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Abstract: It is important for food recognition to separate each ingredient within a food image at the
pixel level. Most existing research has trained a segmentation network on datasets with pixel-level
annotations to achieve food ingredient segmentation. However, preparing such datasets is exceed-
ingly hard and time-consuming. In this paper, we propose a new framework for ingredient segmen-
tation utilizing feature maps of the CNN-based Single-Ingredient Classification Model that is trained
on the dataset with image-level annotation. To train this model, we first introduce a standardized
biological-based hierarchical ingredient structure and construct a single-ingredient image dataset
based on this structure. Then, we build a single-ingredient classification model on this dataset as the
backbone of the proposed framework. In this framework, we extract feature maps from the single-
ingredient classification model and propose two methods for processing these feature maps for seg-
menting ingredients in the food images. We introduce five evaluation metrics (IoU, Dice, Purity,
Entirety, and Loss of GTs) to assess the performance of ingredient segmentation in terms of ingre-
dient classification. Extensive experiments demonstrate the effectiveness of the proposed method,
achieving a mIoU of 0.65, mDice of 0.77, mPurity of 0.83, mEntirety of 0.80, and mLoGTs of 0.06 for
the optimal model on the FoodSeg103 dataset. We believe that our approach lays the foundation for
subsequent ingredient recognition.

Keywords: CNN architecture; single-ingredient classification model; food ingredient segmentation;

evaluation metrics; hierarchical multi-level learning

1. Introduction

With the rapid development of deep learning techniques in recent years, food com-
puting [1] has emerged as an interesting field owing to its wide range of applications in
health, culture, and other domains. It is important to analyze and understand food im-
ages from different perspectives. For the healthcare domain, food computing can help to
understand food images from different perspectives, such as nutrition estimation, food
choices, and healthy eating recommendations. For the food retailer domain, restaurants
and food retailers can utilize food computing technology to automate order processing,
manage inventory, or offer personalized dietary recommendations to customers.

Among various tasks in food computing, food recognition has attracted considerable
research interest in recent years. Existing studies include deep-based recognition, which
leverages different deep-food recognition models [2-6]. However, we have observed that
these research studies focus on identifying food by the name of the dish. There are two
key limitations to this approach: (1) there are limitations for nutritional analysis, as dishes
with the same name can contain different ingredients; (2) the construction of a dish name
classification model is impractical, because the dish names are endlessly variable.

Given these limitations, some studies [7-9] have focused on food ingredient recogni-
tion, because ingredient categories are limited and usually defined according to standard
food taxonomy.
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Food ingredient recognition involves the automatic identification of multiple ingre-
dients in a food image. This improves the accuracy of dietary assessment, food tracking,
and nutritional analysis. The accurate identification of all meal ingredients is crucial for
these applications.

However, food ingredient recognition poses challenges due to the high variability in
ingredient appearance as well as visual similarities among some different ingredients. For
instance, the appearance of an egg can vary significantly with different cooking methods.
Some ingredients, such as spinach and Bok choy, exhibit visual similarities in color, texture,
and shape. These factors collectively contribute to the complexity of ingredient classification.

Food ingredient recognition, as studied in [10-14], is commonly regarded as a multi-
label classification task. To enhance performance, some approaches [12,13] based on multi-
task and region-based deep learning are proposed. Furthermore, Chen et al. [14] deployed
a multi-relational graph convolutional network that considered the relationships between
different ingredients, including ingredient hierarchy, co-occurrence, and cooking and cut-
ting methods. However, these previous works still have some limitations: (1) Existing
models are based on multi-label ingredient recognition. However, this method is not op-
timal because it does not directly and accurately learn visual ingredient representations,
and is often influenced by the mutual interference of adjacent ingredients in the images
during training and testing. (2) There are no standardized ingredient datasets which cover
a wide range of ingredient categories.

To exclude the inference of adjacent ingredients in ingredient recognition, some stud-
ies [15-17] explored methods for food ingredient segmentation. These studies trained seg-
mentation networks on pixel-level annotated ingredient datasets, such as FoodSeg103 [15].
However, pixel-level annotation for each image is time-consuming.

A database called Al4Food-NutritionDB is developed in [18]. This database catego-
rizes foods based on a nutritional four-level pyramid structure and analyzes food recog-
nition tasks using a nutrition taxonomy. However, this database does not account for bio-
logical inherent hierarchical structure among the ingredients.

To address these challenges, in this paper, we propose a new framework for ingredi-
ent segmentation utilizing feature maps of the CNN-based Single-Ingredient Classification
Model that is trained on the dataset with image-level annotation. To train this model, we first
introduce a standardized biological-based hierarchical ingredient structure and construct a
single-ingredient image dataset based on this structure. Then, we build a single-ingredient
classification model on this dataset as the backbone of the proposed framework. In this frame-
work, we extract feature maps from the single-ingredient classification model and propose
two methods to process these feature maps for segmenting ingredients in the food images.
We introduce five evaluation metrics (IoU, Dice, Purity, Entirety, and Loss of GTs) to assess
the performance of ingredient segmentation in terms of ingredient classification.

Our main contributions are:

1. A single-ingredient image dataset was constructed based on food taxonomy stan-
dards [19,20] to train the CNN-based single-ingredient classification model. This
dataset covers a wide range of ingredient categories, and contains various individ-
ual ingredient images with various cutting and cooking methods.

2. Some single-ingredient classification models with different architectures were trained on
the above dataset, so as to obtain an optimal model utilized to ingredient segmentation.

3. A new multi-ingredient segmentation framework utilizing the above model as an extrac-
tor of feature maps was proposed. Furthermore, two methods were introduced for pro-
cessing the feature maps to generate ingredient masks for the ingredient segmentation.

This paper is organized follows. In Section 2, we provide a review of relevant works.
In Section 3, we introduce a new individual ingredient image dataset. In Section 4, we
introduce a novel CNN-based architecture for the single-ingredient classification model.
In Section 5, we present a new multi-ingredient segmentation framework that utilizes the
aforementioned model. Section 6 covers the introduction of five metrics for evaluating in-
gredient segmentation. In Section 7, we analyze the performance of the single-ingredient



J. Imaging 2023, 9, 205

30f23

classification model and the proposed multiple-ingredient segmentation framework. Fi-
nally, in Section 8, we present our conclusions.

