methods in Table 2, it is noticeable how advanced mammogram augmentation impacts the accuracy rate improvement by 6% over three different datasets. Investigating all elements causing an increase in accuracy on a specific task is not trivial.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
DL | Deep Learning |
CNN | Convolutional Neural Network |
TL | Transfer Learning |
CAD | Computer-Aided Diagnosis |
BI-RADS | Breast Imaging Reporting and Database System |
ROI | Region of Interest |
NST | Neural Style Transfer |
GAN | Generative Adversarial Network |
AUC | Area Under Curve |
ROC | Receiver Operating Characteristic |
AD | Architectural Distortion |
TTA | Test Time Augmentation |
VAT | Virtual Adversarial Training |
UIH | United Imaging Healthcare |
References
- Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. J. Big Data 2019, 6, 60. [Google Scholar] [CrossRef]
- Oza, P.; Sharma, P.; Patel, S. Machine learning applications for computer-aided medical diagnostics. In Proceedings of Second International Conference on Computing, Communications, and Cyber-Security; Springer: Singapore, 2021; pp. 377–392. [Google Scholar]
- Pillai, R.; Oza, P.; Sharma, P. Review of machine learning techniques in health care. In Proceedings of ICRIC 2019; Springer: Cham, Switzerland, 2020; pp. 103–111. [Google Scholar]
- Oza, P.; Sharma, P.; Patel, S.; Kumar, P. Deep convolutional neural networks for computer-aided breast cancer diagnostic: A survey. Neural Comput. Appl. 2022, 34, 1815–1836. [Google Scholar] [CrossRef]
- Chlap, P.; Min, H.; Vandenberg, N.; Dowling, J.; Holloway, L.; Haworth, A. A review of medical image data augmentation techniques for deep learning applications. J. Med. Imaging Radiat. Oncol. 2021, 65, 545–563. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Patel, H.J.; Oza, P.; Agrawal, S. AI Approaches for Breast Cancer Diagnosis: A Comprehensive Study. In International Conference on Innovative Computing and Communications; Springer: Singapore, 2022; pp. 393–419. [Google Scholar]
- Oyelade, O.N.; Ezugwu, A.E. A deep learning model using data augmentation for detection of architectural distortion in whole and patches of images. Biomed. Signal Process. Control 2021, 65, 102366. [Google Scholar] [CrossRef]
- Wu, E.; Wu, K.; Cox, D.; Lotter, W. Conditional infilling GANs for data augmentation in mammogram classification. In Image Analysis for Moving Organ, Breast, and Thoracic Images; Springer: Cham, Switzerland, 2018; pp. 98–106. [Google Scholar]
- Dhivya, S.; Mohanavalli, S.; Karthika, S.; Shivani, S.; Mageswari, R. GAN based Data Augmentation for Enhanced Tumor Classification. In Proceedings of the 2020 4th International Conference on Computer, Communication and Signal Processing (ICCCSP), Chennai, India, 28–29 September 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Oza, P.; Shah, Y.; Vegda, M. A Comprehensive Study of Mammogram Classification Techniques. In Tracking and Preventing Diseases with Artificial Intelligence; Springer: Cham, Switzerland, 2022; pp. 217–238. [Google Scholar]
- Bruno, A.; Ardizzone, E.; Vitabile, S.; Midiri, M. A novel solution based on scale invariant feature transform descriptors and deep learning for the detection of suspicious regions in mammogram images. J. Med. Signals Sens. 2020, 10, 158. [Google Scholar]
- Nalepa, J.; Marcinkiewicz, M.; Kawulok, M. Data augmentation for brain-tumor segmentation: A review. Front. Comput. Neurosci. 2019, 13, 83. [Google Scholar] [CrossRef] [Green Version]
- Bakas, S.; Reyes, M.; Jakab, A.; Bauer, S.; Rempfler, M.; Crimi, A.; Shinohara, R.T.; Berger, C.; Ha, S.M.; Rozycki, M.; et al. Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv 2018, arXiv:1811.02629. [Google Scholar]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; the PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef] [Green Version]
- Wong, S.C.; Gatt, A.; Stamatescu, V.; McDonnell, M.D. Understanding data augmentation for classification: When to warp? In Proceedings of the 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA), Gold Coast, QLD, Australia, 30 November–2 December 2016; pp. 1–6. [Google Scholar]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021, 8, 1–74. [Google Scholar] [CrossRef]
- Rosebrock, A. Keras ImageDataGenerator and Data Augmentation. Available online: https://pyimagesearch.com/2019/07/08/keras-imagedatagenerator-and-data-augmentation/ (accessed on 20 February 2022).
