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Abstract: Emergency medicine in austere environments rely on ultrasound imaging as an essential
diagnostic tool. Without extensive training, identifying abnormalities such as shrapnel embedded
in tissue, is challenging. Medical professionals with appropriate expertise are limited in resource-
constrained environments. Incorporating artificial intelligence models to aid the interpretation can
reduce the skill gap, enabling identification of shrapnel, and its proximity to important anatomical
features for improved medical treatment. Here, we apply a deep learning object detection framework,
YOLOv3, for shrapnel detection in various sizes and locations with respect to a neurovascular bundle.
Ultrasound images were collected in a tissue phantom containing shrapnel, vein, artery, and nerve
features. The YOLOv3 framework, classifies the object types and identifies the location. In the testing
dataset, the model was successful at identifying each object class, with a mean Intersection over
Union and average precision of 0.73 and 0.94, respectively. Furthermore, a triage tool was developed
to quantify shrapnel distance from neurovascular features that could notify the end user when a
proximity threshold is surpassed, and, thus, may warrant evacuation or surgical intervention. Overall,
object detection models such as this will be vital to compensate for lack of expertise in ultrasound
interpretation, increasing its availability for emergency and military medicine.

Keywords: object detection; algorithm; automation; tissue phantom; shrapnel; foreign body; ultrasound;
artificial intelligence; deep learning; triage

1. Introduction

Emergency medicine commonly uses ultrasound (US) imaging for its portability and
real-time capabilities to diagnose various injury types. A typical example is the detection
of foreign bodies lodged in soft tissues following high-energy penetrating trauma such
as gunshots or blast explosions [1,2]. The retention of foreign bodies, if undetected and
unmonitored can lead to pain, infection, or vessel and nerve laceration. However, the
majority of cases can be handled conservatively [3,4], and, in the context of large-scale
warfare, remain in combat operation. It is not the presence of the shrapnel itself, as much
as its threat to nearby neurovascular structures that determine the severity and urgency of
the injury.

Identification of the presence of these foreign bodies, such as fragments of shrapnel,
requires advanced training for the end user. Clear image acquisition typically requires
knowledge of various injury types and anatomical landmarks, patient positioning, and hours
of image analysis experience to properly identify shrapnel within the field of view. Image
interpretation can therefore be complicated and localization of the shrapnel with respect to
other vital anatomical landmarks is essential to effectively and correctly triaging patients.

Machine learning algorithms to aid in US image interpretation have been developed
for a variety of applications, including detection of tumors or nodules [5,6] and classification
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of lung pathologies seen in COVID-19 [7]. Previous work from our lab has developed
a classifier model to successfully detect the presence of shrapnel in phantom tissue, as
well as swine tissue [8,9] and compare its performance to conventional models trained
on ImageNet datasets [10]. While the conventional classification models and our model
(ShrapML) produced high performance metrics, identification of the precise location of
shrapnel within the individual US images was still difficult.

Objection detection models can be deployed to detect instances of visual objects in
digital images (either static or video), classify that object, and produce a bounding box
around the object. These deep learning detection algorithms typically fall into one of
two classes: dual-stage (R-CNN, Faster R-CNN [11–13]) and single-stage (YOLO [14–17],
SSD [18,19]). While dual-stage methods typically achieve higher detection accuracy, these
models are slower and computationally intensive. The end goal for a shrapnel detection
model is eventual integration into an ultrasound instrument for real-time detection. For
this reason, a single-stage detector was identified (YOLOv3 [16]) and applied in this work.

Here, we developed an object detection model for the detection of shrapnel in phantom
tissue as well as with typical neurovascular landmarks (vein, artery, and nerve fiber). To
highlight the use case for object detection models in ultrasound imaging applications, we
develop a triage metric for quantifying shrapnel proximity to neurovascular landmarks as
identification of shrapnel and its proximity to neurovascular structures is a critical triage
tool for the eventual integration into real-time ultrasound hardware.