2. Related Work

In this section, we briefly review several related studies including food ingredient
segmentation, multi-task learning, and K-Means Clustering.

2.1. Food Ingredient Segmentation

Before discussing food ingredient segmentation, we briefly introduce food segmenta-
tion. Food segmentation aims to segment each food category and its pixel-wise location
within a food image. Aguilar et al. [21] combined food/non-food binary masks and food
localization bounding boxes to achieve food segmentation. Sharma et al. [22] introduced a
network called GourmetNet, which adopts the Waterfall Atrous Spatial Pooling (WASPv2)
module, and employs dual attention (channel and spatial) mechanisms for multi-scale wa-
terfall features to improve the food segmentation performance. Okamoto et al. [23] intro-
duced aregion-based segmentation model for multiple-dish segmentation. Liang et al. [24]
proposed a ChineseFoodSeg approach, which uses the color and texture features of super
pixels to separate different dishes from a single plate.

Food ingredient segmentation has recently emerged as a promising means of identify-
ing each ingredient category and its specific location within a food image at the pixel level.
However, ingredient segmentation poses notable challenges due to the inherent high vari-
ability in ingredients. For instance, eggs exhibit significant intra-class variance depending
on the cooking method employed, such as boiling or steaming. On the other hand, certain
categories, such as spinach and kale, present a high inter-class similarity as they are both
green leaves and are often prepared in recipes of similar shapes and sizes. One additional
challenge in ingredient segmentation is the similarity between certain ingredients and the
background. Wu et al. [22] proposed a food image segmentation framework, which con-
sists of two modules: Recipe Learning Module (ReLeM) and Image Segmentation module.
Specially, ReLeM incorporates recipe information and integrates recipe embedding with
the visual representation of a food image to enhance the visual representation of an ingre-
dient. Wang et at. [23] proposed a Swin Transformer-based pyramid network to combine
multi-scale features from the global and local regions of the food image for food image
segmentation. Xia et al. [24] proposed a network consisting of two subnetworks to refine
the boundaries of the ingredient segmentation. Specifically, this study incorporates both
Hyperspectral Imaging (HSI) and RGB images as inputs for the feature extraction. The
latest study, Segment Anything [25], introduced an efficient transformer-based model that
unifies various segmentation tasks into a general framework to implement class-agnostic
instance segmentation.

However, to the best of our knowledge, all the aforementioned studies rely on train-
ing proposed segmentation models on training datasets with pixel-level annotations. Ac-
quiring such datasets, especially for food ingredient segmentation, requires a significant
amount of manual labeling, which is time-consuming and prone to errors. In contrast
to these methods, we propose a weakly supervised segmentation approach that requires
only single-ingredient images and their corresponding labels, thereby reducing the need
for pixel-level annotation.

2.2. Food-Related Public Datasets

Along with research on food ingredient recognition, there are some large-scale datasets,
such as VIREO Food-172 [26] and ISIA Food 500 [27]. VIREO Food-172 is one of the first
datasets to consider these ingredients. It contains 110,241 images from 172 food categories.
The images were manually annotated based on 353 ingredients.

Several public datasets are available for food segmentation. Food-201 [28] contains
12,093 images with 201 food categories and 29,000 dishes. UECFoodPix COMPLETE [29] is
another widely used food image dataset that contains 10,000 food images across 102 food cate-
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gories and 14,011 masks. However, these datasets only provide dish-level and not ingredient-
level segmentation masks. FoodSeg-103, proposed in [15], consists of 7118 images and more
than 40,000 masks, covering 103 food ingredient categories. FoodSeg-103 is the first large-
scale food image dataset with ingredient-level segmentation masks. HSIFoodIngr-64, pro-
posed in [17], contains 21 dish and 64 ingredient categories. This study provides annotated
HSI images that contain more informative properties of ingredients.

In this study, we use the FoodSeg103 dataset to evaluate the performance of the pro-
posed method for ingredient segmentation, and use the UECFoodPix COMPLETE dataset
to evaluate the performance of food segmentation. As the dataset from study [24] has not
yet been made publicly available, we did not compare our results with it.

2.3. Multi-Task Learning

Multi-task learning is widely used approach in computer vision and plays a critical
role in image classification [30,31], object detection [32], and semantic segmentation [33,34].
Li et al. [35] proposed a multi-task network cascade network that consists of three stages
for each task, and a sequential feature-sharing method among tasks. Another study [36] in-
troduced a hierarchical network via setting the supervision of low-level tasks in the bottom
layers and high-level tasks in the top layer of the model.

Our study was inspired by the bottom-up supervisor-setting method of study [36].
We introduced a multi-level learning strategy for single-ingredient classification.

2.4. K-Means Clustering

Clustering is a simple and effective method of image segmentation. Specifically, k-
means clustering is the most widely used method, found in many works [37,38]. The main
concept of image segmentation using the k-means method is to partition a collection of
pixels in an image into k clusters, based on their similarity. Zheng et al. [38] introduced
an adaptive k-means algorithm for LAB color space to improve the performance of im-
age segmentation. Caron et al. [39] proposed a deep neural network called deep embed-
ded clustering (DEC), which incorporates both an autoencoder and a clustering module.
Van et al. [40] introduced a method for clustering learned pixel embeddings into groups to
address unsupervised segmentation.

3. Dataset

In this section, we will first introduce the hierarchical ingredient structure based on
food taxonomy standards [19,20]. Then, we will introduce the single-ingredient image
dataset for training the single-ingredient classification model.

3.1. Hierarchical Ingredient Structure

In a previous study [41], we proposed a three-level structure for ingredient categories
based on the Japanese food taxonomy ([19,20]; see Figure 1). This structure is biological, and
now we expand it by adding level 4 ingredient categories based on the same taxonomy as
in [20]. As a result, we have a four-level hierarchical structure for the ingredient categories.

