Mobile-PolypNet: Lightweight Colon Polyp Segmentation Network for Low-Resource Settings
Abstract
:1. Introduction
2. Related Work
2.1. Traditional Image Processing Techniques
2.2. Cnn Based Methods
2.2.1. Localization of Colonal Polyp
2.2.2. Semantic Segmentation of Colon Polyp
3. Methods
3.1. Network Architecture
3.1.1. Input Layer
3.1.2. Encoder
3.1.3. Decoder
3.1.4. Output Layer
3.2. Network Training
3.2.1. Loss Function
3.2.2. Training Setup
3.3. Statistical Analysis
4. Experiments
4.1. Dataset and Image Preparation
4.2. Settings for the Training and Performance Metrics
5. Results
5.1. Accuracy on Individual Dataset
5.2. Model Generalization
5.3. Model’s Computational Efficiency
5.4. Model Modification and Performance (Ablation Study)
5.5. Model’s Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Disease Control and Prevention. An Update on Cancer Deaths in the United States. 2020. Available online: https://www.cdc.gov/cancer/dcpc/research/update-on-cancer-deaths/index.htm (accessed on 9 March 2022).
- Transcranial Alternating Current Stimulation. Key Statistics for Colorectal Cancer. 2021. Available online: https://www.cancer.org/cancer/colon-rectal-cancer/about/key-statistics.html (accessed on 9 March 2022).
- Transcranial Alternating Current Stimulation. Colorectal Cancer Early Detection, Diagnosis, and Staging. 2020. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiOs-7mw6z4AhWQ3zgGHS5JB0EQFnoECA0QAQ&url=https%3A%2F%2Fwww.cancer.org%2Fcontent%2Fdam%2FCRC%2FPDF%2FPublic%2F8606.00.pdf&usg=AOvVaw2Yene1FdKCRDe8vHef6B81 (accessed on 9 March 2022).
- Fan, D.P.; Ji, G.P.; Zhou, T.; Chen, G.; Fu, H.; Shen, J.; Shao, L. Pranet: Parallel reverse attention network for polyp segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Berlin/Heidelberg, Germany, 2020; pp. 263–273. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Hwang, S.; Oh, J.; Tavanapong, W.; Wong, J.; De Groen, P.C. Polyp detection in colonoscopy video using elliptical shape feature. In Proceedings of the 2007 IEEE International Conference on Image Processing, San Antonio, TX, USA, 16 September–19 October 2007; Volume 2, p. 465. [Google Scholar]
- Van Wijk, C.; Van Ravesteijn, V.F.; Vos, F.M.; Van Vliet, L.J. Detection and segmentation of colonic polyps on implicit isosurfaces by second principal curvature flow. IEEE Trans. Med. Imaging 2010, 29, 688–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, H.; Fan, Y.; Liang, Z. Improved curvature estimation for shape analysis in computer-aided detection of colonic polyps. In Proceedings of the International MICCAI Workshop on Computational Challenges and Clinical Opportunities in Virtual Colonoscopy and Abdominal Imaging; Springer: Berlin/Heidelberg, Germany, 2010; pp. 9–14. [Google Scholar]
- Karkanis, S.A.; Iakovidis, D.K.; Maroulis, D.E.; Karras, D.A.; Tzivras, M. Computer-aided tumor detection in endoscopic video using color wavelet features. IEEE Trans. Inf. Technol. Biomed. 2003, 7, 141–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexandre, L.A.; Nobre, N.; Casteleiro, J. Color and position versus texture features for endoscopic polyp detection. In Proceedings of the 2008 International Conference on BioMedical Engineering and Informatics, Sanya, China, 27–30 May 2008; Volume 2, pp. 38–42. [Google Scholar]
- Ameling, S.; Wirth, S.; Paulus, D.; Lacey, G.; Vilarino, F. Texture-based polyp detection in colonoscopy. In Bildverarbeitung für die Medizin 2009; Springer: Berlin/Heidelberg, Germany, 2009; pp. 346–350. [Google Scholar]