- Shin, H.C.; Tenenholtz, N.A.; Rogers, J.K.; Schwarz, C.G.; Senjem, M.L.; Gunter, J.L.; Andriole, K.P.; Michalski, M. Medical image synthesis for data augmentation and anonymization using generative adversarial networks. In Proceedings of the International Workshop on Simulation and Synthesis in Medical Imaging, Granada, Spain, 16 September 2018; Springer: Cham, Switzerland, 2018; pp. 1–11. [Google Scholar]
- Heath, M.; Bowyer, K.; Kopans, D.; Kegelmeyer, P.; Moore, R.; Chang, K.; Munishkumaran, S. Current status of the digital database for screening mammography. In Digital Mammography; Springer: Dordrecht, The Netherlands, 1998; pp. 457–460. [Google Scholar]
- Lee, R.S.; Gimenez, F.; Hoogi, A.; Miyake, K.K.; Gorovoy, M.; Rubin, D.L. A curated mammography data set for use in computer-aided detection and diagnosis research. Sci. Data 2017, 4, 170177. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar] [CrossRef] [Green Version]
- Suckling, J.; Parker, J.; Dance, D.; Astley, S.; Hutt, I.; Boggis, C.; Ricketts, I.; Stamatakis, E.; Cerneaz, N.; Kok, S.; et al. Mammographic Image Analysis Society (mias) Database v1. 21. International Congress Series. 2015. Available online: https://www.repository.cam.ac.uk/handle/1810/250394 (accessed on 1 January 2022).
- Costa, A.C.; Oliveira, H.C.; Vieira, M.A. Data augmentation: Effect in deep convolutional neural network for the detection of architectural distortion in digital mammography. In Proceedings of the Brazilian Congress on Medical Physics, Santos, Brazil, 21–24 August 2019. [Google Scholar]
- Cha, K.H.; Petrick, N.A.; Pezeshk, A.X.; Graff, C.G.; Sharma, D.; Badal, A.; Sahiner, B. Evaluation of data augmentation via synthetic images for improved breast mass detection on mammograms using deep learning. J. Med. Imaging 2019, 7, 012703. [Google Scholar] [CrossRef] [PubMed]
- Omonigho, E.L.; David, M.; Adejo, A.; Aliyu, S. Breast cancer: Tumor detection in mammogram images using modified alexnet deep convolution neural network. In Proceedings of the 2020 International Conference in Mathematics, Computer Engineering and Computer Science (ICMCECS), Ayobo, Nigeria, 18–21 March 2020; pp. 1–6. [Google Scholar]
- Rahman, A.S.A.; Belhaouari, S.B.; Bouzerdoum, A.; Baali, H.; Alam, T.; Eldaraa, A.M. Breast mass tumor classification using deep learning. In Proceedings of the 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT), Doha, Qatar, 2–5 February 2020; pp. 271–276. [Google Scholar]
- Shi, P.; Wu, C.; Zhong, J.; Wang, H. Deep learning from small dataset for BI-RADS density classification of mammography images. In Proceedings of the 2019 10th International Conference on Information Technology in Medicine and Education (ITME), Qingdao, China, 23–25 August 2019; pp. 102–109. [Google Scholar]
- Magny, S.J.; Shikhman, R.; Keppke, A.L. Breast, Imaging, Reporting and Data System (BI RADS); StatPearls: Treasure Island, FL, USA, 2020. [Google Scholar]
- Khan, H.N.; Shahid, A.R.; Raza, B.; Dar, A.H.; Alquhayz, H. Multi-view feature fusion based four views model for mammogram classification using convolutional neural network. IEEE Access 2019, 7, 165724–165733. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Han, E.Y.; Jacobs, N.; Han, Q.; Wang, X.; Liu, J. Whole mammogram image classification with convolutional neural networks. In Proceedings of the 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Kansas City, MO, USA, 13–16 November 2017; pp. 700–704. [Google Scholar]
- Suckling, J.P. The mammographic image analysis society digital mammogram database. Digital Mammo 1994, 375–386. Available online: http://peipa.essex.ac.uk/info/mias.html (accessed on 1 January 2022).