In this four-level hierarchical structure, level 1 ingredient categories are defined based
on the standard described in [16], including Crop, Livestock, and Seafood. Level 2 to level
4 ingredient categories are defined based on another standard described in [20]. Each in-
gredient category at a lower level belongs to only one type of ingredient at a higher level.
For example, “Fruits”, “Vegetables”, and “Meats” are level 2 ingredient categories, “Fruits”
and “Vegetables” belong to “Crop” (level 1 ingredient category), while “Meats” belongs
to “Livestock”, as shown in Figure 1. As a result, level 2 includes 13 ingredient categories,
level 3 includes 32 ingredient categories, and level 4 includes 110 commonly used ingredi-
ent categories, providing a comprehensive coverage of food taxonomy.
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Figure 1. Architecture of the first three levels of the hierarchical ingredient structure.

3.2. Single-Ingredient Image Dataset (S1110)

In this work, we construct a novel single-ingredient image dataset. In order to solve
the problem of high intra-variance of ingredients in the food images, we collect individual
ingredient images with various cutting and cooking methods. We follow several criteria
for data collection. First, we exclude invisible ingredients such as salt and sugar because
our goal is to recognize visually observable ingredients in food images. Second, we en-
sure that each single-ingredient image contains only one type of ingredient as defined in
the level 4 category list. This is achieved through capturing single-ingredient images or
extracting single-ingredient regions from the food images manually. Third, based on the
different cooking conditions, we collect as many visual variants as possible for each in-
gredient category. For example, we gather different visual appearances of eggs, potatoes,
and pumpkins under various cooking conditions (Figure 2). Finally, we ensure that five to
ten images are selected for each type of visual appearance of each ingredient category to
prevent training bias towards a specific visual appearance.
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Figure 2. Intra-class variance and inter-class similarity. (a) Samples of three ingredients with high
intra-class variance. (b) Samples of three sets exhibiting high inter-class similarity.

In the scope of the 110 food ingredient categories, we collect food images from Google
Pictures using English, Chinese, and Japanese keywords including these ingredients. Subse-
quently, we perform several rounds of processing on the collected images, including: (1) Crop-
ping out the regions that have the individual ingredient. These cropped regions were then
used as single-ingredient samples. (2) Ensuring that each food ingredient has five to ten
samples for each visual variation. Currently, SI110 contains 10,750 single-ingredient images,
including 110 level 4 ingredient categories, covering the entire range of food taxonomy. The
images are then assigned to the corresponding categories at the three upper levels. The
distribution of ingredient categories for each level is shown in Figures 3—6. The detailed
names corresponding to the notations of the horizontal coordinates in Figure 6 are shown
in Appendix A.
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Figure 3. The distribution of sample counts for ingredient categories in level 1 of the SI110 dataset.
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Figure 6. The distribution of sample counts for ingredient categories in level 4 of the SI110 dataset.

Data samples at each level follow a long-tailed distribution. For example, at level 4,
ingredient categories that offer many different cooking ways, such as shrimp and wheat
products, contain more than 250 samples. However, ingredients that are not prepared in
many different ways, such as green caviar and raspberry, contain only about 20 samples.

The SI110 dataset is randomly divided into 80% for training and 20% for testing the
single-ingredient classification model.

4. Single-Ingredient Classification Model

In this section, we propose a new CNN-based architecture for a single-ingredient clas-
sification model trained on the SI110 dataset.

4.1. Proposed CNN-Based Architecture

In this subsection, we present AttNet, a novel CNN-based architecture for single-
ingredient classification. The complete structure of an AttNet is shown in Figure 7. In-
spired by EfficientNet [42], we include a sigmoid layer followed by an element-wise multi-
plication layer in each of CNN Blocks. AttNet consists of eight CNN blocks with identical
structures. Each CNN block has four layers. The first layer is the convolutional layer fol-
lowed by a batch normalization layer. We then follow a sigmoid layer to compute the
activation value of the feature map from the batch normalization layer. Its principle is to
map the input feature values to a probability range between 0 and 1. Finally, we add an
element-wise multiplication layer to multiply the activation value with the feature map
output from the batch normalization layer. Finally, we add a global average pooling layer
after the last CNN block and add a classification layer at the end. We present the whole
network parameter in Table 1.

In this work, we explore the use of two different kernel sizes for the convolutional
layer in the CNN blocks. Firstly, we use a kernel size of 1. We refer to this network as the
AttNet (1). We chose to only use 1 x 1 convolutional layer, because it significantly reduces
computational cost and memory size. Secondly, we use a kernel size of 3, which is com-
monly utilized in CNN networks. We refer to this network as the AttNet (3). Furthermore,
we propose two variants of AttNet, which are: (1) AttNet (1 +3), where the first seven CNN
blocks use 1 x 1 convolutional layers and the last CNN block uses a 3 x 3 convolutional
layer; (2) AttNet (3 + 1), where the first seven CNN blocks use 3 x 3 convolutional layers
and the last CNN block uses a 1 x 1 convolutional layer.
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Figure 7. Architecture of the CNN-based AttNet network, where k and j are the kernel size of the
convolutional layer, N; represents the channel number of the convolutional layer in the CNN block
1, and C# indicates the number of categories.

Table 1. Architecture of the proposed AttNet network.

Stage Operator Resolution Channels
1 Input 224 x 224 3
2 CB, k x k conv, stride 2 112 x 112 64
3 CB, k x k conv, stride 2 56 x 56 128
4 CB, k x k conv, stride 2 28 x 28 128
5 CB, k x k conv, stride 1 28 x 28 256
6 CB, k x k conv, stride 1 28 x 28 256
7 CB, k x k conv, stride 1 28 x 28 512
8 CB, k x k conv, stride 1 28 x 28 512
9 CB, j x j conv, stride 1 28 x 28 Ct#
10 avgpool, softmax 1x1 C#

Moreover, we fine-tune ResNet18 [43] and EfficientNetB0 [42] for single-ingredient
classification, because they are both popular and widely used architectures for image pro-
cessing and segmentation tasks. We modify both the pre-trained models by replacing their
last convolutional layer with a 1 X 1 convolutional layer with C# channels, followed by a
global average pooling layer, and finally adding a classification layer.

