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Abstract: Hyperspectral images (HSI) provide ample spectral information of land cover. The hybrid
classification method works well for HSI; however, how to select the suitable similarity measures
as kernels with the appropriate weights of hybrid classification for HSI is still under investigation.
In this paper, a filter feature selection was designed to select the most representative features based
on similarity measures. Then, the weights of applicable similarity measures were computed based
on coefficients of variation (CVs) of similarity measures. Implementing the similarity measures
as the kernels with weights into the K-means algorithm, a new hybrid changing-weight classifica-
tion method with a filter feature selection (HCW-SSC) was developed. Standard spectral libraries,
operative modular imaging spectrometer (OMIS) airborne HSI, airborne visible/infrared imaging
spectrometer (AVIRIS) HSI, and Hyperion satellite HSI were selected to inspect the HCW-SSC method.
The results showed that the HCW-SSC method has the highest overall accuracy and kappa coefficient
(or F1 score) in all experiments (97.5% and 0.974 for standard spectral libraries, 93.21% and 0.9245
for OMIS, 79.24% and 0.8044 for AVIRIS, and 81.23% and 0.7234 for Hyperion) compared to the
classification methods (93.75% and 0.958 for standard spectral libraries, 88.27% and 0.8698 for OMIS,
73.12% and 0.7225 for AVIRIS, and 56.34% and 0.3623 for Hyperion) without feature selection and
the machine-learning method (68.27% and 0.6628 for AVIRIS, and 51.21% and 0.4255 for Hyperion).
The experimental results demonstrate that the new hybrid method performs more effectively than
the traditional hybrid method. This also shed a light on the importance of feature selection in
HSI classification.

Keywords: feature selection; classification; hyperspectral image; similarity measure; K-means

1. Introduction

Remote sensing is a very useful means to monitor and detect land cover/use in a
short time frame [1–5]. With the rapid technological development of spectroradiometer
and aviation, hyperspectral images (HSI) have been frequently employed to monitor and
detect land cover/use change, such as urban mapping, crop health monitoring, and mineral
detection [6–8]. The primary advantage of HSI is the continuum of the spectrum [9–11],
which derives continuous spectral curves in the frequency domain or integrated spectral
vectors in the reflectance domain.

Classification is a method to differentiate the objects of remote-sensing imagery into
different classes, which is an important step to provide a secondary product for mapping,
monitoring, and detecting land cover/use change [9,12–15]. Since HSIs usually have a high
spectral and also spatial resolution and the aim of classification of an HSI is to precisely
map, monitor, and detect valuable land cover/use change, the classification method of
HSIs is different from the classification method for the multispectral image. There are
three research topics for the classification method of HSIs: clustering based on graph
theory [16,17], clustering by using a machine-learning algorithm [18–20], and clustering
with the hybrid kernels [21–24] The clustering based on the graph theory heavily depends
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on auxiliary space to hold the cache, which needs the graphics processing unit (GPU)
and extra random-access memory (RAM). The clustering by using a machine-learning
algorithm usually has nonlinear time complexity. When the size of the HSI is large, the
performance of this method is slow. A hybrid classification method, which combines two
or more similarity measures as the kernels, has the balance of time complexity and space
complexity. For example, a dual-clustering-based method was developed to filter the band
on HSI [25]. Spectral angle cosine–Euclidean distance (SAC-ED) simply combines two
similarity measures [24] The advantage of the hybrid method is that it can analyze the
differences in both reflectance and frequency domains. The unknown parts of the hybrid
method are the criteria for selecting the kernels and the weights of selected kernels.

Feature selection is a method to find the minimally valuable features that are necessary
and sufficient for classification from the raw images [26]. Feature selection can partially
or entirely remove the irrelevant or redundant features from images [27]. The aims of
feature selection include training classification models faster, reducing the complexity of
classification models, improving the accuracy of classification models, and decreasing
overfitting. Therefore, feature selection is a good means to provide prior knowledge
of HSI and to select the useful similarity measure with the estimated weights for the
classification method.

The objective of this paper is to design a feature selection method that can choose the
most useful spectral similarity measures with appropriate weights for a hybrid classification
method (HCW-SSC) to achieve a better classification result. In Section 2.1, the datasets
used in this paper are introduced. In Section 2.2, the workflow of the feature selection
and the classification is displayed. In Section 2.3, the indicators used to evaluate the
classification results are shown. In Section 2.4, the implementation of this method by using
Python is presented. In Section 3, the classification result of this method is compared to
the classification methods with no feature selection and machine-learning method. In
Section 4, the importance of feature selection in the HCW-SSC classification method and
the time complexity of HCW-SSC are discussed. Moreover, the results of the HCW-SSC
method from this paper were compared to other papers. In Section 5, the conclusions and
contributions of this paper are exhibited. The contribution of this paper is that a hybrid
clustering method with a filter feature selection was developed for HSI. The filter feature
selection is designed to select the most representative features based on similarity measures
and calculate the suitable similarity measures as kernels with the appropriate weights of
hybrid classification for hyperspectral imaging.