- Assari, Z.; Mahloojifar, A.; Ahmadinejad, N. A bimodal BI-RADS-guided GoogLeNet-based CAD system for solid breast masses discrimination using transfer learning. Comput. Biol. Med. 2022, 142, 105160. [Google Scholar] [CrossRef]
- Aly, G.H.; Marey, M.; El-Sayed, S.A.; Tolba, M.F. YOLO based breast masses detection and classification in full-field digital mammograms. Comput. Methods Programs Biomed. 2021, 200, 105823. [Google Scholar] [CrossRef]
- Muduli, D.; Dash, R.; Majhi, B. Automated diagnosis of breast cancer using multi-modal datasets: A deep convolution neural network based approach. Biomed. Signal Process. Control 2022, 71, 102825. [Google Scholar] [CrossRef]
- Li, Z.; Cui, Z.; Wang, S.; Qi, Y.; Ouyang, X.; Chen, Q.; Yang, Y.; Xue, Z.; Shen, D.; Cheng, J.Z. Domain Generalization for Mammography Detection via Multi-style and Multi-view Contrastive Learning. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Strasbourg, France, 27 September–1 October 2021; Springer: Cham, Switzerland, 2021; pp. 98–108. [Google Scholar]
- Agarwal, M.; Mahajan, R. Medical images contrast enhancement using quad weighted histogram equalization with adaptive gama correction and homomorphic filtering. Procedia Comput. Sci. 2017, 115, 509–517. [Google Scholar] [CrossRef]
- Sahnoun, M.; Kallel, F.; Dammak, M.; Mhiri, C.; Mahfoudh, K.B.; Hamida, A.B. A comparative study of MRI contrast enhancement techniques based on Traditional Gamma Correction and Adaptive Gamma Correction: Case of multiple sclerosis pathology. In Proceedings of the 2018 4th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), Sousse, Tunisia, 21–24 March 2018; pp. 1–7. [Google Scholar]
- Galdran, A.; Alvarez-Gila, A.; Meyer, M.I.; Saratxaga, C.L.; Araújo, T.; Garrote, E.; Aresta, G.; Costa, P.; Mendonça, A.M.; Campilho, A. Data-driven color augmentation techniques for deep skin image analysis. arXiv 2017, arXiv:1703.03702. [Google Scholar]
- Min, H.; Wilson, D.; Huang, Y.; Liu, S.; Crozier, S.; Bradley, A.P.; Chandra, S.S. Fully automatic computer-aided mass detection and segmentation via pseudo-color mammograms and mask r-cnn. In Proceedings of the 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), Iowa City, IA, USA, 3–7 April 2020; pp. 1111–1115. [Google Scholar]
- Zhong, Z.; Zheng, L.; Kang, G.; Li, S.; Yang, Y. Random erasing data augmentation. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 13001–13008. [Google Scholar]
- Kang, G.; Dong, X.; Zheng, L.; Yang, Y. Patchshuffle regularization. arXiv 2017, arXiv:1707.07103. [Google Scholar]
- Netzer, Y.; Wang, T.; Coates, A.; Bissacco, A.; Wu, B.; Ng, A.Y. Reading Digits in Natural Images with Unsupervised Feature Learning. 2011. Available online: http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf (accessed on 14 March 2022).
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images. 2009. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.222.9220&rep=rep1&type=pdf (accessed on 15 December 2021).
- Coates, A.; Ng, A.; Lee, H. An analysis of single-layer networks in unsupervised feature learning. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, 11–13 April 2011; pp. 215–223. [Google Scholar]
- Adedigba, A.P.; Adeshinat, S.A.; Aibinu, A.M. Deep learning-based mammogram classification using small dataset. In Proceedings of the 2019 15th International Conference on Electronics, Computer and Computation (ICECCO), Abuja, Nigeria, 10–12 December 2019; pp. 1–6. [Google Scholar]
- Yemini, M.; Zigel, Y.; Lederman, D. Detecting masses in mammograms using convolutional neural networks and transfer learning. In Proceedings of the 2018 IEEE International Conference on the Science of Electrical Engineering in Israel (ICSEE), Eilat, Israel, 12–14 December 2018; pp. 1–4. [Google Scholar]
- Oza, P.; Sharma, P.; Patel, S.; Bruno, A. A Bottom-Up Review of Image Analysis Methods for Suspicious Region Detection in Mammograms. J. Imaging 2021, 7, 190. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Fessler, J.A.; Chan, H.P. Deep Convolutional Neural Network with Adversarial Training for Denoising Digital Breast Tomosynthesis Images. IEEE Trans. Med. Imaging 2021, 40, 1805–1816. [Google Scholar] [CrossRef] [PubMed]
- Shen, R.; Yao, J.; Yan, K.; Tian, K.; Jiang, C.; Zhou, K. Unsupervised domain adaptation with adversarial learning for mass detection in mammogram. Neurocomputing 2020, 393, 27–37. [Google Scholar] [CrossRef]
- Shen, L.; Margolies, L.R.; Rothstein, J.H.; Fluder, E.; McBride, R.; Sieh, W. Deep learning to improve breast cancer detection on screening mammography. Sci. Rep. 2019, 9, 12495. [Google Scholar] [CrossRef]
- Desai, S.D.; Giraddi, S.; Verma, N.; Gupta, P.; Ramya, S. Breast Cancer Detection Using GAN for Limited Labeled Dataset. In Proceedings of the 2020 12th International Conference on Computational Intelligence and Communication Networks (CICN), Bhimtal, India, 25–26 September 2020; pp. 34–39. [Google Scholar] [CrossRef]