Finally, all models, including AttNets, the modified ResNet18, and EfficientNet-B0,
are trained on the SI110 train dataset.

4.2. Training Models

In this subsection, we introduce a method for training a single-ingredient classifica-
tion model using the SI110 dataset. First, we present the baseline work, which is a single-
level learning method that trains only the classification model for level 4 ingredient cate-
gories. The models trained using this method are referred to as SLMs (Single-Level Mod-
els). Furthermore, we propose a multi-level learning strategy for single-ingredient classi-
fication that simultaneously leverages four levels of ingredient information from the hier-
archical structure. A diagram of the proposed method is shown in Figure 8. We employ a
bottom-up feature-sharing mechanism via setting an individual CNN Block for each level
after the seventh CNN Block. These CNN Blocks are sequentially stacked from level 4 to
level 1. Additionally, for each level’s CNN Block, we include a global average pooling layer
(gap), followed by a Softmax layer to perform classification for each level. We demonstrate
the bottom-up feature-sharing mechanism in Figure 9.
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The models trained using this multi-level learning method are referred to as MLMs
(Multiple-Level Models). During the training process, we compute the standard cross-
entropy loss for each level’s ingredient classification, and optimize the weighted sum of
the four losses with different weights. To ensure balanced training, we assign a higher
weight to bottom levels than upper levels. This is because the number of bottom ingredient
categories is greater than the number of upper ingredient categories, and we aim to account
for this discrepancy in the training process. We define the total loss function for multi-level
ingredient classification as follows:

4
Luogat = Y Adla(5£(21, ) 1)
i

where L; means the cross-entropy loss function for level i, sf means the Softmax function,
7! represents the output of the global average pooling layer, and y' represents the ground-
truth class label for level i. In this work, we adopt a fixed set of weights {1.0, 0.5, 0.3, and
0.1} in a descending order from level 4 to level 1. The purpose of assigning decreasing
weights to classification tasks at different levels is to emphasize the importance of level
4 ingredients during the training process. We decrease the weights of tasks at upper levels.
Based on the hierarchical structure, we gradually decrease the importance of upper-level
tasks via considering the cross-level distance between different levels and the fourth level.

5. Ingredient Segmentation Framework

Based on the above single-ingredient classification model, we propose a new frame-
work for ingredient segmentation, as shown in Figure 10. The framework extract feature
maps of multiple-ingredient food images using a pre-trained single-ingredient classifica-
tion model. The advantage of this framework is that it does not need to construct the
pixel-level annotated dataset for the segmentation, which are typically required by existing
ingredient segmentation networks. This offers a more practical and cost-effective solution
for food ingredient segmentation. Preparing pixel-level annotated datasets is particularly
challenging and time-consuming, largely due to issues such as fuzzy boundaries and over-
lapping of food ingredients.

ﬁ

method 1
A. Channel-wise
C4 feature maps  —  Filteringand — <~ %
Combination Mask generation —
Ingredient
Classification — Mask generation —
Model . -
Level 4 Ingredient HXxW C4-dim —, BPixelwise . ;. —]
feature m: feature vectors Clustering
eature maps
(HW.C4)

number K

&

method 2

Figure 10. The diagram multiple ingredient segmentation framework.

The input image is denoted by X. Feature maps are extracted from the last convolu-
tional layer of the model and are denoted by f(X), where f(X) € RH*W*C4 and C4 is the
number of level 4 ingredient categories. Subsequently, the feature maps f(X) are processed
to generate the ingredient masks. In the following section, we introduce two methods for
feature-map processing.



J. Imaging 2023, 9, 205

12 of 23

In Method 1, we first transform the feature maps f(X) into 2D feature maps with C4
channels. The first step is to filter the C4 feature maps. We calculate the global average
value of each feature map, then normalize it using the sigmoid function to compute a score.
Then, we selected the feature maps with scores greater than the threshold of 0.5. The sec-
ond step is to combine the feature maps. We calculate the correlation coefficient for each
pair of filtered feature maps. When the correlation coefficient exceeds the threshold of 0, a
pair of feature maps is merged into one feature map. The reasoning behind this step is that
the positively correlated feature maps tend to encode redundant information. By merging
these results, we obtain a more complete activation result for a particular component. Fi-
nally, we binarize all processed feature maps to create masks for ingredient segmentation.

In Method 2, we transform the feature maps into H x W pixel-wise feature vectors
with C4-dimensionals. We then apply k-means clustering to these vectors to obtain K clus-
ters, where K represents the number of ingredients in the dish image and we assume that
the value K is known in advance in this paper. Each cluster, which is composed of pixels,
generates a mask for the ingredient segmentation.

Finally, we resize the masks to the same size as the input image and then apply
element-wise multiplication to each mask and input image to obtain the segments of the
ingredients in the food image.

6. Segmentation Evaluation Metrics

In this section, we introduce five metrics to evaluate the performance of ingredient seg-
mentation. IoU is a measurement of the overlap between the predicted segmentation mask
and the ground truth mask. It is calculated by dividing the intersection of the predicted
and ground truth regions by their union. The Dice coefficient is another metric which also
quantifies the similarity between the predicted and ground truth masks. It is calculated by
taking twice the intersection area of the predicted and ground truth masks and dividing it
by the sum of the areas of the predicted mask and ground truth mask. In this study, we
employ these metrics to evaluate the performance of food ingredient segmentation.

In addition to IoU and Dice metrics, the purity and entirety of segmentation are cru-
cial aspects for recognizing ingredients in the next step. Furthermore, the region loss of
the ingredient of the ground truth (LoGT) should also be considered for the evaluation
because the loss of the ingredient makes it impossible to be recognized. The definitions of
Purity and Entirety are equivalent to those proposed in [44]. Specifically, Purity measures
the ratio of the ingredient of the ground truth (GT) contained in a segment, and Entirety
measures the ratio of the segment contained in an ingredient of the GT.