2. Materials and Methods
2.1. Fabrication of a Tissue Phantom Mold

A previously developed tissue phantom design was based on dimensions of a human
adult male thigh and modified for these experiments [9]. The mold was composed of three
distinct compartments: bone, muscle layer, and a subcutaneous fat layer. The bone had
a diameter of 26 mm, the muscle layer was 94 mm, and the fat layer was 120 mm. The
3D models were designed using computer aided design software (Autodesk Inventor, San
Rafael, CA, USA) and fabricated using a fused deposition modeling 3D printer (Raise3D,
Irvine, CA, USA) with polylactic acid (Raise3D, Irvine, CA, USA) filament. The muscle
layer mold was two pieces which snapped together and contained a recess for the nylon
bone to slot in the center. The mold was fitted with a lid and held closed with vise-grips
and sealing tape (McMaster-Carr, Elmhurst, IL, USA). Similarly, the outer fat layer was
designed with a recess for the bone and components that snap together.

2.2. Construction of Gelatin Tissue Phantom

The inner layer (muscle) was 10% (w/v) gelatin (Fisher Scientific, Fair Lawn, NJ,
USA) dissolved in 2:1 solution of water and evaporated milk (v/v) (Costco, Seattle, WA,
USA) and 0.25% (w/v) flour (H-E-B, San Antonio, TX, USA). The water and milk solution
were heated to approximately 45 ◦C, to increase gelatin solubility. To mimic heterogenous
properties seen in ultrasound views of muscle, agarose (Fisher Scientific, Fair Lawn, NJ,
USA) components were also incorporated. Two subsets of 2% agarose solutions were
produced, one with 0.80% flour and the second with 0.10% flour, to include both brighter
and darker echogenic components to the muscle layer, respectively.

The tissue phantom was created sequentially so the inner layer (muscle) solidified first
around the bone and was removed from the mold and placed within the outer layer (fat)
mold. This allowed the outer layer to solidify around the inner layer and bone. The outer
layer (fat) was the same gelatin solution with 0.10% (w/v) flour. Solidification occurred at
4 ◦C for approximately 1 h for each layer. Afterwards, the completed tissue phantom was
removed from the mold and used for shrapnel insertion and ultrasound imaging.

2.3. Incorporation of Vascular Vessels and Nerves

A modified phantom design was also used for this study which incorporated vein,
artery, and nerve fiber features within the tissue phantom. This was performed after the
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base phantom model was constructed. First, the base phantom was divided into quarters
and depending on bone positioning, the individual quarters were labeled as a right or left
leg. One of the quarters that had vein, artery, and nerve simulating a right leg, contained
shallow vessels near the interface between the fat and muscle layers, while the second
quarter contained slightly deeper vessels fully in the muscle layer. The same methodology
applied to the quarters that simulated the left leg. Then, the artery channels were created
using a circular 8 mm biopsy punch (McMaster-Carr, Elmhurst, IL, USA) and oval-shaped
biopsy punch with a minor axis of 6.5 mm for the vein. The oval-shaped biopsy punch was
manually augmented from an 8 mm circular biopsy punch (McMaster-Carr, Elmhurst, IL,
USA) by mechanical compression. Next, the nerve cavity was created lateral to the artery
with the same biopsy punch as the vein and was filled with 15% gelatin made in 2:1 (v/v)
water to evaporated milk ratio solution with 0.5% (w/v) flour. The ultrasound probe was
aligned transversely for views of both right leg and left leg orientation. When the nerves
were solidified, the phantom was considered ready for use with shrapnel insertion and
ultrasound imaging.

2.4. Ultrasound Imaging with Shrapnel

All imaging was performed under water with the HF50 probe (Fujifilm, Bothell, WA,
USA) from the Sonosite Edge ultrasound system (Fujifilm, Bothell, WA, USA). For both
phantom designs, baseline images were obtained as frames from 15 s ultrasound video clips.
For shrapnel fragments, we used a 2.5 mm diameter brass rod (McMaster Carr, Elmhurst,
IL, USA) cut into fragments of varying length ranging from 2 mm to 10 mm. Shrapnel was
inserted using surgical forceps at varying depths. For the modified, neurovascular phantom
shrapnel was placed at similar depths but care was taken to avoid the shrapnel hitting the
vein, artery, or nerve. Ultrasound imaging for shrapnel positive phantoms followed the
same process as was performed for baseline imaging. Only out of plane images were used
for the modified phantom so that neurovascular features could be identified. Both in plane
and out of plane images were used for the base phantoms.

