A Deep Learning-Based Decision Support Tool for Plant-Parasitic Nematode Management
Abstract
:1. Introduction
2. Related Works
Nematode Management
3. Materials and Methods
3.1. Sample Collection and Nematode Extraction
3.2. Image Acquisition and Settings
3.3. Data Collection and Data Preparation
3.4. YOLO Model
3.4.1. YOLOv5 Model
3.4.2. YOLOv6 Model
3.4.3. YOLOv7 Model
3.5. Django Web Framework
3.6. Database Diagram
3.7. Pest Detection Module
3.8. Evaluation Matrix
4. Results and Discussion
Simulation Result of YOLOv5-Based DST
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Palomares-Rius, J.E.; Escobar, C.; Cabrera, J.; Vovlas, A.; Castillo, P. Anatomical alterations in plant tissues induced by plant-parasitic nematodes. Front. Plant Sci. 2017, 8, 1987. [Google Scholar] [CrossRef]
- Jung, C.; Wyss, U. New approaches to control plant parasitic nematodes. Appl. Microbiol. Biotechnol. 1999, 51, 439–446. [Google Scholar] [CrossRef]
- Ferreira, J.M.; Carreira, D.N.; Braga, F.R.; Soares, F.E.d.F. First report of the nematicidal activity of Flammulina velutipes, its spent mushroom compost and metabolites. 3 Biotech 2019, 9, 410. [Google Scholar] [CrossRef] [PubMed]
- Vieira, P.; Gleason, C. Plant-parasitic nematode effectors—Insights into their diversity and new tools for their identification. Curr. Opin. Plant Biol. 2019, 50, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Mitchum, M.G.; Hussey, R.S.; Baum, T.J.; Wang, X.; Elling, A.A.; Wubben, M.; Davis, E.L. Nematode effector proteins: An emerging paradigm of parasitism. New Phytol. 2013, 199, 879–894. [Google Scholar] [CrossRef]
- Čepulytė, R.; Būda, V. Toward chemical ecology of plant-parasitic nematodes: Kairomones, pheromones, and other behaviorally active chemical compounds. J. Agric. Food Chem. 2022, 70, 1367–1390. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.T.; Haegeman, A.; Danchin, E.G.; Gaur, H.S.; Helder, J.; Jones, M.G.; Kikuchi, T.; Manzanilla-López, R.; Palomares-Rius, J.E.; Wesemael, W.M. Top 10 plant-parasitic nematodes in molecular plant pathology. Mol. Plant Pathol. 2013, 14, 946–961. [Google Scholar] [CrossRef] [PubMed]
- Trudgill, D.L.; Blok, V.C. Apomictic, polyphagous root-knot nematodes: Exceptionally successful and damaging biotrophic root pathogens. Annu. Rev. Phytopathol. 2001, 39, 53–77. [Google Scholar] [CrossRef]
- Schratzberger, M.; Holterman, M.; van Oevelen, D.; Helder, J. A worm’s world: Ecological flexibility pays off for free-living nematodes in sediments and soils. BioScience 2019, 69, 867–876. [Google Scholar] [CrossRef]
- Barker, K.R.; Koenning, S.R. Developing sustainable systems for nematode management. Annu. Rev. Phytopathol. 1998, 36, 165–205. [Google Scholar] [CrossRef]
- Phani, V.; Khan, M.R.; Dutta, T.K. Plant-parasitic nematodes as a potential threat to protected agriculture: Current status and management options. Crop Prot. 2021, 144, 105573. [Google Scholar] [CrossRef]
- Ul Haq, I.; Sarwar, M.K.; Faraz, A.; Latif, M.Z. Synthetic chemicals: Major component of plant disease management. In Plant Disease Management Strategies for Sustainable Agriculture through Traditional and Modern Approaches; Springer: Cham, Switzerland, 2020; pp. 53–81. [Google Scholar]
- Liang, L.-M.; Zou, C.-G.; Xu, J.; Zhang, K.-Q. Signal pathways involved in microbe–nematode interactions provide new insights into the biocontrol of plant-parasitic nematodes. Philos. Trans. R. Soc. B 2019, 374, 20180317. [Google Scholar] [CrossRef] [PubMed]
- Randig, O.; Leroy, F.; Castagnone-Sereno, P. RAPD characterization of single females of the root-knot nematodes, Meloidogyne spp. Eur. J. Plant Pathol. 2001, 107, 639–643. [Google Scholar] [CrossRef]