- Singh, V.K.; Rashwan, H.A.; Romani, S.; Akram, F.; Pandey, N.; Sarker, M.M.K.; Saleh, A.; Arenas, M.; Arquez, M.; Puig, D.; et al. Breast tumor segmentation and shape classification in mammograms using generative adversarial and convolutional neural network. Expert Syst. Appl. 2020, 139, 112855. [Google Scholar] [CrossRef]
- Shen, T.; Hao, K.; Gou, C.; Wang, F.Y. Mass Image Synthesis in Mammogram with Contextual Information Based on GANs. Comput. Methods Programs Biomed. 2021, 202, 106019. [Google Scholar] [CrossRef]
- Muramatsu, C.; Nishio, M.; Goto, T.; Oiwa, M.; Morita, T.; Yakami, M.; Kubo, T.; Togashi, K.; Fujita, H. Improving breast mass classification by shared data with domain transformation using a generative adversarial network. Comput. Biol. Med. 2020, 119, 103698. [Google Scholar] [CrossRef]
- Swiderski, B.; Gielata, L.; Olszewski, P.; Osowski, S.; Kołodziej, M. Deep neural system for supporting tumor recognition of mammograms using modified GAN. Expert Syst. Appl. 2021, 164, 113968. [Google Scholar] [CrossRef]
- Korkinof, D.; Heindl, A.; Rijken, T.; Harvey, H.; Glocker, B. MammoGAN: High-resolution synthesis of realistic mammograms. In Proceedings of the International Conference on Medical Imaging with Deep Learning–Extended Abstract Track, London, UK, 8–10 July 2019. [Google Scholar]
- Pezeshk, A.; Petrick, N.; Sahiner, B. Seamless lesion insertion in digital mammography: Methodology and reader study. In Medical Imaging 2016: Computer-Aided Diagnosis; Tourassi, G.D., Armato, S.G., III, Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2016; Volume 9785, pp. 134–139. [Google Scholar] [CrossRef]
- Jing, Y.; Yang, Y.; Feng, Z.; Ye, J.; Yu, Y.; Song, M. Neural Style Transfer: A Review. IEEE Trans. Vis. Comput. Graph. 2020, 26, 3365–3385. [Google Scholar] [CrossRef] [Green Version]
- Gatys, L.A.; Ecker, A.S.; Bethge, M. A neural algorithm of artistic style. arXiv 2015, arXiv:1508.06576. [Google Scholar] [CrossRef]
- Gatys, L.A.; Ecker, A.S.; Bethge, M. Image style transfer using convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2414–2423. [Google Scholar]
- Wang, S.; Huo, J.; Ouyang, X.; Che, J.; Xue, Z.; Shen, D.; Wang, Q.; Cheng, J.Z. mr2 NST: Multi-resolution and Multi-reference Neural Style Transfer for Mammography. In Proceedings of the International Workshop on Predictive Intelligence in Medicine, Lima, Peru, 8 October 2020; Springer: Cham, Switzerland, 2020; pp. 169–177. [Google Scholar]
- Ramadan, S.Z. Using convolutional neural network with cheat sheet and data augmentation to detect breast cancer in mammograms. Comput. Math. Methods Med. 2020, 2020, 9523404. [Google Scholar] [CrossRef] [PubMed]
- Zeiser, F.A.; da Costa, C.A.; Zonta, T.; Marques, N.; Roehe, A.V.; Moreno, M.; da Rosa Righi, R. Segmentation of masses on mammograms using data augmentation and deep learning. J. Digit. Imaging 2020, 33, 858–868. [Google Scholar] [CrossRef] [PubMed]
- Raj, R.; Mathew, J.; Kannath, S.K.; Rajan, J. Crossover based technique for data augmentation. Comput. Methods Programs Biomed. 2022, 218, 106716. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Pu, S.; Tan, W.; Tong, J. Breast mass detection in digital mammography based on anchor-free architecture. Comput. Methods Programs Biomed. 2021, 205, 106033. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, X.; Zhang, K.; Fung, K.M.; Thai, T.C.; Moore, K.; Mannel, R.S.; Liu, H.; Zheng, B.; Qiu, Y. Virtual Adversarial Training for Semi-supervised Breast Mass Classification. arXiv 2022, arXiv:2201.10675. [Google Scholar]
- DeVries, T.; Taylor, G.W. Improved regularization of convolutional neural networks with cutout. arXiv 2017, arXiv:1708.04552. [Google Scholar]
- Xu, Z.; Liu, D.; Yang, J.; Raffel, C.; Niethammer, M. Robust and generalizable visual representation learning via random convolutions. arXiv 2020, arXiv:2007.13003. [Google Scholar]
- Garrucho, L.; Kushibar, K.; Jouide, S.; Diaz, O.; Igual, L.; Lekadir, K. Domain generalization in deep learning-based mass detection in mammography: A large-scale multi-center study. arXiv 2022, arXiv:2201.11620. [Google Scholar]
- Halling-Brown, M.D.; Warren, L.M.; Ward, D.; Lewis, E.; Mackenzie, A.; Wallis, M.G.; Wilkinson, L.S.; Given-Wilson, R.M.; McAvinchey, R.; Young, K.C. OPTIMAM Mammography image database: A large-scale resource of mammography images and clinical data. Radiol. Artif. Intell. 2020, 3, e200103. [Google Scholar] [CrossRef]
- Moreira, I.C.; Amaral, I.; Domingues, I.; Cardoso, A.; Cardoso, M.J.; Cardoso, J.S. Inbreast: Toward a full-field digital mammographic database. Acad. Radiol. 2012, 19, 236–248. [Google Scholar] [CrossRef] [Green Version]