All the mentioned metrics are calculated using Equations (2)—(6), and it should be
noted that IoU is a comprehensive metric of Purity and Entirety:

ANB
intersection over union(IoU) = NS BI (2)
, 2 x |ANB|
Dice = =~ 21 3
= Al ®
: ANB
purity = | B] | 4)
ANB
entirety = | Al | 5)
UfA| = [ulainu] B|
LoGTs = (6)
‘U% Aj

where A and B denote the masks of the GT and the segment, respectively, I denotes the
number of GTs in the sample, and ] is the number of segments in the sample.
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Moreover, we calculate the mean IoU (mloU), mean Dice (mDice), and mean purity
(mPurity) by averaging the maximum purity of all segments, and the mean entirety (mEn-
tirety) by averaging the maximum entirety of all GTs. Mean LoGTs (mLoGTs) are calcu-
lated by computing the average region loss of the foreground for each image.

7. Experiments and Analysis

To evaluate the generalization of the proposed method, we conduct assessments on
both the FoodSeg103 dataset, which is a publicly available dataset specifically designed for
ingredient segmentation, and the UEC-FoodPix Complete dataset, which is the most recog-
nized dataset for food segmentation. There are other food databases, such as UNIMIB2016.
Because our primary objective in this work is ingredient segmentation, we prioritized the
evaluation using the UEC-FoodPix Complete dataset. We will extend the evaluation of the
generalization on other public datasets in our next work.

In this section, we evaluate: (1) the performance of the single-ingredient classification
model in single-ingredient identification; (2) the performance of the ingredient segmenta-
tion framework for multi-ingredient segmentation; (3) the performance of the ingredient
segmentation framework for food segmentation.

7.1. Implementation Setups

The experiments were implemented on a computer with the following specifications:
an Intel(R) Core i7-10870H CPU @ 2.20 GHz and an NVIDIA GeForce RTX 3060 Laptop
GPU, with 16 GB memory. The operating system used was Windows 11, and the codes
were written in MATLAB (2022a). In the training process, we trained all single-level single-
ingredient classification models and all multi-level single-ingredient classification models
on the SI110 training dataset. The single-level models were trained for 30 epochs, while
the multi-level models were trained for 50 epochs. We used a mini-batch size of 32 and an
initial learning rate of 3e-2. To facilitate learning, we implemented a piece learning rate
schedule, where the learning rate was multiplied by 0.2 when decreased. Furthermore, we
utilized the Adam optimizer with a squared gradient decay factor of 0.9.

To assess the effectiveness of our proposed method, we conducted the evaluations
in two stages. Firstly, we evaluated the performance of single-ingredient classification
on the SI110 test dataset. SI110 contains 2150 test images with single ingredients in a food
image. Next, we evaluated the performance of ingredient segmentation on the FoodSeg103
dataset. FoodSeg103 contains 2135 test images with multiple ingredients in a food image
with pixel-level annotations.

7.2. Evaluation on the Single-Ingredient Classification Model

In this section, we present a thorough evaluation of our proposed AttNets and two
pretrained models, ResNet18 and EfficientNet-B0, for single-ingredient identification. To
explore the effectiveness of different kernel sizes in the CNN blocks of AttNets, we desig-
nate four types of AttNets, all with the same architecture, but varying kernel sizes:

1. AttNet (1): uses a convolutional layer with kernel size =1 in each CNN block;

2. AttNet (1 + 3): uses a convolutional layer with kernel size = 1 in each CNN block,
except for the convolutional layer with kernel size = 3 in the last CNN block;

3. AttNet (3 + 1): uses a convolutional layer with kernel size = 3 in each CNN block,
except for the convolutional layer with kernel size = 1 in the last CNN block;

4. AttNet (3): uses convolutional layer with kernel size = 3 in each CNN block.

We employ four metrics to evaluate the performance of single-ingredient classifica-
tion: accuracy, precision, recall, and Fl-score. The experimental results are presented in
Table 2.
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Table 2. Performance of SLMs and MLMs on SI110 dataset for single-ingredient classification.

Types Model Accuracy  mPrecision mRecall mF1
AttNet (1) 0.2712 0.1933 0.1955 0.1693
AttNet (1 +3) 0.2716 0.1840 0.1946 0.1619
AttNet (3 +1) 0.2665 0.1846 0.1947 0.1623
SLM AttNet (3) 0.2553 0.1786 0.1805 0.1575
EfficientNet-B0 0.8437 0.8161 0.8063 0.8017
ResNet18 0.8684 0.8498 0.8571 0.8466
AttNet (1) 0.2326 0.1576 0.1544 0.1333
AttNet (1 +3) 0.2116 0.1787 0.1412 0.1285
AttNet (3 +1) 0.387 0.41 0.3254 0.324
MLM AttNet (3) 0.3205 0.3307 0.2686 0.2574
EfficientNet-B0 0.8307 0.8290 0.8253 0.8168
ResNet18 0.6940 0.6923 0.6603 0.6495

In terms of the performance of SLM, our observations reveal that the modified ResNet18
achieves the highest performance among the SLMs. It attains an accuracy of 0.8684, a preci-
sion of 0.8498, recall of 0.8571, and an F1 score of 0.8466. Among the AttNet models, AttNet
(1) demonstrates the top performance, with an accuracy of 0.2712, a precision of 0.1933, recall
of 0.1955, and an F1 score of 0.1693.

Regarding the performance of MLM, we found that the modified EfficientNet-BO ex-
hibits the best performance, with an accuracy of 0.8684, a precision of 0.8307, recall of
0.8253, and an F1 score of 0.8168. Among the AttNet models, AttNet (3 + 1) achieves the
highest performance, with an accuracy of 0.387, a precision of 0.41, recall of 0.3254, and an
F1 score of 0.324.

In comparing SLMs and MLMs, our experimental results clearly demonstrate that ap-
plying multilevel learning significantly improves the performance of the AttNet (3), AttNet
(3 + 1), and EfficientNet-BO models. However, it decreases the performance of the AttNet
(1), AttNet (1 + 3), and ResNet18 models.

In the following subsection, we utilize all of the aforementioned models as the backbone
of our proposed ingredient segmentation framework for multi-ingredient segmentation and
assess their performance. This is because the performance of single-ingredient classification
does not clearly correlate with the performance of multi-ingredient segmentation.