- Correa, V.R.; dos Santos, M.F.A.; Almeida, M.R.A.; Peixoto, J.R.; Castagnone-Sereno, P.; Carneiro, R.M.D.G. Species-specific DNA markers for identification of two root-knot nematodes of coffee: Meloidogyne arabicida and M. izalcoensis. Eur. J. Plant Pathol. 2013, 137, 305–313. [Google Scholar] [CrossRef]
- Pun, T.B.; Neupane, A.; Koech, R. Quantification of root-knot nematode infestation in tomato using digital image analysis. Agronomy 2021, 11, 2372. [Google Scholar] [CrossRef]
- Holladay, B.H.; Willett, D.S.; Stelinski, L.L. High throughput nematode counting with automated image processing. BioControl 2016, 61, 177–183. [Google Scholar] [CrossRef]
- Toumi, F.; Waeyenberge, L.; Viaene, N.; Dababat, A.; Nicol, J.M.; Ogbonnaya, F.; Moens, M. Development of two species-specific primer sets to detect the cereal cyst nematodes Heterodera avenae and Heterodera filipjevi. Eur. J. Plant Pathol. 2013, 136, 613–624. [Google Scholar] [CrossRef]
- Ye, W.; Zeng, Y.; Kerns, J. Molecular characterisation and diagnosis of root-knot nematodes (Meloidogyne spp.) from turfgrasses in North Carolina, USA. PLoS ONE 2015, 10, e0143556. [Google Scholar] [CrossRef]
- Cardellicchio, A.; Solimani, F.; Dimauro, G.; Petrozza, A.; Summerer, S.; Cellini, F.; Renò, V. Detection of tomato plant phenotyping traits using YOLOv5-based single stage detectors. Comput. Electron. Agric. 2023, 207, 107757. [Google Scholar] [CrossRef]
- Wang, D.; He, D. Channel pruned YOLO V5s-based deep learning approach for rapid and accurate apple fruitlet detection before fruit thinning. Biosyst. Eng. 2021, 210, 271–281. [Google Scholar] [CrossRef]
- Sozzi, M.; Cantalamessa, S.; Cogato, A.; Kayad, A.; Marinello, F. Automatic bunch detection in white grape varieties using YOLOv3, YOLOv4, and YOLOv5 deep learning algorithms. Agronomy 2022, 12, 319. [Google Scholar] [CrossRef]
- Uhlemann, J.; Cawley, O.; Kakouli-Duarte, T. Nematode Identification using Artificial Neural Networks. In Proceedings of DeLTA, Lieusaint, France, 8–10 July 2020; pp. 13–22. [Google Scholar]
- Akintayo, A.; Tylka, G.L.; Singh, A.K.; Ganapathysubramanian, B.; Singh, A.; Sarkar, S. A deep learning framework to discern and count microscopic nematode eggs. Sci. Rep. 2018, 8, 9145. [Google Scholar] [CrossRef]
- O’Mahony, N.; Campbell, S.; Carvalho, A.; Harapanahalli, S.; Hernandez, G.V.; Krpalkova, L.; Riordan, D.; Walsh, J. Deep learning vs. traditional computer vision. In Advances in Computer Vision: Proceedings of the 2019 Computer Vision Conference (CVC), Las Vegas, NV, USA, 2–3 May 2019; Springer: Cham, Switzerland, 2020; Volume 943, pp. 128–144. [Google Scholar]
- Thevenoux, R.; Van Linh, L.; Villessèche, H.; Buisson, A.; Beurton-Aimar, M.; Grenier, E.; Folcher, L.; Parisey, N. Image based species identification of Globodera quarantine nematodes using computer vision and deep learning. Comput. Electron. Agric. 2021, 186, 106058. [Google Scholar] [CrossRef]
- Abade, A.; Porto, L.F.; Ferreira, P.A.; de Barros Vidal, F. NemaNet: A convolutional neural network model for identification of soybean nematodes. Biosyst. Eng. 2022, 213, 39–62. [Google Scholar] [CrossRef]
- Qing, X.; Wang, Y.; Lu, X.; Li, H.; Wang, X.; Li, H.; Xie, X. NemaRec: A deep learning-based web application for nematode image identification and ecological indices calculation. Eur. J. Soil Biol. 2022, 110, 103408. [Google Scholar] [CrossRef]
- Shabrina, N.H.; Lika, R.A.; Indarti, S. Deep learning models for automatic identification of plant-parasitic nematode. Artif. Intell. Agric. 2023, 7, 1–12. [Google Scholar] [CrossRef]
- Čirjak, D.; Miklečić, I.; Lemić, D.; Kos, T.; Pajač Živković, I. Automatic pest monitoring systems in apple production under changing climatic conditions. Horticulturae 2022, 8, 520. [Google Scholar] [CrossRef]