- Moura, D.C.; López, M.A.G.; Cunha, P.; Posada, N.G.d.; Pollan, R.R.; Ramos, I.; Loureiro, J.P.; Moreira, I.C.; Araújo, B.M.; Fernandes, T.C. Benchmarking datasets for breast cancer computer-aided diagnosis (CADx). In Proceedings of the Iberoamerican Congress on Pattern Recognition, Havana, Cuba, 20–23 November 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 326–333. [Google Scholar]
- Tran, S.B.; Nguyen, H.T.; Pham, H.H.; Nguyen, H.Q. Transparency strategy-based data augmentation for BI-RADS classification of mammograms. arXiv 2022, arXiv:2203.10609. [Google Scholar]
- Yun, S.; Han, D.; Oh, S.J.; Chun, S.; Choe, J.; Yoo, Y. Cutmix: Regularization strategy to train strong classifiers with localizable features. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27–28 October 2019; pp. 6023–6032. [Google Scholar]
- Moreno-Barea, F.J.; Strazzera, F.; Jerez, J.M.; Urda, D.; Franco, L. Forward noise adjustment scheme for data augmentation. In Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence (SSCI), Bangalore, India, 18–21 November 2018; pp. 728–734. [Google Scholar]
- Naveed, H. Survey: Image mixing and deleting for data augmentation. arXiv 2021, arXiv:2106.07085. [Google Scholar]
- Baek, F.; Park, S.; Kim, H. Data augmentation using adversarial training for construction-equipment classification. arXiv 2019, arXiv:1911.11916. [Google Scholar]
- Antoniou, A.; Storkey, A.; Edwards, H. Data augmentation generative adversarial networks. arXiv 2017, arXiv:1711.04340. [Google Scholar]
- Domingues, I.; Abreu, P.H.; Santos, J. Bi-rads classification of breast cancer: A new pre-processing pipeline for deep models training. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 1378–1382. [Google Scholar]
- Zhang, X.; Zhang, Y.; Han, E.Y.; Jacobs, N.; Han, Q.; Wang, X.; Liu, J. Classification of whole mammogram and tomosynthesis images using deep convolutional neural networks. IEEE Trans. Nanobiosci. 2018, 17, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Castro, E.; Cardoso, J.S.; Pereira, J.C. Elastic deformations for data augmentation in breast cancer mass detection. 2018 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), Las Vegas, NV, USA, 4–7 March 2018; pp. 230–234. [Google Scholar]
- Razali, N.F.; Isa, I.S.; Sulaiman, S.N.; Karim, N.K.A.; Osman, M.K. High-level Features in Deeper Deep Learning Layers for Breast Cancer Classification. In Proceedings of the 2021 11th IEEE International Conference on Control System, Computing and Engineering (ICCSCE), Penang, Malaysia, 27–28 August 2021; pp. 170–175. [Google Scholar]
- Alkhaleefah, M.; Chittem, P.K.; Achhannagari, V.P.; Ma, S.C.; Chang, Y.L. The influence of image augmentation on breast lesion classification using transfer learning. In Proceedings of the 2020 International Conference on Artificial Intelligence and Signal Processing (AISP), Amaravati, India, 10–12 January 2020; pp. 1–5. [Google Scholar]
- Wang, Y.; Song, M.; Tian, X. Meta-learning Based Breast Abnormality Classification on Screening Mammograms. In Proceedings of the 2021 International Conference on Computer Engineering and Application (ICCEA), Kunming, China, 25–27 June 2021; pp. 153–156. [Google Scholar]
- Bagchi, S.; Mohd, M.N.H.; Debnath, S.K.; Nafea, M.; Suriani, N.S.; Nizam, Y. Performance Comparison of Pre-trained Residual Networks for Classification of the Whole Mammograms with Smaller Dataset. In Proceedings of the 2020 IEEE Student Conference on Research and Development (SCOReD), Batu Pahat, Malaysia, 27–29 September 2020; pp. 368–373. [Google Scholar]
- Lu, H.C.; Loh, E.W.; Huang, S.C. The classification of mammogram using convolutional neural network with specific image preprocessing for breast cancer detection. In Proceedings of the 2019 2nd International Conference on Artificial Intelligence and Big Data (ICAIBD), Chengdu, China, 25–28 May 2019; pp. 9–12. [Google Scholar]
- Vedalankar, A.V.; Gupta, S.S.; Manthalkar, R.R. Addressing architectural distortion in mammogram using AlexNet and support vector machine. Inform. Med. Unlocked 2021, 23, 100551. [Google Scholar] [CrossRef]
- Huang, M.L.; Lin, T.Y. Dataset of breast mammography images with masses. Data Brief 2020, 31, 105928. [Google Scholar] [CrossRef]
- Agarwal, R.; Díaz, O.; Yap, M.H.; Llado, X.; Marti, R. Deep learning for mass detection in Full Field Digital Mammograms. Comput. Biol. Med. 2020, 121, 103774. [Google Scholar] [CrossRef]
- Chougrad, H.; Zouaki, H.; Alheyane, O. Multi-label transfer learning for the early diagnosis of breast cancer. Neurocomputing 2020, 392, 168–180. [Google Scholar] [CrossRef]
- Ting, F.F.; Tan, Y.J.; Sim, K.S. Convolutional neural network improvement for breast cancer classification. Expert Syst. Appl. 2019, 120, 103–115. [Google Scholar] [CrossRef]
- End-to-end object detection with transformers. In European Conference on Computer Vision; Springer: Cham, Switzerland, 2020.