2. Data and Method
2.1. Data

Four datasets were employed to test the HCW-SSC method, including standard spec-
tral libraries, operative modular imaging spectrometer (OMIS) (CSA, Shanghai, China)
airborne hyperspectral image, airborne visible/infrared imaging spectrometer (AVIRIS)
(JPL, Pasadena, CA, USA) hyperspectral image, and Hyperion satellite (JPL, Pasadena,
CA, USA) hyperspectral image. The details of the data used in this paper are shown
in Table 1. Four preprocessing steps were applied to the HSIs before using them in the
classification methods: radiometric calibration was applied; bad and noisy bands were
deleted; a minimum noise fraction rotation (MNF) was used to remove the smile/frown
effect [28], which causes a significant cross-track and nonlinear disturbances on spectral
curves and spectral vectors [29]; and principal component analysis (PCA) was employed to
reduce the high-correlated bands [30].
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Table 1. The details of data used in this paper.

Name Spatial Resolution Spectral Resolution Spectral Domain Location (Based on WGS 84)

Standard spectral
libraries NA (fieldwork) 0.2 nm or 1 nm 400–2500 nm Pasadena, CA, USA

OMIS 2.8 m 10 nm 400–12,500 nm Beijing, China (40◦10′57′′ N,
116◦26′36′′ E)

AVIRIS 20 m 10 nm 357–2576 nm NM, USA (32◦28′16.6′′ N,
106◦54′23.7′′ W)

Hyperion 30 m 10 nm 426–2356 nm Qianhai, China (37◦25′54′′ N,
100◦11′44′′ E)

2.1.1. Standard Spectral Libraries

Four standard spectral libraries (Table 2) were used to test the accuracy of the HCW-
SSC, including United States Geological Survey (USGS) vegetation and mineral libraries [31],
and Chris Elvidge green and dry vegetation libraries [32].

Table 2. The details of spectral libraries.

Spectral Library The Extent of Wavelength Spectral Resolution in the
Visible Region

Spectral Resolution in the
Infrared Region

USGS vegetation 0.4–2.5 µm 0.2 nm 0.5 nm
USGS mineral 0.4–2.5 µm 0.2 nm 0.5 nm

Chris Elvidge green 0.4–2.5 µm 1 nm 4 nm
Chris Elvidge dry 0.4–2.5 µm 1 nm 4 nm

In order to evaluate and validate the accuracy of this method, 80 groups of spectra
combinations were selected. For one group of test data, there are three spectral profiles.
Two of them belong to the same category and another belongs to a different category based
on the description from the spectral library. For example, two spectra of Sporobolus and
one spectrum of Andropogon virginicus were selected in one group based on the description
of USGS vegetation library. The spectra of Sporobolus are similar and different from
Andropogon virginicus.

2.1.2. OMIS Hyperspectral Image

OMIS is an airborne spectroradiometer, which is developed by the Shanghai Institute
of Technical Physics (SITP), Chinese Academy of Sciences (CAS), China [33]. OMIS uses a
whiskbroom system to cover the spectral region of visible, infrared, and thermal infrared
(400–12,500 nm). It has selectable 64 or 128 bands, 2.8 m spatial resolution, 10 nm spectral
resolution, and an IFOV (instantaneous field of view) of 0.003 rad. The OMIS data can be
found at http://www.scidb.cn/en (accessed on 8 June 2012).

The study area is on Xiaotangshan, Beijing, China. The hyperspectral imagery was
obtained on 11 April 2010 (Figure 1). Fifty-one bands between 455.7 nm to 1000.4 nm
were selected. The study area is a precision agriculture experimental field, which contains
different kinds of wheat [24]. The baseline map was made by field measurement on the
experimental field, which was recorded as a shapefile.

2.1.3. AVIRIS Hyperspectral Image

AVIRIS is an airborne spectroradiometer, which is developed by the Jet Propulsion
Laboratory (JPL), USA. It has 224 bands ranging from 400 to 2500 nm with a 10 nm
bandwidth. AVIRIS is a pushbroom instrument with an 11km-wide swath perpendicular
to the satellite motion. The spatial resolution is 20 m [34]. The AVIRIS data can be found at
https://aviris.jpl.nasa.gov/dataportal/ (accessed on 9 May 2015).