- Bonczek, R.H.; Holsapple, C.W.; Whinston, A.B. Foundations of Decision Support Systems; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Eom, S.; Kim, E. A survey of decision support system applications (1995–2001). J. Oper. Res. Soc. 2006, 57, 1264–1278. [Google Scholar] [CrossRef]
- Pallathadka, H.; Mustafa, M.; Sanchez, D.T.; Sajja, G.S.; Gour, S.; Naved, M. Impact of machine learning on management, healthcare and agriculture. Mater. Today Proc. 2023, 80, 2803–2806. [Google Scholar] [CrossRef]
- Rinaldi, M.; He, Z. Decision support systems to manage irrigation in agriculture. Adv. Agron. 2014, 123, 229–279. [Google Scholar]
- Been, T.; Schomaker, C.; Molendijk, L. NemaDecide: A decision support system for the management of potato cyst nematodes. In Potato in Progress: Science Meets Practice; Wageningen Academic Publishers: Wageningen, The Netherlands, 2005; pp. 143–155. [Google Scholar]
- Omer, Z.S.; Levenfors, J.; Andersson, S.; Wallenhammar, A.-C. Development of a decision support system for managing Heterodera schahtii in sugar beet production. J. Nematol. 2019, 51, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ioannou, C.S.; Papanastasiou, S.A.; Zarpas, K.D.; Miranda, M.A.; Sciarretta, A.; Nestel, D.; Papadopoulos, N.T. Development and field testing of a Spatial Decision Support System to control populations of the European Cherry fruit fly, Rhagoletis cerasi, in commercial orchards. Agronomy 2019, 9, 568. [Google Scholar] [CrossRef]
- Kukar, M.; Vračar, P.; Košir, D.; Pevec, D.; Bosnić, Z. AgroDSS: A decision support system for agriculture and farming. Comput. Electron. Agric. 2019, 161, 260–271. [Google Scholar]
- Debeljak, M.; Trajanov, A.; Kuzmanovski, V.; Schröder, J.; Sandén, T.; Spiegel, H.; Wall, D.P.; Van de Broek, M.; Rutgers, M.; Bampa, F. A field-scale decision support system for assessment and management of soil functions. Front. Environ. Sci. 2019, 7, 115. [Google Scholar] [CrossRef]
- Kath, J.; Pembleton, K.G. A soil temperature decision support tool for agronomic research and management under climate variability: Adapting to earlier and more variable planting conditions. Comput. Electron. Agric. 2019, 162, 783–792. [Google Scholar] [CrossRef]
- Shaffer, M.; Brodahl, M. Rule-based management for simulation in agricultural decision support systems. Comput. Electron. Agric. 1998, 21, 135–152. [Google Scholar] [CrossRef]
- Navarro-Hellín, H.; Martinez-del-Rincon, J.; Domingo-Miguel, R.; Soto-Valles, F.; Torres-Sánchez, R. A decision support system for managing irrigation in agriculture. Comput. Electron. Agric. 2016, 124, 121–131. [Google Scholar] [CrossRef]
- Li, M.; Sui, R.; Meng, Y.; Yan, H. A real-time fuzzy decision support system for alfalfa irrigation. Comput. Electron. Agric. 2019, 163, 104870. [Google Scholar] [CrossRef]
- Li, H.; Zhao, Y.; Zheng, F. The framework of an agricultural land-use decision support system based on ecological environmental constraints. Sci. Total Environ. 2020, 717, 137149. [Google Scholar] [CrossRef]
- Zeng, C.; Zhang, F.; Luo, M. A deep neural network-based decision support system for intelligent geospatial data analysis in intelligent agriculture system. Soft Comput. 2022, 26, 10813–10826. [Google Scholar] [CrossRef]
- Roche, J.; Plantegenest, M.; Larroudé, P.; Thibord, J.-B.; Poggi, S. A decision support system based on Bayesian modelling for pest management: Application to wireworm risk assessment in maize fields. Smart Agric. Technol. 2023, 4, 100162. [Google Scholar] [CrossRef]
- Armstrong, L. Improving Data Management and Decision Support Systems in Agriculture; Burleigh Dodds Science Publishing Limited: Cambridge, UK, 2020. [Google Scholar]