- Azevedo, V.; Silva, C.; Dutra, I. Quantum transfer learning for breast cancer detection. Quantum Mach. Intell. 2022, 4, 5. [Google Scholar] [CrossRef] [PubMed]
- Kolchev, A.; Pasynkov, D.; Egoshin, I.; Kliouchkin, I.; Pasynkova, O.; Tumakov, D. YOLOv4-Based CNN Model versus Nested Contours Algorithm in the Suspicious Lesion Detection on the Mammography Image: A Direct Comparison in the Real Clinical Settings. J. Imaging 2022, 8, 88. [Google Scholar] [CrossRef] [PubMed]
- Sadad, T.; Khan, A.R.; Hussain, A.; Tariq, U.; Fati, S.M.; Bahaj, S.A.; Munir, A. Internet of medical things embedding deep learning with data augmentation for mammogram density classification. Microsc. Res. Tech. 2021, 84, 2186–2194. [Google Scholar] [CrossRef] [PubMed]
- Susilo, A.B.; Sugiharti, E. Accuracy Enhancement in Early Detection of Breast Cancer on Mammogram Images with Convolutional Neural Network (CNN) Methods using Data Augmentation and Transfer Learning. J. Adv. Inf. Syst. Technol. 2021, 3, 9–16. [Google Scholar]
- Wang, G.; Li, W.; Aertsen, M.; Deprest, J.; Ourselin, S.; Vercauteren, T. Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks. Neurocomputing 2019, 338, 34–45. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.; Kim, Y.; Kim, S. Learning loss for test-time augmentation. arXiv 2020, arXiv:2010.11422. [Google Scholar]
- Wang, G.; Li, W.; Ourselin, S.; Vercauteren, T. Automatic brain tumor segmentation using convolutional neural networks with test-time augmentation. In Proceedings of the International MICCAI Brainlesion Workshop, Granada, Spain, 16 September 2018; Springer: Cham, Switzerland, 2018; pp. 61–72. [Google Scholar]
- Isensee, F.; Petersen, J.; Klein, A.; Zimmerer, D.; Jaeger, P.F.; Kohl, S.; Wasserthal, J.; Koehler, G.; Norajitra, T.; Wirkert, S.; et al. nnu-net: Self-adapting framework for u-net-based medical image segmentation. arXiv 2018, arXiv:1809.10486. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1097–1105. [Google Scholar] [CrossRef]
- Pang, T.; Xu, K.; Zhu, J. Mixup inference: Better exploiting mixup to defend adversarial attacks. arXiv 2019, arXiv:1909.11515. [Google Scholar]
Sr No. | DA Technique | Sub Category | Label Preserving | Strength | Limitation |
---|---|---|---|---|---|
1 | Geometric Transformation [1,5] | Flipping | No | Good solutions for positional bias present in training data. Easy implementation | Additional memory, Transformation compute cost, Additional training time, Manual observation |
Cropping | Not always | ||||
Rotation | Not always | ||||
Translation | Yes | ||||
2 | Noise Injection [77] | - | Yes | Allows model to learn more robust | Difficult to decide amount of noise to be added |
3 | Kernel Filters [1] | - | Yes | Good to generate sharpen and blurred images | Similar to CNN mechanism |
4 | Mixing Images [78] | - | No | - | Makes not much sense from human perspective. Not suitable for medical images |
5 | Random Erasing [41] | - | Not always | Analogous to dropout regularization. Designed to combat image recognition challenges due to occlusion, A promising technique to guarantee a network pays attention to the entire image, not a subset of it | Some manual intervention may be necessary depending on the dataset and application |
6 | Adversarial Training [79] | - | Yes | Help to illustrate weak decision boundaries better than standard classification metrics | Less explored |
7 | Generative Adversarial Network [80] | - | Yes | GANs generate data that looks similar to original data | Harder to train, Generating results from text or speech is very complex. |
8 | Neural Style Transfer [60] | - | - | Improves the generalization ability of simulated datasets | Efforts needed to select style, Additional memory, transformation cost |
Ref. | Task Performed | Model | Dataset | Model Performance | Data Augmentation Approach |