The study area is in Doña Ana County, NM, USA. The hyperspectral imagery was
obtained on 23 May 2011 (Figure 2). One hundred and seventy bands were selected. The
study area is in the northern part of San Ysidro city, which contains tree nuts, pepper, grains,

http://www.scidb.cn/en
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and corn [35,36]. The baseline map was made by the high-resolution classification result of
the National Agriculture Imagery Program (NAIP) on 25 July 2011. The data can be found
at https://nrcs.app.box.com/v/naip (accessed on 9 May 2015).
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2.1.4. Hyperion Satellite Hyperspectral Image

Hyperion is a satellite-based spectroradiometer on Earth Observing One (EO-1), which
was developed by the National Aeronautics and Space Administration (NASA), USA. It
has 242 bands ranging from 357 nm to 2576 nm with a 10 nm bandwidth. Hyperion is a
pushbroom instrument with a 7.5 km-wide swath perpendicular to the satellite motion.
The spatial resolution is 30 m [37]. The EO-1 data can be found at https://search.earthdata.
nasa.gov/search (accessed on 9 February 2015).
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The study area is in Qinghai Lake basin, Qinghai province, China. The hyperspectral
imagery was obtained on 4 September 2013 (Figure 3). One hundred and seventy-five
bands were selected. The study area is in the northern part of the Qinghai Lake basin,
which contains winter wheat and rape [38,39]. The baseline map was made by the high-
resolution classification result of the Rapideye image on 19 July 2013. The data can be
found at https://www.planet.com/products/planet-imagery/ (accessed on 9 May 2015).
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2.2. Method

The general workflow has four parts (Figure 4): to extract the features from pre-
processed HSI by using Euclidean distance (ED), spectral angle cosine (SAC), spectral
correlation coefficient (SCC), and spectral information divergence (SID) similarity mea-
sures; to find the minimum absolute Pearson correlation on any of the two (the lines in the
same color represents one pair, Figure 4) out of four features; to select the related similarity
measures of the features of the minimum absolute Pearson correlation and calculate the
coefficients of variation (CVs) of these two similarity measures; and to build a K-means
clustering method that contains these similarity measures as the kernels with their weights.

J. Imaging 2022, 8, x FOR PEER REVIEW 6 of 19 
 

 

 
Figure 3. The study area at Qinghai Lake basin, Qinghai Province, China. 

2.2. Method 
The general workflow has four parts (Figure 4): to extract the features from prepro-

cessed HSI by using Euclidean distance (ED), spectral angle cosine (SAC), spectral corre-
lation coefficient (SCC), and spectral information divergence (SID) similarity measures; to 
find the minimum absolute Pearson correlation on any of the two (the lines in the same 
color represents one pair, Figure 4) out of four features; to select the related similarity 
measures of the features of the minimum absolute Pearson correlation and calculate the 
coefficients of variation (CVs) of these two similarity measures; and to build a K-means 
clustering method that contains these similarity measures as the kernels with their 
weights. 

Similarity Measure 
Candidates

the Weights of 
Similarity Measure 

Candidates 

K-means 
clustering

Preprocessed 
HSI

ED

SAM

SID

COE

CV
min(|Pearson 
Correlation|) Classification 

result

Similarity Measure 
Pool

 
Figure 4. The evaluation scheme for the HCW-SSC method (Euclidean distance (ED), spectral angle 
cosine (SAC), spectral correlation coefficient (SCC), and spectral information divergence (SID)). 

2.2.1. Similarity Measure 
A similarity measure is a function to quantify the similarity between two objects [40]. 

The rule of similarity measure is “the higher similarity measure value is calculated, the 

Figure 4. The evaluation scheme for the HCW-SSC method (Euclidean distance (ED), spectral angle
cosine (SAC), spectral correlation coefficient (SCC), and spectral information divergence (SID)).

https://www.planet.com/products/planet-imagery/


J. Imaging 2022, 8, 180 6 of 18

2.2.1. Similarity Measure

A similarity measure is a function to quantify the similarity between two objects [40].
The rule of similarity measure is “the higher similarity measure value is calculated, the
smaller similarity these two objects are”. For example, as shown in Figure 5, D1 (the
similarity measure between object A1 and object A2) is smaller than D2 (the similarity
measure between object A2 and object B), which means object A1 and object A2 have
a high probability to belong to the same category but object B is different from them.
The commonly used similarity measures include distance measure (ED) to quantify the
difference of brightness between pixel Xn and pixel Xn+1 in the frequency domain [41];
consistency measure (SCC) to compare the angle of spectral vectors from pixel Xn and pixel
Xn+1 in the reflectance domain [42]; dependence measure to measure the difference of shape
of spectral curves (SAC) between pixel Xn and pixel Xn+1 in the frequency domain [43];
and information measure (SID) to compute the information gain from pixel Xn and pixel
Xn+1 in the reflectance domain [44].

J. Imaging 2022, 8, x FOR PEER REVIEW 7 of 19 
 

 

smaller similarity these two objects are”. For example, as shown in Figure 5, D1 (the sim-
ilarity measure between object A1 and object A2) is smaller than D2 (the similarity meas-
ure between object A2 and object B), which means object A1 and object A2 have a high 
probability to belong to the same category but object B is different from them. The com-
monly used similarity measures include distance measure (ED) to quantify the difference 
of brightness between pixel Xn and pixel Xn+1 in the frequency domain [41]; consistency 
measure (SCC) to compare the angle of spectral vectors from pixel Xn and pixel Xn+1 in the 
reflectance domain [42]; dependence measure to measure the difference of shape of spec-
tral curves (SAC) between pixel Xn and pixel Xn+1 in the frequency domain [43]; and infor-
mation measure (SID) to compute the information gain from pixel Xn and pixel Xn+1 in the 
reflectance domain [44]. 