2.5. Image Processing and Bounding Boxes

Frames of all video clips were extracted using an implementation of FFmpeg with
a Ruby script, yielding 90 individual frames per video. Duplicate frames were removed,
and all images were processed with MATLAB’s image processing toolbox (MathWorks,
Natick, MA, USA) in which a function was written to crop images to remove ultrasound
settings from view and then resize them to 512 × 512 × 3. MATLAB also was used for the
manual addition of bounding boxes to all images for all the objects. Individual rectangular
boxes were drawn enclosing the smallest area around the shrapnel, vein, artery, or nerve
(n = 6734 images base phantom; n = 10,777 images modified neurovascular phantom).

2.6. ShrapOD Architecture

The object detection model, ShrapOD, used a SqueezeNet neural network back-
bone [20] with modifications to include YOLOv3 object detection heads [16], as shown in
Figure 1. This network architecture was built based on MATLAB-provided object detection
code [21]. The feature extraction network in SqueezeNet was modified to use an image
input layer of (512 × 512 × 3) followed by a convolution block containing a convolution
layer with ReLU activation and max pooling layer. This is followed by 4 Fire blocks prior
to the network splitting to integrate the YOLOv3 object detection heads. Fire modules,
per the SqueezeNet architecture [20], comprised a single convolution squeeze layer (1 × 1,
ReLU activator) followed by expanding layers consisting of a mixture of (1 × 1) and
(3 × 3) convolutional layers in parallel to increase the depth and width for higher detection
accuracy. These parallel layers are concatenated prior to the next layer in the network
architecture to reduce the number of model parameters. Five additional Fire blocks are
used on the YOLOv3 class output layer pathway, followed by a convolutional layer with
batch normalization and ReLU activation (left pathway, Figure 1).



J. Imaging 2022, 8, 252 4 of 14

J. Imaging 2022, 8, x FOR PEER REVIEW 4 of 15 
 

 

These parallel layers are concatenated prior to the next layer in the network architecture 
to reduce the number of model parameters. Five additional Fire blocks are used on the 
YOLOv3 class output layer pathway, followed by a convolutional layer with batch nor-
malization and ReLU activation (left pathway, Figure 1). 

 
Figure 1. Basic overview of ShrapOD model network architecture. Diagram for the object detection 
algorithm using SqueezeNet [20] as the classification backbone, with added YOLOv3 outputs [16] 
to generate bounding boxes and class predictions is shown. In the diagram, individual layers are 
shown as well as “blocks” that consist of multiple layers. The convolutional block (teal) has a con-
volution layer, ReLU activation layer, and a max pooling layer. The Fire blocks (purple—that repeat 
two or five times as indicated) begin with a convolution layer with ReLU activation and then split 
into parallel chains with varying convolution filter sizes (1 × 1 and 3 × 3) with ReLU activation. As 
depicted in the first occurrence, then the parallel chains come back together using a depth concate-
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Figure 1. Basic overview of ShrapOD model network architecture. Diagram for the object detection
algorithm using SqueezeNet [20] as the classification backbone, with added YOLOv3 outputs [16] to
generate bounding boxes and class predictions is shown. In the diagram, individual layers are shown
as well as “blocks” that consist of multiple layers. The convolutional block (teal) has a convolution
layer, ReLU activation layer, and a max pooling layer. The Fire blocks (purple—that repeat two or five
times as indicated) begin with a convolution layer with ReLU activation and then split into parallel
chains with varying convolution filter sizes (1 × 1 and 3 × 3) with ReLU activation. As depicted in
the first occurrence, then the parallel chains come back together using a depth concatenation layer.
The feature convolutional block and both backend convolutional blocks are identical in layer content,
beginning with a convolutional layer, followed by a batch normalization and ending with a ReLU
activator. Both output layers, for class and bounding box are also convolutional layers.