---|---|---|---|---|---|
[24] | AD detection | Deep CNN (Augmented CNN-SW+) | Private | AUC: 0.83 ± 0.14 | Rotation by 90, 180 and 270 degrees, mirroring and adding Poisson noise |
[8] | AD detection | Deep CNN | MIAS, DDSM, INBreast | Accuracy: 93.75% | Rotation, flipping, shear, scaling, etc. |
[25] | Mass detection | Faster R-CNN | CBIS-DDSM | Sensitivity: 0.833 ± 0.038 | Horizontal and Vertical Flipping |
[63] | Mass detection | mr2NST | mammograms from GE and UIH | - | Neural Style Transfer |
[81] | BI-RADS Classification | AlexNet | INBreast | Accuracy: 83.4 | Image co-registration |
[26] | Tumor detection | Modified AlexNet | MIAS | 95.70% | Scaling, horizontal flip, rotation (90, 180, 270) |
[27] | Mass Classification | InceptionV3 and ResNet50 | DDSM | Accuracy: InceptionV3: 79.6 ResNet50-85.71 | Geometric Transformation |
[82] | Mammogram classification | Pre-trained CNN Architectures | Private | - | Reflection and Rotation |
[28] | BI-RADS classification | CNN | MIAS | Accuracy: 83.6% | Flip, rotation, shift and zoom |
[47] | Mammogram Classification | Pre-trained CNN Architectures | MIAS | Accuracy: 99.01% | Gaussian blurring, horizontal flipping, internal refection and mild addition of white noise |
[48] | Mass detection | Google Inception-V3 | INBreast | ROC: 0.86 | Gaussian noise, Flipping, Changing image brightness |
[83] | Mass Classification | VGG based DCNN | INBreast, CBIS, BCRP | - | elastic deformations |
[10] | Mass Classification | DCNN | MIAS, INBreast, DDSM | Conventional DA techniques: 88% GAN: 94% | GAN |
[84] | Mass Classification | AlexNet, InceptionV3 | INBreast, CBIS-DDSM | Accuracy: INBreast: Alexnet: 0.9892, InceptionV3: 0.9919 CBIS-DDSM: Alexnet: 0.6138, InceptionV3: 0.8142 | rotation, flipping, shearing |
[85] | Lesion Classification | ResNet50, VGG16, VGG19 | CBIS-DDSM | Accuracy: 90.4% | Geometric transformation, Contrast and brightness adjustment |
[86] | Abnormality Classification | Meta Learning, REsnet101 | CBIS-DDSM | Accuracy: Meta Learning: 76%, Resnet101: 71% | Geometric transformations |
[30] | Mammogram Classification | VGGNet, GoogleNet, Resnet | CBIS-DDSM, MIAS | AUC: 0.932 | Geometric transformations |
[87] | Mammogram Classification | Residual Networks | INBreast | Specificity: 0.89 | Rotation, Translation |
[88] | Mass detection | InceptionV3 | INBreast | ROC: 0.91 | Geometric transformations, Contrast and brightness adjustment, |
[31] | Mammogram Classification | Alexnet, Resnet | Private | - | Geometric transformations |
[89] | AD detection | Alexnet, SVM | CBIS-DDSM, DDSM, MIAS | Accuracy: 92 | Geometric transformations, TTA |
[34] | Mammogram detection and classification | YOLO | INBreast | Accuracy: 89.6 | Rotation, Flipping |
[90] | Build datasets of breast mammography | Alexnet, Densenet, Shufflenet | INBreast | - | Rotation, Flipping |
[91] | Mass Detection | Faster R-CNN | OMI-DB | TPR: 0.99 ± 0.03 at 1.17 FPI—malignant 0.85 ± 0.08 at 1.0 FPI—benign | Horizontal Flipping |
[92] | Breast cancer diagnosis | Pre-trained CNN Architectures | CBIS- DDSM, BCDR, INBreast, MIAS | F1 Score for MIAS 0.907 ± 0.150 | - |
[93] | Breast cancer classification | DCNN | MIAS | Accuracy: 90.50 | Feature wise data augmentation |
[56] | Mass Classification | CNN | DDSM | - | cycle GAN |
[33] | Masses Discrimination | GoogleNet | DDSM | Accuracy: 90.38% | Flipping, Cropped-ROI, Gaussian noise |
[66] | Image Classification | VGG-16/19 | Mini MIAS | - | Crossover technique |
[55] | Mass Image Synthesis | GAN | DDSM, Private | - | Contextual Information Based on GANs |
[67] | Mass Detection | One-Stage Object Detection Architecture (BMassDNet) | INBreast DDSM | Recall: INBreast: 0.93 DDSM:0.943 | Elastic Deformation |
[51] | Mass Detection | Fully Convolutional Network | CBIS-DDSM Inbreast | 0.8040 PAUC 0.8787 [email protected] | Adversarial Learning |