 
Figure 5. A schematic diagram showing the rule of the similarity measure. 

The similarity measure is used in two places in this workflow: extracting features 
from HSI and using them as kernels in the K-means clustering. The difference between 
these two usages is that extracting feature uses the mean value (μ) of the whole HSI as the 
competitor but using them as kernels in the K-means clustering uses the mean value of jth 
centroids (μj) of the HSI as the competitor. 

2.2.2. Feature Selection 
A feature selection technique aims to remove irrelevant or redundant features and 

keep relevant features for a dataset [26]. There are three ways to carry out the feature 
selection: filter, wrapper, and embedded [45]. In this study, filter feature selection was 
used for the classification method. The Pearson correlation was used to check the correla-
tion between any of the two features, 𝜌 = ∑(ିത)(ିത)ඥ∑(ିത)మ ∑(ିത)మ, (1)

a and b represent the vector belonging to the different features. Then, the minimum 
of the absolute Pearson correlation (min (|(𝜌ଵ … 𝜌)|)) was found. It represents that the 
features have the most noncorrelation, which means they have the least duplicated infor-
mation. After finding the two similarity measures, a CV was used to compute the variation 
in each similarity measure, which is similar to ANOVA. If a feature has a large variation, 
that means this feature is easy to be recognized in this dataset. The equation to calculate 
CV is 𝐶𝑉ௌ =  ∑ ఙ(ௌ(𝑿,𝑿శభ))ఓ(ௌ(𝑿,𝑿శభ))തതതതതതതതതതതതതതതതതതത, (2)

CVS is the CV for a similarity measure. 𝜎(𝑆(𝑋, 𝑋ାଵ)) is the standard deviation of a 
similarity measure between two pixels (Xn and Xn+1). 𝜇(S(𝑋, 𝑋ାଵ)) is the mean of a sim-
ilarity measure between two pixels (Xn and Xn+1). While calculating CVs for different fea-
tures, the ratio between each CV was also computed because the CV is dimensionless. The 
ratio was used as the weight of each similarity measure in the K-means clustering method 
in the next section. The ratio is calculated by one restriction as follows ቊ భమ = ௪భ௪మ𝑤ଵ + 𝑤ଶ = 1, (3)

Object
A1

Object
A2

Object
B

Type I Type II

D1 D2

Figure 5. A schematic diagram showing the rule of the similarity measure.

The similarity measure is used in two places in this workflow: extracting features from
HSI and using them as kernels in the K-means clustering. The difference between these two
usages is that extracting feature uses the mean value (µ) of the whole HSI as the competitor
but using them as kernels in the K-means clustering uses the mean value of jth centroids
(µj) of the HSI as the competitor.

2.2.2. Feature Selection

A feature selection technique aims to remove irrelevant or redundant features and
keep relevant features for a dataset [26]. There are three ways to carry out the feature
selection: filter, wrapper, and embedded [45]. In this study, filter feature selection was used
for the classification method. The Pearson correlation was used to check the correlation
between any of the two features,

ρ =
∑(ai − a)(bi − b)√

∑(ai − a)2 ∑(bi − b)2
, (1)

a and b represent the vector belonging to the different features. Then, the minimum
of the absolute Pearson correlation (min(|(ρ1 . . . ρn)|)) was found. It represents that the
features have the most noncorrelation, which means they have the least duplicated infor-
mation. After finding the two similarity measures, a CV was used to compute the variation
in each similarity measure, which is similar to ANOVA. If a feature has a large variation,
that means this feature is easy to be recognized in this dataset. The equation to calculate
CV is

CVS = ∑m
0

σ(S(Xn, Xn+1))

µ(S(Xn, Xn+1))
, (2)
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CVS is the CV for a similarity measure. σ(S(Xn, Xn+1)) is the standard deviation of
a similarity measure between two pixels (Xn and Xn+1). µ(S(Xn, Xn+1)) is the mean of a
similarity measure between two pixels (Xn and Xn+1). While calculating CVs for different
features, the ratio between each CV was also computed because the CV is dimensionless.
The ratio was used as the weight of each similarity measure in the K-means clustering
method in the next section. The ratio is calculated by one restriction as follows{

CVS1
CVS2

= w1
w2

w1 + w2 = 1
, (3)

where CVS1 and CVS2 represent the CV of two similarity measures and w1 and w2 are the
weights of these two.

2.2.3. Hybrid Classification Method

A hybrid classification method is a classification method that contains two or more
kernels with different similarity measures [21,23]. In this paper, K-means was used as the
clustering algorithm for the hybrid classification method [46,47]. The algorithm is

1. Specify the number clusters as K;
2. Randomly select K centroids among samples;
3. Keep iterating the following equations until no change to the centroids.