An additional output layer was used for bounding box predictions in which the net-
work was fused after the Fire block 9 concatenation step with Fire block 8 with an additional
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convolutional block for feature resizing. The model contained a final concatenation layer
and convolution block to align the predicted bounding box coordinates to the output image
(right pathway, Figure 1). The YOLOv3 network also used optimized anchor boxes to help
the network predict boxes more accurately [21].

2.7. ShrapOD Training Overview

Model training was performed using MATLAB R2022b with the deep-learning and
machine-learning toolboxes for the base phantom and then repeated for the modified,
neurovascular phantom. For the base phantom use case, only images containing shrapnel
were used. For the neurovascular phantom, images were taken from datasets with and
without shrapnel. Images were cropped to remove ultrasound file information, sized
to 512 × 512 × 3 and then datasets were split into 75% training, 10% validation and
15% testing quantities. Augmentation of the training datasets included random X/Y axis
reflection, +/− 20% scaling, and +/− 360◦ rotation (Figure 2). These augmentation steps
were written into a function that also applied it to the bounding box data. Validation
and testing set images were not augmented. Training was performed using a stochastic
gradient descent with momentum (SGDM) solver, 23 anchors, 125 epochs, L2 regularization
of 0.0005, with a penalty threshold of less than 0.5 Intersection over Union (IoU), validation
frequency of 79 iterations, and an image batch size of 16 images. The learning rate started
at 0.001 and, after a warmup period of 1000 iterations, began a scheduled slowdown

by learning rate ×
(

iteration
warmup period

)4
. Training parameters were adapted from MATLAB

object detection example code [21]. All training was performed using the CPU on an HP
workstation (Hewlett-Packard, Palo Alto, CA, USA) running Windows 10 Pro (Microsoft,
Redmond, WA, USA) and an Intel Xeon W-2123 (3.6 GHz, 4 core, San Clara, CA, USA)
processor with 64 GB RAM.
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Figure 2. Augmented Shrapnel Images and Corresponding Bounding Boxes. (A–D) Single repre-
sentative images having undergone random image augmentation four times. Image augmentation
included X and Y flips or reflection, rotation, and zoom or scaling. All image augmentation performed
to a single image was applied to the corresponding bounding box(es) as well as shown.
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2.8. Evaluating ShrapOD Performance

After ShrapOD model training, blind test (15%) images were used to measure model
performance. For the ShrapOD model trained on the original phantom image sets (shrapnel
only object class), 1010 images were used for testing while 1617 images were used in the
multi-object trained model from the neurovascular phantom image sets. Predictions were
compared to ground truth images to generate precision-recall curves using the evaluat-
eDetectionPrecision function in MATLAB. The area under the precision-recall curve was
found for determining average precision (AP) [22,23]. For intersection over union (IoU),
a bboxoverlay function (MATLAB) was used for all test images. While calculating IoU
scores, true positive (TP) counts were identified as having a prediction and ground truth
with an IoU score greater than or equal to 0.50. False positive (FP) and false negative (FN)
counts were based on this same IoU criteria of 0.50 for when no prediction exceeded this
threshold and a ground truth was present or there was a prediction without a ground truth,
respectively. Additionally, false positives were counted when multiple predictions for a
single ground truth were detected. Precision, recall, and F1 scores were then calculated
with this IoU gating of 0.50. Mean IoU (mIoU) scores were calculated across each object
class, and, for the multi-object model, mean AP (mAP) and an average mIoU across all
object classes was determined.