[35] | Breast Cancer Classification | Deep CNN | MIAS, DDSM, Inbreast | Accuracy: MIAS: 96.55%, DDSM: 90.68%, INbreast: 91.28%, | Geometric Transformations, Gaussian noise |
[36] | Mass Detection | Contrastive Learning, CycleGAN | Inbreast, Private | - | Geometric Transformations |
[68] | Mass Classification | Deep CNN | Private | 0.760 ± 0.015 for 80% labeled data | Virtual Adversarial Training |
[71] | Mass Detection | Eight Object Detection Models | OPTIMAM, Inbreast, BCDR | Out of eight models, DETR [94] could perform well | Cutout and RandConv |
[75] | BI-RADS Classification | EfficientNet-B2 | Private | Macro F1 score: 0.595 | Transparency Strategy |
[95] | Mass Detection | Pre-trained CNNs, DenseNet, ResNet, ResNeXt | BCDR | Accuracy: 84% | Geometric Transformations |
[96] | Lesion Detection | YOLOv4 Nested Contours Algorithm | INBreast | Sensitivity: 93% by NCA | Geometric Transformations |
[97] | Mammogram Density Classification | DenseNet201, ResNet50 | MIAS | Accuracy: DenseNet201: 90.47% | Geometric Transformations |
[65] | Mass Segmentation | U-Net | DDSM | Sensitivity: 92.32% | Geometric Transformations |
[98] | Breast Cancer Detection | Pre-trained CNNs VGG-16, VGG-19, ResNet-50 | MIAS | Accuracy: ResNet-50: 71% | Geometric Transformations |
Ref. | Pre-Augmentation Dataset Size | Post-Augmentation Dataset Size | Post-Augmentation Model Performance |
---|---|---|---|
[24] | 280 (Mammograms) | 345,000 ROIs | - |
[8] | 5136 ROIs (MIAS), 410 whole images (Inbreast), 322 whole images (MIAS), 55,890 ROIs (DDSM, CBIS) | 49,724 ROIs (MIAS), 7914 whole images (MIAS), 1688 whole images (Inbreast), 179,447 ROIs (DDSM, CBIS) | - |
[25] | - | 8 new labels per image | - |
[81] | 374 | 1560 samples | Accuracy improved by more than 33% |
[26] | 322 | 2576 | - |
[82] | 3290 | 26,320 | - |
[28] | - | - | Rise in validation accuracy from 51.3% to 83.6% |
[47] | 322 | 9000 | - |
[48] | - | - | Increased AUC from 0.78 to 0.86 |
[83] | - | - | Improved FPI 3.509 (CBIS), 1.864 (BCRP) |
[84] | - | - | Rise in accuracy from 0.6026 to 0.8670 |
[10] | 1798 | Single image to be augmented into 546 images | Rise in accuracy from 69.85% to 94% |
[85] | 5257 | 104,795 | - |
[30] | - | - | Rise in accuracy from 78.92% to 80.56% |
[88] | - | - | Improvement in sensitivity from 0.786 to 0.913 |
[31] | - | - | Improvement in auROC from 0.62 to 0.73 |
[89] | 215 ROI | 3006 ROI | - |
[34] | 107 | 428 | - |
[90] | 106 | 7632 | - |
[93] | 221 (Patches) | 1768 Patches | - |
[56] | - | - | Improvement in accuracy by 1.4 % |
[33] | - | Dataset is expanded by 24 times | - |
[66] | - | - | Improvement in accuracy by 1.47%, |
[55] | - | - | Improvement in detection rate by 5.03% |
[35] | 322 (MIAS), 1500 (DDSM), 410 (Inbreast) | 3200 (MIAS), 28,800 (DDSM), 2240 (Inbreast) | - |
[75] | 25,373 (Training Samples) | 28,000 (Training Samples) | - |
[96] | 106 | 1080 | - |
[65] | 7989 | 48,659 ROI | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oza, P.; Sharma, P.; Patel, S.; Adedoyin, F.; Bruno, A. Image Augmentation Techniques for Mammogram Analysis. J. Imaging 2022, 8, 141. https://doi.org/10.3390/jimaging8050141
Oza P, Sharma P, Patel S, Adedoyin F, Bruno A. Image Augmentation Techniques for Mammogram Analysis. Journal of Imaging. 2022; 8(5):141. https://doi.org/10.3390/jimaging8050141
Chicago/Turabian StyleOza, Parita, Paawan Sharma, Samir Patel, Festus Adedoyin, and Alessandro Bruno. 2022. "Image Augmentation Techniques for Mammogram Analysis" Journal of Imaging 8, no. 5: 141. https://doi.org/10.3390/jimaging8050141
APA StyleOza, P., Sharma, P., Patel, S., Adedoyin, F., & Bruno, A. (2022). Image Augmentation Techniques for Mammogram Analysis. Journal of Imaging, 8(5), 141. https://doi.org/10.3390/jimaging8050141