7.3. Evaluation on Ingredient Segmentation

As our objective is to identify multiple ingredients through multiple ingredient seg-
ments in food images, we evaluate the effectiveness of ingredient segmentation using met-
rics such as mloU, mDice, mPurity, mEntirety, and mLoGTs, which are relevant to ingre-
dient classification.

We evaluate the performance of ingredient segmentation on the FoodSeg103 dataset [15],
which consists of images containing multiple ingredients along with pixel-level ingredient la-
bels. However, the majority of food images in this dataset also include non-food background
areas. Since our proposed method aims to segment only the ingredients in food images while
excluding the background, the presence of the background might potentially affect the ingre-
dient segmentation results. To address this issue, we replaced the background areas of these
images with a blue background. In this process, each pixel in the background area is assigned
an RGB value of (0, 0, 255), as this blue color is rarely encountered in food ingredients.

In this experiment, we employ mloU, mDice, mPurity, mEntirety, and mLoGTs as
evaluation metrics to assess the segmentation performance on this dataset. We also com-
pare our mloU with the one reported in [15]. However, it should be noted that the Food-
Seg103 dataset comprises 103 ingredients, which is not entirely consistent with our defined
110 ingredient categories. As a result, direct comparison of the accuracy results presented
in [15] may not be feasible.
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7.3.1. Analysis of Method 1

We discuss the segmentation performance of various backbones using Method 1, and
the results are listed in Table 3. Based on the Purity results, SLM-EfficientNet-B0 achieves a
highest score of 0.7679, followed by MLM-EfficientNet-B0 with a score of 0.694. However,
these models exhibit low performance in terms of the Entirety score. Since our segmenta-
tion results will be used for the subsequent ingredient classification task, we consider these
models not to be suitable for the segmentation used as backbones.

Table 3. Performance of multiple ingredient segmentation using SLMs and MLMs on FoodSeg103
with Method 1.

Types Model mPurity mEntirety mLoGTs mloU mDice
AttNet (1) 06712 07555 01751 06051 07376

AttNet (1 +3) 06845 07394 01874 06028 07354

AttNet (3 +1) 06838 07675 01621 06056 07371

SLM AttNet (3) 06831 07791 01525 06072  0.7384

EfficientNet-BO 07679 03116 06592 03666 05141

ResNet18 05828 07879  0.1925 0.531 0.6789

AttNet (1) 0.6144 08463  0.0959 0.59 0.7265

AttNet (1 +3) 06036 08579 00917 05759 07157

AttNet (3 +1) 06225 07997 01410 05832 07213

MLM AttNet (3) 06167 08409 01087 05742 07137
EfficientNet-BO 0.694 0.395 05804 04043  0.5597

ResNet18 0.6594 04960  0.4805 0.434 0.5894

Next, we investigate the results of the metric Entirety. The MLM-AttNet models
achieve relatively high values of over 0.8. As for LoGTs, we observe that MLM-AttNet
(1) and MLM-AttNet (1 + 3) achieve comparatively good results of less than 0.1. Regarding
IoU, the SLM-AttNet models achieve relatively high values of over 0.6. Finally, for Dice,
both SLM-AttNet models and MLM-AttNet models have values of more than 0.7.

Because both the accurate segmentation of ingredients and the preservation of their in-
tegrity are crucial for the subsequent recognition process, we consider that under Method 1,
MLM-AttNet (1) and MLM-AttNet (1 + 3) are suitable backbones for ingredient segmentation.

7.3.2. Analysis of Method?2

Here, we evaluate the performance of various models for ingredient segmentation
using Method 2. The results are presented in Table 4.

Table 4. Performance of multiple ingredient segmentation using SLMs and MLMs on Foodseg103
with Method 2.

Types Model mPurity mEntirety mLoGTs mloU mDice
AttNet (1) 08339 08003 00552 06532  0.7665

AttNet (1+3) 0.8565 07391 01276 06185  0.7407

AttNet (3+1) 08255 06618 01824 05548  0.6911

SLM AttNet (3) 08158 06599 02072 05749 07024

EfficientNet-B0 07922 06094 02657 05392  0.6780

ResNet18 07980  0.1534 0.828 01327 02121

AttNet (1) 08256 07900 00837 06540  0.7611

AttNet (1+3) 0.8373 07495 01141 06199  0.7415

AttNet (3+1) 07949 05865 02487 05001  0.6473

MLM AttNet (3) 08026 06055 02336 05090  0.6533
EfficientNet-B0 07559 05342 02984 03759  0.5160

ResNet18 07314 0593 02364 03645  0.4965

Itis important to note that the values of LoGTs are not equal to zero, despite the expec-
tation that they should be zero according to the mechanism of Method 2. This discrepancy
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arises because we replaced the background region pixels of the images in the FoodSeg103
dataset with pure blue prior to ingredient segmentation. Consequently, when applying
k-means clustering for pixel clustering, we set the number of clusters to K + 1, where K
represents the number of ingredients in the image. This results in obtaining K + 1 seg-
ments, including K ingredient segments and one background segment. However, in some
cases, we observed that certain areas of ingredients were mistakenly segmented into the
background segment. Therefore, the LoGTs are not equal to 0, as the feature vectors of
pixels corresponding to some ingredients and those of pixels corresponding to the back-
ground are clustered into the same cluster using the K-means algorithm.

From Table 4, we observe that the AttNet models outperformed the modified ResNet18
and modified EfficientNet-based models across all metrics. We further notice that various
AttNet models under Method 2 exhibited superior performance compared to Method 1 in
terms of Purity, LoGTs, IoU, and Dice metrics. Particularly, for Purity, the mPurity values
of AttNet models under Method 2 improved by approximately 15% compared to those un-
der Method 1. For IoU, the mloU values showed an improvement of about 5%. In terms
of Entirety, Method 2 achieved the highest value of 0.80, which was lower than the highest
value of Method 1. In terms of LoGTs, SLM-AttNet (1) attained a highest value of 0.055.
As for IoU, which is a comprehensive metric for segmentation evaluation, SLM-AttNet (1)
achieved a score of 0.6532, while MLM-AttNet (1) achieved a score of 0.6540. Both scores
are nearly identical.