2.9. Triage Metric Measurement

For a medical use-case for object detection prediction, a triage metric score was de-
veloped that tracked the smallest distance between shrapnel and vein, artery, or nerve
predictions (Figure 3). After test predictions were acquired, images were filtered to select
only predictions where shrapnel, vein, artery, and nerve predictions were present. For
images with multiple predictions for a category, only the highest confidence prediction
window was used. Midpoints for each point were calculated by adding 1/2 the width
and height to the X1 and Y1 coordinate, respectively (Figure 3A). Next, distances between
shrapnel and vein, artery, and nerve were calculated using Equation (1).

distance =
√
(x2 − x1 )

2 + (y2 − y1 )
2 (1)
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Figure 3. Diagram of triage metric calculation. (A) Measurements for the triage metric were based on
object detection predictions for images with shrapnel, vein, artery, and nerve predictions. Prediction
coordinates were recorded as (X1, Y1, Width, Height) where X1 and Y1 refer to the top left corner of
the prediction window as shown. Midpoints of each prediction window, indicated by colored dots for
each bounding box, were determined by adding 1/2 the width to the X1 coordinate and adding 1/2 the
height to the Y1 coordinate. (B) Distance formula was used to calculate the distance (in pixels) between
the shrapnel prediction and vein, artery, and nerve features. The minimum distance indicates which
neurovascular feature is closest to shrapnel, which is the value selected as the triage metric; for this
example, the shrapnel-nerve distance would be the minimal distance (as indicated by *, in pixel units).
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In Equation (1), x2 and y2 refer to midpoint coordinates for the shrapnel prediction
window, and x1 and y1 refer to midpoint coordinates for the vein, artery, or nerve prediction
windows (Figure 3B). Three distances were calculated, in pixel units, and the minimum
distance was selected as the measurement for the triage metric for each ultrasound image.
Results were compiled across filtered test images for further analysis.

3. Results
3.1. ShrapOD Performance for Tracking Shrapnel in Ultrasound Images

Using YOLOv3, training was performed on 75% of the total image set for 125 epochs.
After training was completed, ShrapOD was evaluated on test image holdouts to determine
its performance. By overlaying predictions and ground truth masks on US images, a quali-
tative inspection of images showed predictions were similar in location and size to ground
truth images (Figure 4A). Predictions were not identical, with the box size sometimes
being too large (Ultrasound Image 1, Figure 4A) or finding additional shrapnel objects
(Ultrasound Image 3, Figure 4A). Overall results for these predictions were determined by
intersection over union (IoU) scores to quantify the overlap in the predictions and ground
truths. IoU scores ranged from 0 to 1 but was most prevalent in the 0.6 to 0.8 score range,
with a mean IoU (mIOU) score of 0.65 (Figure 4B). A 0 IoU score indicated an image where
no prediction was made (Percent False Negative (FN) = 6.8%) or a prediction was made
that had no overlap with the ground truth (False Positive (FP) = 5.9% images). In addition,
a precision-recall curve was generated for the model, and precision remained high for all
confidence thresholds, resulting in an overall average precision (AP) of 0.88 (Figure 4C).
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Figure 4. Results for Object Detection in Shrapnel-only Phantom Model. (A) Prediction (yellow) and
ground truth (light yellow) shrapnel box overlays for four representative ultrasound images in the
test data set. IoU scores for each image are shown on each image. (B) Probability distribution of
IoU scores for test shrapnel data sets. Data is distributed into 10 bins with a mean IoU score of 0.65.
(C) Precision-recall curve for shrapnel identification by the object detection model. Average precision
was 0.88 for this model. Note, the y-axis is zoomed in to 0.93 to 1.0 to better highlight the changes in
precision.
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3.2. Results of Multi-Class ShrapOD Model for Shrapnel, Vein, Artery, and Nerve Identification

Next, the same network architecture was trained for use with multi-class object detec-
tion for shrapnel, vein, artery, and nerve using approximately 8000 images with ground
truth masks identified. After 125 epochs, the model was evaluated with approximately
1600 test images held-out from the training. Ultrasound images with prediction and ground
truth overlays for the multi-class object detection model were first evaluated as a qualita-
tive “sanity” check on model performance (Figure 5). Only approximately 60% of images
had shrapnel present, and the model successfully recognized this in most predictions
(Ultrasound Image 1, Figure 5). Shrapnel varied in orientation and proximity to the other
neurovascular features to add additional training complexity, sometimes easily identifiable
away from other features (Ultrasound Image 2–3, Figure 5) and other times being much
closer in proximity (Ultrasound Image 4–6, Figure 5).
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Figure 5. Representative predictions by ShrapOD for modified neurovascular phantoms with and
without shrapnel present. Ultrasound Image 1 does not contain shrapnel while the rest have shrapnel
present at different distances to the neurovascular features. Shrapnel (yellow), vein (blue), artery
(red), and nerve (green) predictions are shown with ground truth overlays shown as fainter, lighter
boxes in the same color scheme.