For one sample xi, calculating the belonging cluster of this sample,

Ci =

{
argmin‖Xi − µj‖2

0, otherwise
, if j belongs to the cluster, (4)

j is the jth centroids and it is [0, K]. I is the ith sample and it is [0, the number of
samples]. xi represents a sample. ci represents a cluster that xi is the most likely belonging
to. µj represents the centroid of a cluster. arg min is an argument of the minimum, which
means a function attains its minimum.

For one cluster µj, recalculating the centroid of this cluster,

µj =
1∣∣ci
∣∣ ∑ xi, xi ∈ ci. (5)

For the HCW-SSC method, the calculation of the belonging cluster of one point
(Equation (4)) is changed to:

argmin ||w1 × similarity measure1 + w2 × similarity measure2||2 (6)

w1 =

(
CVS1

CVS1 + CVS2

)
/µS1, (7)

w2 =

(
CVS2

CVS1 + CVS2

)
/µS2, (8)

w1 and w2 were calculated from feature selection in the previous step. µS and µS+1
are the means of similarity measures to remove the dimension. For example, ED and SAC
were selected as the most useful features, the equation will be

argmin

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣w1

√
‖Xi −Xj‖2 + w2

1−
∑ XiXj√

∑ Xi
2
√

∑ Xj
2

∣∣∣∣∣∣
∣∣∣∣∣∣
2

. (9)
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2.3. Evaluation Indicators

For the test of standard spectral libraries, the overall accuracy and F1 score were used
as the evaluation indicator [48]. For the tests of HSIs, the overall accuracy and kappa
coefficient were used as the evaluation indicator [49,50]. In a confusion matrix, columns
represent a true number of pixels in each class, and rows represent the predicted number
of pixels in each class. The matrix is square and all numbers of the correct classified pixels
are along the upper-left to lower-right diagonal. The overall accuracy is the ratio of the
number of correctly classified pixels to the total number of pixels [2]. The equation is

OverallAccuracy =
the sum o f the numbers on the diagonal

Total
, (10)

Kappa is designed to compare the accuracy of a classification method to the accuracy
of a random selection [48]. Kappa is dimensionless and the value is from −1 to 1. The
equation is

Kappa =
totalAccuracy− randomAccuracy

1− randomAccuracy
, (11)

totalAccuracy =
TP + TN

Total
, (12)

randomAccuracy =
(TN + FP)× (TN + FN) + (FN + TP)× (FP + TP)

Total × Total
. (13)

TP is true positive, which is the number of pixels in a given class that were classified
correctly. TN is true negative, which is the number of pixels in a given class that were not
classified correctly. FP is false positive, which is the number of pixels that were predicted to
be in a given class but do not belong to that class. FN is false negative, which is the number
of pixels that were not predicted to be in a given class but do belong to that class.

F1 score is designed to check the balance of precision and recall. The equation is

F1 = 2× Precision× Recall
Precision + Recall

, (14)

Precision =
TP

TP + FP
, (15)

Recall =
TP

TP + FN
. (16)

2.4. Implementation

The number of clusters relies on the elbow method, which calculated distortion and
inertia per number of clusters. For testing of standard spectral libraries, the number of
clusters is 2; the maximum iteration of the K-means clustering method with ED, SAC,
ED-SAC, and HCW-SSC similarity measure is 2; and the minimum change threshold is 2%.
For testing of OMIS HSI, the number of clusters is 7; the maximum iteration of K-means
clustering method with SAC, SID, SID-SAC, and HCW-SSC similarity measure is 6; and
the minimum change threshold is 5%. For testing of AVIRIS HSI, the number of clusters
is 5; the maximum iteration of K-means clustering method of ED, SAC, ED-SAC, and
HCW-SSC similarity measure is 5; and the minimum change threshold is 5%. For testing of
Hyperion HSI, the number of clusters is 11; the maximum iteration of K-means clustering
method of SID, SCC, SID-SCC, and HCW-SSC similarity measure is 9; and the minimum
change threshold is 5%. For random forest (RF) classification in both AVIRIS and Hyperion
imagery, the number of trees in the forest is 100 and the maximum depth of a tree is 5 (the
RF classifier was directly applied on the HSI, which was not applied on feature selection).

The preprocess of HSI was made by ENVI 5.3 (L3 Harris Technologies, Boulder, CO,
USA). The codes of feature selection and hybrid classification were written in Python 3.8
with GDAL and scikit-learn packages [51,52].
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3. Results
3.1. Test Based on Standard Spectral Libraries

ED and SAC were selected as the kernels of K-means in the HCW-SSC method. The
single-kernel ED, single-kernel SAC, and the unweighted ED and SAC kernels were also
implemented in the K-means as the comparisons. The HCW-SSC method resulted in the
highest overall accuracy, followed by ED-SAC (Table 3). The single ED produced the lowest
overall accuracy.

Table 3. Overall accuracy of each similarity measure based on standard spectral libraries (Euclidean
distance (ED), spectral angle cosine (SAC), Euclidean distance–spectral angle cosine (ED-SAC), and a
new hybrid changing-weight classification method with a filter feature selection (HCW-SSC)).