- Iakovidis, D.K.; Maroulis, D.E.; Karkanis, S.A.; Brokos, A. A comparative study of texture features for the discrimination of gastric polyps in endoscopic video. In Proceedings of the 18th IEEE Symposium on Computer-Based Medical Systems (CBMS’05), Dublin, Ireland, 23–24 June 2005; pp. 575–580. [Google Scholar]
- Tajbakhsh, N.; Gurudu, S.R.; Liang, J. Automatic polyp detection in colonoscopy videos using an ensemble of convolutional neural networks. In Proceedings of the 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), Brooklyn, NY, USA, 16–19 April 2015; pp. 79–83. [Google Scholar]
- Zhang, R.; Zheng, Y.; Poon, C.C.; Shen, D.; Lau, J.Y. Polyp detection during colonoscopy using a regression-based convolutional neural network with a tracker. Pattern Recognit. 2018, 83, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Chen, H.; Dou, Q.; Qin, J.; Heng, P.A. Integrating online and offline three-dimensional deep learning for automated polyp detection in colonoscopy videos. IEEE J. Biomed. Health Inform. 2016, 21, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Pogorelov, K.; Randel, K.R.; Griwodz, C.; Eskeland, S.L.; de Lange, T.; Johansen, D.; Spampinato, C.; Dang-Nguyen, D.T.; Lux, M.; Schmidt, P.T.; et al. KVASIR: A Multi-Class Image Dataset for Computer Aided Gastrointestinal Disease Detection. In Proceedings of the 8th ACM on Multimedia Systems Conference; ACM: New York, NY, USA, 2017; pp. 164–169. [Google Scholar] [CrossRef] [Green Version]
- Silva, J.; Histace, A.; Romain, O.; Dray, X.; Granado, B. Toward embedded detection of polyps in wce images for early diagnosis of colorectal cancer. Int. J. Comput. Assist. Radiol. Surg. 2014, 9, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Vázquez, D.; Bernal, J.; Sánchez, F.J.; Fernández-Esparrach, G.; López, A.M.; Romero, A.; Drozdzal, M.; Courville, A. A benchmark for endoluminal scene segmentation of colonoscopy images. J. Healthc. Eng. 2017, 2017, 4037190. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Dharmawan, D.A.; Ng, B.P.; Rahardja, S. Residual u-net for retinal vessel segmentation. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 1425–1429. [Google Scholar]
- Zhou, Z.; Siddiquee, M.M.R.; Tajbakhsh, N.; Liang, J. Unet++: Redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans. Med. Imaging 2019, 39, 1856–1867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, X.; Lian, S.; Luo, Z.; Li, S. Weighted res-unet for high-quality retina vessel segmentation. In Proceedings of the 2018 9th International Conference on Information Technology in Medicine and Education (ITME), Hangzhou, China, 19–21 October 2018; pp. 327–331. [Google Scholar]
- Ibtehaz, N.; Rahman, M.S. MultiResUNet: Rethinking the U-Net architecture for multimodal biomedical image segmentation. Neural Netw. 2020, 121, 74–87. [Google Scholar] [CrossRef] [PubMed]
- Seo, H.; Huang, C.; Bassenne, M.; Xiao, R.; Xing, L. Modified U-Net (mU-Net) with incorporation of object-dependent high level features for improved liver and liver-tumor segmentation in CT images. IEEE Trans. Med. Imaging 2019, 39, 1316–1325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, Y.; Chen, C.; Yuan, Y.; Tong, K.y. Selective feature aggregation network with area-boundary constraints for polyp segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Berlin/Heidelberg, Germany, 2019; pp. 302–310. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar]