Intersection over union and average precision were calculated for each feature category
separately. IoU scores were first calculated across all test images (Figure 6) where a
prediction or ground truth mask were present. Shrapnel predictions had a mIoU of 0.68
(FP = 7%, FN = 0%) with an AP of 0.86 (Figure 6A). Next, for the vein object-class, a mIOU
of 0.75 (FP = 2%, FN = 2%) was achieved with an AP of 0.96 (Figure 6B). Artery features
were more pronounced than other features in the model and as a result had a strong mIoU
score of 0.78 (%FP = 1%, %FN = 0%) with an average precision of 0.99 (Figure 6C). Lastly,
for the nerve, mIoU was 0.71 (FP = 2%, FN = 5%) with an AP of 0.96 (Figure 6D). This
performance was stronger than anticipated as nerve bundles were harder to manually
identify in images compared to the vein and artery. Across all classes, the average mIoU
was 0.73 and mean AP was 0.94. A summary of the % TP, %FP, %FN, mIoU, precision,
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recall, F1 score, and average precision are captured in Table 1 for shrapnel, vein, artery and
nerve and then an average of all object types.
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distribution plots for IoU across each test data set are shown for (A) shrapnel, (B) vein, (C) artery,
and (D) nerve. Mean IoU and average precision scores are shown for each prediction category.

Table 1. Summary statistics for the multi-object ShrapOD. Percent true positive (TP), false positive
(FP), false negative (FN), mIoU, precision, recall, F1 scores, and average precision (AP) for all object
types (shrapnel, vein, artery, nerve) and then averaged across all object types. TP, FP, and FN were
calculated using a minimum IoU score 0.5 for accurate predictions.

Shrapnel Vein Artery Nerve Average

Percent True Positive 93% 96% 99% 94% 95%

Percent False Positive 7% 2% 1% 2% 3%

Percent False Negative 0% 2% 0% 5% 2%

mIoU 0.681 0.753 0.784 0.709 0.732

Precision 0.928 0.978 0.992 0.983 0.970

Recall 1.000 0.979 0.999 0.952 0.982

F1 0.963 0.979 0.995 0.967 0.976

AP 0.858 0.955 0.991 0.957 0.940

3.3. Triage Metric Evaluation

Lastly, we demonstrate a use case for the multi-class ShrapOD model in ultrasound
images by defining a triage metric for assisting during emergency or military medicine. This
metric was defined as the minimal distance between the center of the shrapnel prediction
and the three neurovascular features—vein, artery, or nerve. Representative images and
approximate distance overlays are shown in Figure 7A–C. Distances—in pixel units—were
calculated between shrapnel and each neurovascular feature. For simplicity, this initial use
case for the triage metric, only test images where all four prediction categories existed were
used and, for images where multiple single class predictions were made, only the higher
confidence prediction was used. Mean distances were calculated for all test images that met
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these criteria (n = 758 images) and a probability distribution plot was generated (Figure 7D).
The mean minimal distance was 77.2 pixels, and the vein, artery, and nerve frequency of
being closest to shrapnel was 17%, 48%, and 29%, respectively (Table 2). The maximum
distance to each feature was consistent at ~300 pixels while the closest minimal distance
was for the nerve feature at an approximate 11-pixel distance to the shrapnel (Table 2). For
highlighting how this measurement could be used in a medical triage decision, a gating
window was arbitrarily selected based on the average ground truth window size for the
artery—which was ~75 pixels. If all predictions where the triage metric distance was
smaller than this threshold were identified as needing urgent medical attention, for this
test image set, 46% of images would be flagged. However, the size of the window can be
increased to 1.25× artery size to result in 80% of images or reduced to 0.75× to result in
only 12% of images meeting the triage criteria (Table 2). Based on medical expertise and
with adding real-life units, this metric can be a means of identifying the specific cases in
which the shrapnel is lodged too close to key anatomical features, thus warranting further
investigations and potentially surgical intervention. A summary of the mean distances
from vein, artery, and nerve to shrapnel as well as other statistics are shown in Table 2.
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Figure 7. Results for the triage metric determined from the multi-class ShrapOD. (A–C) Distance
measurements from center point of shrapnel to each neurovascular feature for three different ultra-
sound images of varying distances to shrapnel. Only prediction masks are shown (shrapnel = yellow,
vein = blue, artery = red, and nerve = green) and distances, in pixels, from shrapnel to the vein (blue),
artery (red), and nerve (green) are shown. (D) Probability distribution of minimal distances for each
test image containing predictions for all four features. The mean minimal distance across all test
images is shown.
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Table 2. Summary table of statistics for triage metric. Distances to each of three features (in pixels),
and percentage of images that would be flagged for five different gating windows, based on an
average artery size of ~75 pixels in the images.