Similarity Measure ED SAC ED-SAC HCW-SSC

Overall accuracy (%) 87.50 91.25 93.75 97.50
F1 score 0.888 0.943 0.958 0.974

3.2. Test Based on OMIS HSI

SAC and SID were selected as the kernels of K-means in the HCW-SSC method.
The single-kernel SAC, the single-kernel SID, and the unweighted SID-SAC kernels were
also implemented in the K-means as the comparisons. The overall accuracy and kappa
coefficient were calculated to assess the four types of spectral similarity measures (Table 4).
The HCW-SSC was the highest, whether in overall accuracy or kappa coefficient. The
overall accuracy was 93.21% and the kappa coefficient was 0.9245.

Table 4. Overall accuracy and kappa coefficient of each similarity measure based on OMIS HSI
(spectral angle cosine (SAC), spectral information divergence (SID), spectral information divergence–
spectral angle cosine (SID-SAC), and a new hybrid changing-weight classification method with a
filter feature selection (HCW-SSC)).

Similarity Measure SAC SID SID-SAC HCW-SSC

Overall accuracy (%) 62.69 75.69 88.27 93.21
Kappa coefficient 0.5989 0.7563 0.8698 0.9245

Compared to the classification maps of field measurement, the HCW-SSC method
produced the best classification result, followed by SID-SAC (Figure 6). Single SAC and
SID cannot effectively classify several intercropping or interbreeding wheat areas, because
the spectra of winter wheat in different colonies were similar. Therefore, only using a single
similarity measure of spectral curves and spectral vectors cannot distinguish the winter
wheat of different colonies. SID-SAC reflected a better classification effect as a whole, but
an “island problem” about classification exists in some centralized winter wheat areas. It
did not comply with the actual growing conditions of the wheat. The HCW-SSC method
has the less-misclassified pixels and the cleanest boundary.
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Figure 6. Classification maps of four different classification methods and the field measurement
(spectral angle cosine (SAC), spectral information divergence (SID), spectral information divergence–
spectral angle cosine (SID-SAC), and a new hybrid changing-weight classification method with a
filter feature selection (HCW-SSC)).

3.3. Test Based on AVIRIS HSI

ED and SAC were selected as the kernels of K-means in the HCW-SSC method. The
single kernel ED, the single kernel SAC, and the unweighted ED-SAC kernels were also
implemented in the K-means as the comparisons. The total classification accuracy and
kappa coefficient were calculated to assess the four types of spectral similarity measures
(Table 5). The HCW-SSC was the highest, whether in overall accuracy or kappa coefficient.
Overall accuracy was 79.24% and the kappa coefficient was 0.8044.

Table 5. Overall accuracy and kappa coefficient of each similarity measure based on AVIRIS HSI
(Euclidean distance (ED), spectral angle cosine (SAC), Euclidean distance–spectral angle cosine
(ED-SAC), random forest (RF), and a new hybrid changing-weight classification method with a filter
feature selection (HCW-SSC)).

Similarity Measure ED SAC ED-SAC RF HCW-SSC

Overall accuracy (%) 51.23 63.76 73.12 68.27 79.24
Kappa coefficient 0.4249 0.5323 0.7225 0.6628 0.8044

Compared to the baseline classification maps, the HCW-SSC method produced the best
classification result, followed by ED-SAC (Figure 7). Single ED or SAC has misclassified
some land covers such as pepper and pecan, especially on the mixing area of pepper and
pecan. RF has less misclassification since it is an ensemble model, which can select the best
solution among all solutions.
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Figure 7. Classification maps of five different classification methods and baseline map (Euclidean
distance (ED), spectral angle cosine (SAC), Euclidean distance–spectral angle cosine (ED-SAC),
random forest (RF), and a new hybrid changing-weight classification method with a filter feature
selection (HCW-SSC)).

3.4. Test Based on Hyperion HSI

SID and SCC were selected as the kernels of K-means in the HCW-SSC method. The
single-kernel SID, the single-kernel SCC, and the unweighted SID-SCC kernels were also
implemented in the K-means as the comparisons. The total classification accuracy and
kappa coefficient were calculated to assess the four types of spectral similarity measures
(Table 6). The HCW-SSC was the highest, whether in overall accuracy or kappa coefficient.
Overall accuracy was 81.23% and kappa coefficient was 0.7234.

Table 6. Overall accuracy and kappa coefficient of each similarity measure based on Hyperion HSI
(spectral information divergence (SID), spectral correlation coefficient (SCC), spectral information
divergence–spectral correlation coefficient (SID-SCC), random forest (RF), and a new hybrid changing-
weight classification method with a filter feature selection (HCW-SSC)).