Consequently, we believe that SLM-AttNet (1) under Method 2 serves as an optimal
backbone for ingredient segmentation in terms of ingredient recognition.

On the other hand, the model size of SLM-AttNet (1) requires 22.113 MB of memory,
whereas modified EfficientNet-B0 requires 70.506 MB. Moreover, as the backbone used in
the ingredient segmentation framework, SLM-AttNet (1) requires less execution time than
EfficientNet-BO does. For instance, when taking an image of size 1024 x 1365 as input
and obtaining all ingredient segmentation using Method 2, SLM-AttNet (1) takes 1.71 s to
execute, while EfficientNet-B0 takes 2.04 s.

7.3.3. Comparison with Previous Work

In comparison to previous work [15] of multi-ingredient segmentation, which achieves
a class-wise mIoU of 0.439, our results demonstrate superior performance. Specifically, our
MLM-AttNet (1) achieves the highest class-agnostic mIoU of 0.654 with Method 2, while
the SLM-AttNet (1) achieves almost the same result of 0.6532 with Method 2. This indi-
cates that our approach surpasses the previous work to some extent. Most importantly,
our segmentation network uses a single-ingredient classification model as the backbone to
generate masks for segmentation. This implies that we only need to train the ingredient
classification model on a single-ingredient image dataset with image-level labels, thereby
avoiding the need for pixel-level annotations.

7.3.4. Visualization of Segmentation Results

To further investigate the performance of the ingredient segmentation framework,
we present some examples of segmentation with different backbones. We compare three
backbones: SLM-AttNet (1), MLM-AttNet (1), and EfficientNet-B0, and compare the results
using Methods 1 and 2. We chose to compare the AttNet model with the EfficientNet-based
model because it performed better than ResNet18 on the entity and LoGTs metrics.

Regarding the comparison between Method 1 and Method 2, we conducted an anal-
ysis of two food images where the ingredients are highly mixed. As shown in Figures 11
and 12, it can be observed that Method 1 is more effective at preserving the entirety of
the ingredients, but struggles with the issue of mixing multiple types of ingredients to-
gether. In contrast, Method 2 excels in achieving higher segmentation purity, but is prone
to splitting the same ingredient (e.g., fish flesh and fish skin in Figure 11) due to color differ-
ences, or merging different ingredients that have similar colors (e.g., egg yolk and mango
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in Figure 12). Overall, Method 1 is less effective for segmenting highly mixed ingredients,
whereas Method 2 performs better in resolving this issue.

Input image Method 1 Method 2
SLM-AttNet(1) | MLM-AttNet(1) [ SLM-AttNet(1) ‘MLM—AttNet(l)

Figure 11. Segmentation results of four ingredients in a food image.

Method 1 Method 2
SLM-AttNet(1) |MLM-AttNet(1) | SLM-AttNet(1) ‘MLM-AttNet(l)

7]

Input image
=

Figure 12. Segmentation results of six ingredients in a food image.
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Regarding the comparison between AttNet (1) and EfficientNet-B0, we compare the
results from SLM-AttNet (1) and SLM-EfficientNet-B0. As shown in Figures 13 and 14, we
found that the ingredient segmentation results generated by the AttNet (1) reserve more
detailed boundaries than EfficientNet-B0. Furthermore, we observed that the segmenta-
tion results obtained by EfficientNet-BO are reduced in quality through missing parts of
the ingredients. In Figure 13, we clearly observed this issue, where EfficientNet-BO com-
pletely misses the parsley region. In Figure 14, under Method 1, EfficientNet-B0 partially
misses the sauce region; furthermore, under Method 2, EfficientNet-B0O completely misses
the apple region.

Input image GTs Method 1 Method 2

SL-AtNet(1) | ML-AttNet(1) | EfficientNetBO | SL-AttNet(1) | ML-AttNet(1) | EfficientNetB0

Figure 13. Three ingredients (egg, parsley, and steak) in a dish image from FoodSeg103 dataset.

Input image GTs Method 1 Method 2

SL-AttNet(1) ML-AttNet(1) | EfficientNetBO SL-AttNet(1) ML-AttNet(1) | EfficientNetBO

Figure 14. Three ingredients (bread, apple, and sauce) in a dish image from FoodSeg103 dataset.
These results show that the proposed method has difficulty in segmenting ingredients having simi-
lar colors.
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Moving on to the analysis of segmentation results from the FoodSeg103 dataset, Figure 13
demonstrates that under Method 2, the egg is successfully segmented as a whole within the
same segment. However, when employing Method 1, the segmentation of the egg is either
separated or partially missed.

Finally, we compare the segmentation results of Method 2 with those of Segment Any-
thing [25]. For our method, the SLM-AttNet (1) model is used for comparison. For Segment
Anything, we use their published web demo to obtain the segmentation results via select-
ing the “segment everything” mode without adding any extra prompts. The segmenta-
tion results of the two multi-ingredient image examples are shown in Figures 15 and 16,
respectively. We observed that both models segmented the ingredients well, and Segment
Anything returned more accurate boundaries than did the proposed method. However,
Segment Anything over-segmented the ingredients into several small pieces that are dif-
ficult to distinguish. In contrast, our method grouped the same ingredient into the same
segment. As our objective is to identify the ingredients in the food images, it is necessary
to segment them as completely as possible. Therefore, we argue that the segmentation
results obtained using our method are more suitable in terms of ingredient recognition.

input image SL AttNet(1) Segment Anything segmentation examples

/A

Figure 15. Comparison of segmentation results of our method with Segment Anything. Results show

"™

that the Segment Anything model over-segments the ingredient into small pieces that are difficult
to identify.

input image SL AttNet(1) Segment Anything segmentation examples

2

J

s
o—‘
e

r ,4

Figure 16. Comparison of the segmentation results of our method with Segment Anything. Results
show that the Segment Anything model over-segments the ingredient into small pieces that are dif-
ficult to identify.
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7.4. Evaluation of Food Segmentation

In order to validate the generality of the proposed segmentation framework, the exam-
ination for food segmentation is introduced using the UECFoodPix COMPLETE dataset.
Food segmentation generally refers to the process of segmenting food items from the back-
ground in an image. We select SLM-AttNet (1) as the backbone and use Method 2 for food
segmentation. We calculate the mloU and compare it with the results of previous stud-
ies, such as UEC FoodPix [29], GourmetNet [22], and BayesianGourmetNet [45]. Table 5
presents the results. Our ingredient segmentation framework performs better than UEC
FoodPix but slightly worse than Deeplabv3+.