Vein Artery Nerve

Mean Distance to Shrapnel 131.1 91.3 120.5

Frequency Closest to Shrapnel 17% 48% 29%

Maximum Distance to Shrapnel 361.4 324.9 297.8

Minimum Distance to Shrapnel 34.0 25.4 11.0

Gating for Triage Metric, relative to ~75 pixel
Average Artery Diameter

0.50× 0.75× 1.00× 1.25× 1.50×

Triage Threshold 1% 12% 46% 80% 89%

4. Discussion

Ultrasound imaging is frequently used during emergency and battlefield medicine,
thanks to its high portability and immediate nature. Interpreting images and using that
information to prioritize care in resource limited situations remains a challenge that AI
can potentially mitigate. Simple image classification algorithms have been developed to
provide binary decisions from an ultrasound image, but that does not provide enough
granularity in some use cases where the proximity of the tumor or shrapnel to other
anatomical structures may be critical for decision making in the next steps for medical care.
Here, we have highlighted how an object detection framework for shrapnel and multi-class
tracking in ultrasound imaging can be used for assisting in emergency or military medicine
triage, potentially avoiding unnecessary evacuation of the majority of shrapnel casualties
from the battlefield.

First, we show that the YOLO object detection framework was able to be successfully
trained for tracking only shrapnel in a base phantom design that we have previously
used for developing image classification algorithms [8,10]. The tissue phantom allows
for collection of shrapnel images at different locations, sizes, orientations across multiple
phantoms created specifically for this purpose, introducing subject variability in the data
set [9]. This is an ideal starting spot for deep learning model development and is possible
for use with real-time deployment of the object detection model. Overall, the ShrapOD
model was successful for detecting the approximate shrapnel location with a true positive
rate of 87% and a mIOU of 0.65. With larger, more diverse image sets, these scores can likely
be improved. The performance error is split evenly between false positives (6%) and false
negatives (7%), suggesting it was missing shrapnel in the phantom as frequently as it was
misidentifying complexities in the tissue phantom as shrapnel. However, more training
and improvement on the object detection model was not performed in this work as this
was an initial proof-of-concept use case.

Instead, we added physiological features to the tissue phantom by introducing a
vein, artery, and nerve fiber bundle to mimic key neurovascular complexities. The original
phantom mimics fat, muscle, and bone tissue in a thigh, so these neurovascular components
are logical additions to more closely mimic anatomical composition of human tissue.
Furthermore, this anatomical complexity provided a challenging, multi-class scenario
for the object detection model. Training on these image sets resulted in stronger model
performance for all four classes, with a mAP of 0.94. mIoU for the vein, artery, and nerve
surpassed 0.7 while shrapnel was similar to the single class model at 0.68. Shrapnel is
intentionally more irregularly present in the phantom due to different imaging angles
compared to the other features, which likely contribute to the lower mIoU score. Similarly,
like in real tissue, the nerve fiber bundle is more similar than the artery and vein in terms
of echogenic properties to the tissue bulk, and, as anticipated has a lower mIoU score (0.71)
when compared to the vein (0.75) and artery (0.78). While ShrapOD was successful at