Similarity Measure SID SCC SID-SCC RF HCW-SSC

Overall accuracy (%) 54.82 62.39 56.34 51.21 81.23
Kappa coefficient 0.3934 0.4363 0.3623 0.4255 0.7234
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Compared to the baseline classification maps, the HCW-SSC method produced the
best classification result, followed by SCC (Figure 8). Single SID or SCC has an obvious
“island problem”, which means the spectrum of the adjunct pixel surrounding the “island”
is similar and it is hard to use only one similarity measure to classify. RF and SID-SCC
almost cannot classify the rape from winter wheat and rice, which was caused by the
overfitting by the algorithm.
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Figure 8. Classification maps of five different classification methods and baseline map (spectral
information divergence (SID), spectral correlation coefficient (SCC), spectral information divergence–
spectral correlation coefficient (SID-SCC), random forest (RF), and a new hybrid changing-weight
classification method with a filter feature selection (HCW-SSC)).

4. Discussion

In this paper, the HCW-SSC method only chose features from four basic similarity
measures and the weight restriction is naive. In the future, more similarity measures can be
used to extract the features from HSI and then be implemented into K-means as the kernels.
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In this section, the importance of feature selection in HCW-SSC and the performance of
HCW-SSC are discussed.

4.1. The Importance of Feature Selection in HCW-SSC
4.1.1. Select the Suitable Similarity Measures as Kernels

HCW-SSC was compared to the unweighted hybrid kernel that is composed of selected
similarity measures from filter feature selection. However, the classification results of these
hybrid kernels that are composed of non-selected similarity measures were not shown. In
Table 7, these classification results are shown. The unweighted SID-SAC has the highest
accuracy among all unweighted hybrid kernels (ED-SCC, ED-SAC, SCC-SID, SAC-SCC, and
ED-SID). That means if two or more similarity measures were randomly implemented into
a kernel, the classification result of it may not become more accurate. Therefore, choosing
appropriate kernels by feature selection for a hybrid classification method is important.

Table 7. Overall accuracy and kappa coefficient of each hybrid kernel based on OMIS HSI (the gray
area has the results from Table 4, Euclidean distance–spectral correlation coefficient (ED-SCC), Eu-
clidean distance–spectral angle cosine (ED-SAC), spectral correlation coefficient–spectral information
divergence (SCC-SID), spectral angle cosine–spectral correlation coefficient (SAC-SCC), Euclidean
distance–spectral information divergence (ED-SID), spectral information divergence–spectral angle
cosine (SID-SAC), and a new hybrid changing-weight classification method with a filter feature
selection (HCW-SSC)). The numbers in bold mean the most important results.

Similarity Measure ED-SCC ED-SAC SCC-SID SAC-SCC ED-SID SID-SAC HCW-SSC

Overall accuracy (%) 63.22 58.82 61.39 69.24 66.17 88.27 93.21
Kappa coefficient 0.6215 0.4932 0.4342 0.7014 0.6138 0.8698 0.9245

4.1.2. Calculate the Weights for the Kernels

The unweighted hybrid method directly multiplies two similarity features. A different
similarity measure has a different unit, so it led to the unbalanced usage of the two kernels.
HCW-SSC took the weight from CV and used CV divided by mean to make the similarity
measure unitless. The weight helps balance the contribution of two similarity measures
for the K-means clustering. Therefore, the hybrid classification method (HCW-SSC) with a
feature selection technique generates a better result than the one without it. The weights
of the HCW-SSC method based on the standard spectral libraries are shown in Table 8.
The mean weight of Euclidean distance fluctuated at 0.31, whereas the mean weight of
spectral angle cosine fluctuated at 0.69. SAC contributes more than ED in this dataset for
the classification. However, in the ED-SAC method, the absolute value of ED is much larger
than SAC, so ED takes more contribution than SAC, which leads to more misclassifications.

Table 8. Weight of selected similarity measures based on standard spectral libraries (Euclidean
distance (ED) and spectral angle cosine (SAC)).

Weight
Types of the Standard Spectral Library

USGS
Vegetation

Chris Elvidge
Dry

Chris Elvidge
Green USGS Mineral

ED 0.312 0.329 0.343 0.246
SAC 0.688 0.671 0.657 0.754

4.2. The Time Complexity of HCW-SSC Method

Another advantage of this method is its performance. Based on Figure 9, HCW-SSC
has a similar time consumption to the traditional method (ED-SAC). Although HCW-SSC
has the filter feature selection, the filter feature selection takes linear time to visit all pixels;
therefore, the total time complexity is still linear (O(n), the operation of multiply and sum
has linear time complexity). However, the time complexity of a random forest is n-square
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(O(n2)) because each new tree in the forest will bring n more leaves. When the image
becomes larger, the time consumption of random forest becomes much larger.
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Figure 9. The time consumption of different kernels is based on different image sizes (Euclidean
distance (ED), spectral angle cosine (SAC), Euclidean distance–spectral angle cosine (ED-SAC), a new
hybrid changing-weight classification method with a filter feature selection (HCW-SSC), and random
forest (RF)).

4.3. Compared to Other Methods

There are three research topics for the classification method of HSIs: clustering based
on graph theory [16,17], clustering by using a machine-learning algorithm [18,19], and
clustering with the hybrid kernels [21–24]. The HCW-SSC represents the clustering with
the hybrid kernels. Compared to the non-filter-selection method, the new method performs
much better (Tables 3–6). In order to compare the method of clustering based on graph
theory and clustering by using a machine-learning algorithm, three papers were selected.
Although the HSI data in these three papers are different from this paper, they indirectly
show the accuracy of the HCW-SSC method.