Table 5. Comparison of food segmentation performance with SOTA methods on UECFoodPix COM-
PLETE dataset.

Models mIOU
UECFoodPix [29] 55.55%
GourmetNet [22] 65.13%

BayesianGourmetNet [45] 66%
Ours 60.18%

These results suggest that AttNet (1), a single-ingredient classification model, can be
used as a backbone for partially addressing food segmentation. However, the proposed
method is significantly inferior to GourmetNet. It appears that the single-ingredient classi-
fication model lacks the ability to segment dishes in the food images based on the proposed
segmentation framework. Therefore, we plan to further explore the food classification
model to enhance the performance of dish segmentation in the food images.

In summary, our qualitative and quantitative analyses indicate that the framework
using SLM-AttNet (1) as the backbone and applying Method 2 to ingredient segmentation
leads to better ingredient segments for the following ingredient recognition. However,
we identify the drawbacks of the proposed approach: (1) some different ingredients, or
some parts of the ingredients and the background in the image, may be segmented into the
same segment and (2) some parts of the background may be segmented into the ingredient
segments because of their similar visual features.

8. Conclusions

In this study, we introduced a hierarchical ingredient structure based on a standardized
definition of ingredient categories for addressing the issue of the lack of ingredient datasets.
This dataset selected 110 ingredient categories covering an entire food taxonomy, and col-
lected 10,750 individual ingredient images with various cutting and cooking methods.

Then, we trained or fine-tuned the CNN-based single-ingredient classification models on
the above dataset, and proposed a multiple ingredient segmentation framework that utilizes
a single-ingredient classification model as the backbone to extract feature maps and generate
masks for ingredient segmentation. This framework does not need pixel-level annotations,
providing a more practical and cost-effective solution for food ingredient segmentation.

As a crucial component of this framework, we investigated the effectiveness of differ-
ent backbone models for segmentation tasks. The significance of our experiments demon-
strates that our proposed method, although simple, is highly effective. Importantly, our
segmentation approach differs from methods relying on pixel-level annotation datasets,
as we only need to train a single-ingredient classification model, eliminating the need for
time-consuming and labor-intensive annotation datasets. We believe this is an important
aspect for future research.

Finally, we evaluated the segmentation performance using five metrics—IoU, Dice,
Purity, Entirety, and LoGTs—to explore the optimal backbone model and feature process-
ing method. Our findings indicated that the optimal result was achieved when employing
SLM-AttNet (1) and applying Method 2 for the ingredient segmentation.
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Our proposed multi-ingredient segmentation framework lays the foundation and pro-
vides support for further advances in ingredient recognition, nutritional assessment, and
recipe recommendations. Specifically, the accurate segmentation of ingredients enables
more precise ingredient recognition, which in turn facilitates more accurate nutritional as-
sessment, and more personalized recipe recommendations.

In future work, our objective is to tackle the issues of different ingredients being seg-
mented into the same segment and some parts of the background being segmented into
ingredient segments. We plan to enhance our ingredient segmentation framework through
integrating a Food Segmentation module to remove non-food regions from images, thereby
minimizing the influence of the background on ingredient segmentation.

Moreover, it is necessary to provide more results-based segmentation models to as-
sess the effectiveness of the proposed method.
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Appendix A
List of 110 level 4 ingredient categories.
Index Ingredient Index Ingredient Index Ingredient Index Ingredient
Category Category Category Category
C1 green caviar C29 yam C57 daikon C85 other white flesh
c2 raspberries C30 apple C58 grape C86 sweat potato
C3 peach C31 green onion C59 pineapple cs87 broccoli
C4 enoki C32 orange C60 asparagus C88 broad beans
C5 avocado C33 apricot Col cheese C89 Chinese chives
Co6 konpu C34 wakame C62 cabbage C90 bamboo shoot
Cc7 sesame seeds C35 crab C63 cream 91 celery stem
Cc8 eel C36 corn Co4 octopus C92 lotos
green
9 yogurt C37 soybean C65 peas C93 peanuts
C10 papaya C38 hazel nuts Co6 fig C9%4 chickpea
Cl1 bonito C39 Bok choy Ce7 kidney beans C95 potato
C12 pitaya C40 oyster Co8 sut;il;);ver C9% pumpkin seeds
C13 chestnuts c41 cauliflower C69 lemon c97 tomato
Cl4 pear C42 cherry C70 kiwi C98 cattle
C15 purple laver C43 lobster C71 eggplant C99 poultry
C16 salmon C44 wax gourd c72 grape fruits C100 soybean
C17 banana C45 almond C73 mushroom C101 onion
C18 Snow pea C46 blueberry C74 celtuce C102 oyster
mushroom
C19 black rice C47 lettuce C75 meat product C103 cucumber
C20 bean sprout C48 tree ears C76 abalone C104 pepper




J. Imaging 2023, 9, 205 22 of 23

Index Ingredient Index Ingredient Index Ingredient Index Ingredient
Category Category Category Category
C21 walnuts C49 mackerels C77 watermelon C105 carrot
Cc22 tuna C50 shimeji C78 kidney bean C106 shiitake
C23 melon C51 pumpkin C79 okra C107 strawberry
C24 bitter melon C52 cashews C80 Chinese C108 swine
cabbage
C25 pistachio C53 squids C81 clam C109 shrimp
C26 mantis shrimp C54 mango C82 egg C110 wheat_product
C27 garlic stem C55 millet C83 pecan
C28 rice C56 spinach C84 tofu
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