- Rigamonti, R.; Sironi, A.; Lepetit, V.; Fua, P. Learning separable filters. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 2754–2761. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Springenberg, J.T.; Dosovitskiy, A.; Brox, T.; Riedmiller, M. Striving for simplicity: The all convolutional net. arXiv 2014, arXiv:1412.6806. [Google Scholar]
- Radford, A.; Metz, L.; Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv 2015, arXiv:1511.06434. [Google Scholar]
Dataset | Kvasir | CVC-ClinicDB | ||||||
---|---|---|---|---|---|---|---|---|
Models | DICE | mIoU | F2 | MAE | DICE | mIoU | F2 | MAE |
U-Net | 0.818 | 0.746 | 0.794 | 0.055 | 0.823 | 0.755 | 0.811 | 0.019 |
U-Net++ | 0.821 | 0.743 | 0.808 | 0.048 | 0.794 | 0.729 | 0.785 | 0.022 |
ResUNet-mod | 0.791 | n/a | n/a | n/a | 0.779 | n/a | n/a | n/a |
ResUNet++ | 0.813 | 0.793 | n/a | n/a | 0.796 | 0.796 | n/a | n/a |
SFA | 0.723 | 0.611 | 0.670 | 0.075 | 0.700 | 0.607 | 0.647 | 0.042 |
PraNet | 0.898 | 0.840 | 0.885 | 0.030 | 0.899 | 0.849 | 0.896 | 0.009 |
Mobile-PolypNet | 0.935 | 0.888 | 0.894 | 0.031 | 0.945 | 0.906 | 0.870 | 0.008 |
Dataset | CVC-300 | Colon-DB | ETIS | ||||||
---|---|---|---|---|---|---|---|---|---|
Models | DICE | mIoU | MAE | DICE | mIoU | MAE | DICE | mIoU | MAE |
U-Net | 0.710 | 0.627 | 0.022 | 0.512 | 0.044 | 0.061 | 0.398 | 0.335 | 0.036 |
U-Net++ | 0.707 | 0.624 | 0.018 | 0.483 | 0.410 | 0.064 | 0.401 | 0.344 | 0.035 |
SFA | 0.467 | 0.329 | 0.065 | 0.469 | 0.347 | 0.094 | 0.297 | 0.217 | 0.109 |
PraNet | 0.871 | 0.797 | 0.010 | 0.709 | 0.640 | 0.045 | 0.628 | 0.567 | 0.031 |
Mobile-PolypNet | 0.901 | 0.864 | 0.016 | 0.867 | 0.728 | 0.038 | 0.826 | 0.728 | 0.024 |
Models | Number of Parameters | Disk Space | FLOPs Count | DICE | mIoU | MAE |
---|---|---|---|---|---|---|
U-Net (MICCAI’15) | 7.85 M | 30 MB | 52.6 G | 0.818 | 0.746 | 0.055 |
U-Net++ (TMI’19) | 9.04 M | 34.6 MB | 112.6 G | 0.821 | 0.743 | 0.048 |
ResUNet-mod | 7.85 M | 30 MB | 52.6 G | 0.791 | n/a | n/a |
ResUNet++ | 9.04 M | 34.6 MB | 112.6 G | 0.813 | 0.793 | n/a |
SFA (MICCAI’19) | 25.59 M | 97.7 MB | 222.4 G | 0.723 | 0.611 | 0.075 |
PraNet (MICCAI’20) | 20.52 M | 78.4 MB | 81.9 G | 0.898 | 0.840 | 0.030 |
Mobile-PolypNet | 246 K | 1.72 MB | 4.9 G | 0.935 | 0.888 | 0.031 |
Mobile-PolypNet Model | Number of Trainable Parameters | Number of Non-Trainable Parameters | FLOPs Count | Number of Epochs to Converge | DICE | MAE |
---|---|---|---|---|---|---|
Mobile-PolypNet | 233,001 | 13,616 | 2.0 G | 145 | 0.935 | 0.031 |
Mobile-PolypNet + MaxPool | 223,913 | 13,616 | 1.8 G | 217 | 0.900 | 0.047 |
Mobile-PolypNet + ConvSkip | 250,601 | 13,616 | 2.2 G | 186 | 0.938 | 0.028 |
Mobile-PolypNet + PT | 234,618 | 2,495,257 | 1.5 G | 50 | 0.912 | 0.037 |
Mobile-PolypNet + Dropout | 233,001 | 13,616 | 2.0 G | 110 | 0.928 | 0.035 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karmakar, R.; Nooshabadi, S. Mobile-PolypNet: Lightweight Colon Polyp Segmentation Network for Low-Resource Settings. J. Imaging 2022, 8, 169. https://doi.org/10.3390/jimaging8060169
Karmakar R, Nooshabadi S. Mobile-PolypNet: Lightweight Colon Polyp Segmentation Network for Low-Resource Settings. Journal of Imaging. 2022; 8(6):169. https://doi.org/10.3390/jimaging8060169
Chicago/Turabian StyleKarmakar, Ranit, and Saeid Nooshabadi. 2022. "Mobile-PolypNet: Lightweight Colon Polyp Segmentation Network for Low-Resource Settings" Journal of Imaging 8, no. 6: 169. https://doi.org/10.3390/jimaging8060169
APA StyleKarmakar, R., & Nooshabadi, S. (2022). Mobile-PolypNet: Lightweight Colon Polyp Segmentation Network for Low-Resource Settings. Journal of Imaging, 8(6), 169. https://doi.org/10.3390/jimaging8060169