In the paper by Meng et al., 2017 [16], they used a semisupervised kernel based on
graph theory with K-means clustering to classify three HSIs. The result is in Table 9. For
AVIRIS and airborne sensor HSIs, the HCW-SSC method has a similar overall accuracy
(79.24% and 93.21%) with this semisupervised kernel (80.37% and 99.17%). The semisuper-
vised kernel is based on the graph theory, which highly depends on the performance of the
GPU and the storage of RAM. However, the HCW-SSC method does not need GPU and
extra RAM.

Table 9. Overall accuracy of a semisupervised kernel with K-means on three different datasets.

Urban
(Hypercube)

Kennedy Space
Center (AVIRIS)

DC Mall
(Airborne Sensor)

Number of bands 210 176 210
Number of classes 4 13 7

Overall Accuracy

Semisupervised kernel 93.48% 80.37% 99.17%

In the paper by Li et al., 2019 [20], they used four machine-learning algorithms and
six convolutional neural network (CNN)-related deep-learning algorithms to classify three
HSIs. The result is in Table 10. For AVIRIS and airborne sensor HSIs, the HCW-SSC method
has a similar overall accuracy (79.24% and 93.21%) to the mean overall accuracy (78.79%
and 95.80%) of the ten methods in Li’s paper. The HCW-SSC has linear time complexity
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but the machine-learning method, especially the deep-learning method, has polynomial or
exponential time complexity.

Table 10. Overall accuracy of support vector machines (SVM), extended morphological profiles
(EMPs), joint spare representation (JSR), edge-preserving filtering (EPF), 3D-CNN, CNN with pixel–
pair features (CNN-PPF), Gabor-CNN, Siamese CNN (S-CNN), 3D-generative adversarial network
(3D-GAN), and the deep feature fusion network (DFFN) on three different datasets.

Salinas (AVIRIS) University of Pavia
(ROSIS-03 Sensor)

Houston (Airborne
Sensor)

Number of bands 204 115 144
Number of classes 16 9 15

Overall Accuracy

SVM 0.7513 0.8813 0.8985
EMP 0.7815 0.9504 0.9707
JSR 0.7528 0.9349 0.9307
EPF 0.7824 0.9688 0.9700

3D-CNN 0.8013 0.9502 0.9695
CNN-PPE 0.7991 0.969 0.9404

Gabor-CNN 0.8114 0.9662 0.9734
S-CNN 0.8052 0.9743 0.9510

3D-GAN 0.7616 0.9697 0.9793
DFFN 0.8328 0.9808 0.9967

In the paper by Yuan et al., 2016 [25], they used four machine-learning algorithms
to classify three HSIs. The result is in Table 11. For AVIRIS HSIs, the HCW-SSC method
has a similar overall accuracy (79.24%) to the mean overall accuracy (74.94%) of the four
methods in Yuan’s paper.

Table 11. Overall accuracy of support vector machines (SVM), k-nearest neighbors (kNN), classifica-
tion and regression trees (Cart), and naïve Bayes on three different datasets.

Indian Pines
(AVIRIS) Salinas (AVIRIS) University of Pavia

(ROSIS-03 Sensor)

Number of bands 224 224 103
Number of classes 9 16 9

Overall Accuracy

SVM 0.7875 0.8994 0.8992
kNN 0.6733 0.8502 0.7942
Cart 0.6301 0.8389 0.7406

Naïve Bayes 0.5292 0.7873 0.6776

5. Conclusions

This paper raised a hybrid classification method that can utilize the features chosen
from filter feature selection on hyperspectral images, which is called HCW-SSC. Standard
spectral libraries, OMIS airborne hyperspectral image, AVIRIS hyperspectral image, and
Hyperion satellite hyperspectral image were used to inspect the accuracy of the HCW-SSC
classification method. The results showed that the HCW-SSC method has the highest overall
accuracy and kappa coefficient (or F1 score) in all experiments (97.5% and 0.974 for standard
spectral libraries, 93.21% and 0.9245 for OMIS, 79.24% and 0.8044 for AVIRIS, and 81.23%
and 0.7234 for Hyperion). The HCW-SSC method exhibits a better spectral-recognition
capacity compared to the classification method with one type of spectral characteristic or
simply combines two spectral characteristics and a machine-learning method. Compared
to the other two research directions of HSI classification, HCW-SSC has a balance of time
complexity and space usage but obtains similar accuracy. This paper can be a useful
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reference for how feature selection optimizes the traditional hybrid classification methods
and improves the accuracy of classification methods for hyperspectral remote-sensing data.
This also sheds a light on the importance of feature selection in HSI classification. In the
future, this method may be applied to time-series remote-sensing data, which has the
time-series curves of land cover rather than spectral curves.
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