J. Imaging 2022, 8, 252 12 of 14

tracking multiple classes, this likely will require additional transfer learning to successfully
predict in animal or human image cases. Supplementing phantom image sets with animal
images was previously successful for training shrapnel classification models. However, the
neurovascular features in the phantom are more spaced out than often found in real tissue,
due to limitations in phantom design which may impact transfer-learning for this model.

For medical applications, especially in emergency situations, simply identifying
where shrapnel is in tissue still leaves a subjective decision for a medical provider to
make—remove the shrapnel or not. As this decision often relies on proximity to key vital
structures—mostly neurovascular structures—the triage metric introduced in this work
provides a practical use case for object detection. This was defined as the minimal distance
from the center shrapnel prediction to the center of neurovascular features. This operation
is simple enough that it could be paired with real time object detection model deployment
to allow for proximities to key features to be automatically tracked. Further, while not
evaluated in the current study, by calibrating this distance to a reference length, it can
allow for real-life units of measurement instead of arbitrary pixel values. This metric can
be further automated by setting an approximate distance for gating the distances against
which alerts the end user. However, this would require additional clinical knowledge to
determine a “critical threshold” of shrapnel distance from key structures that indicates an
increased risk and may warrant surgical intervention.

One limitation for this triage use case is it solely relies on accurate tracking of up to
four objects by the model—incorrect prediction of any prediction will result in incorrect
triage distances, so fully automating will require a more robust image training set and
rules for identifying poor prediction by the ShrapOD model. Another limitation is the
triage metric is based on 2D ultrasound images, so objects may be out of plane from key
neurovascular features not currently being tracked without 3D ultrasound information.
In previous studies, 3D ultrasound volumes have been used for deep learning algorithms
to more accurately track objects [24,25]. However, this metric is not meant to replace
additional medical evaluation, but highlight at risk subjects, so the 2D tracking is likely
sufficient. Lastly, all predictions are based on midpoints currently, which for larger vein
diameters or more irregularly shaped shrapnel may misrepresent feature proximity. This
can be improved by making measurements from each corner of the bounding boxes, or an
image segmentation architectures may prove to be more applicable for improving on this
metric [26].

Next steps for this work will take four paths. First, customization to the hardware side
to allow object detection and triage measurement to be performed in real-time. Second,
the ShrapOD model must be transfer learned for use with ex vivo or live animal tissue for
further evaluation and for inclusion of pulsatile flow in the artery as it may impact object
detection. Further, additional tissue and object tracking, such as proximity to joints, will
be critical as this work is optimized for use in humans and translated into swine. Third,
ultrasound image interpretation is only one half of the challenge when using ultrasound in
military medicine; the other half of the challenge is proper image acquisition by non-expert
users. This work will investigate further AI and robotic platforms to further automate the
ultrasound process to make this technology more suitable for frontline application where
resources and personnel are limited. Lastly, object detection algorithms can be valuable
for other ultrasound applications so work will be conducted to develop AI models for
other emergency medicine applications, such as eFAST (extended focused assessment with
sonography in trauma) exams [27,28] for identifying pneumothorax [29], hemothorax, and
abdominal hemorrhage.

5. Conclusions

In conclusion, artificial intelligence has the potential to revolutionize ultrasound
imaging for emergency and military medicine by lowering the expertise level required
for proper image acquisition and interpretation. Here, we demonstrated a use case for
conventional object detection deep learning algorithms for identifying shrapnel as well
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as vital vein, artery, and nerve features in a tissue phantom. This enables a practical
application of automating the measurement of shrapnel proximity to vital features in
tissue that may be used for triaging whether evacuation or surgical intervention is needed.
Further expansion of this technology can be used for other high priority emergency, military
medical applications to make ultrasound a more practical triage, diagnostic tool even when
skilled radiographic personnel are not present.
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