- Gallardo, M.; Elia, A.; Thompson, R.B. Decision support systems and models for aiding irrigation and nutrient management of vegetable crops. Agric. Water Manag. 2020, 240, 106209. [Google Scholar] [CrossRef]
- Tylka, G.L.; Sisson, A.J.; Jesse, L.C.; Kennicker, J.; Marett, C.C. Testing for plant-parasitic nematodes that feed on corn in Iowa 2000–2010. Plant Health Prog. 2011, 12, 2. [Google Scholar] [CrossRef]
- Wiesel, L.; Daniell, T.J.; King, D.; Neilson, R. Determination of the optimal soil sample size to accurately characterise nematode communities in soil. Soil Biol. Biochem. 2015, 80, 89–91. [Google Scholar] [CrossRef]
- Holgado, R.; Skau, K.O.; Magnusson, C. Field damage in potato by lesion nematode Pratylenchus penetrans, its association with tuber symptoms and its survival in storage. Nematol. Mediterr. 2009, 37, 1. [Google Scholar]
- Ahmad, G.; Khan, A.; Khan, A.A.; Ali, A.; Mohhamad, H.I. Biological control: A novel strategy for the control of the plant parasitic nematodes. Antonie Van Leeuwenhoek 2021, 114, 885–912. [Google Scholar] [CrossRef]
- Good, J.M.; Taylor, A.L. Chemical Control of Plant-Parasitic Nematodes; Agricultural Research Service, US Department of Agriculture: Washington, DC, USA, 1965. [Google Scholar]
- Koenning, S.R.; Wrather, J.A.; Kirkpatrick, T.L.; Walker, N.R.; Starr, J.L.; Mueller, J.D. Plant-parasitic nematodes attacking cotton in the United States: Old and emerging production challenges. Plant Dis. 2004, 88, 100–113. [Google Scholar] [CrossRef]
- Liu, C.; Grabau, Z. Meloidogyne incognita management using fumigant and non-fumigant nematicides on sweet potato. J. Nematol. 2022, 54, 20220026. [Google Scholar] [CrossRef]
- Sánchez-Moreno, S.; Jiménez, L.; Alonso-Prados, J.L.; García-Baudín, J. Nematodes as indicators of fumigant effects on soil food webs in strawberry crops in Southern Spain. Ecol. Indic. 2010, 10, 148–156. [Google Scholar] [CrossRef]
- Watson, T.T.; Nelson, L.M.; Neilsen, D.; Neilsen, G.H.; Forge, T.A. Soil amendments influence Pratylenchus penetrans populations, beneficial rhizosphere microorganisms, and growth of newly planted sweet cherry. Appl. Soil Ecol. 2017, 117, 212–220. [Google Scholar] [CrossRef]
- Lahm, G.P.; Desaeger, J.; Smith, B.K.; Pahutski, T.F.; Rivera, M.A.; Meloro, T.; Kucharczyk, R.; Lett, R.M.; Daly, A.; Smith, B.T. The discovery of fluazaindolizine: A new product for the control of plant parasitic nematodes. Bioorg. Med. Chem. Lett. 2017, 27, 1572–1575. [Google Scholar] [CrossRef]
- Chen, J.; Li, Q.X.; Song, B. Chemical nematicides: Recent research progress and outlook. J. Agric. Food Chem. 2020, 68, 12175–12188. [Google Scholar] [CrossRef] [PubMed]
- Mashela, P.W.; De Waele, D.; Dube, Z.; Khosa, M.C.; Pofu, K.M.; Tefu, G.; Daneel, M.S.; Fourie, H. Alternative nematode management strategies. In Nematology in South Africa: A View from the 21st Century; Springer: Cham, Switzerland, 2017; pp. 151–181. [Google Scholar]
- Boerma, H.R.; Hussey, R.S. Breeding plants for resistance to nematodes. J. Nematol. 1992, 24, 242. [Google Scholar] [PubMed]
- Huang, G.; Allen, R.; Davis, E.L.; Baum, T.J.; Hussey, R.S. Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proc. Natl. Acad. Sci. USA 2006, 103, 14302–14306. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, X. Plant diseases and pests detection based on deep learning: A review. Plant Methods 2021, 17, 22. [Google Scholar] [CrossRef] [PubMed]
- Hussey, R.; Barker, K. Comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Dis. Report. 1973, 57, 1025–1028. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Koziarski, M.; Cyganek, B. Impact of low resolution on image recognition with deep neural networks: An experimental study. Int. J. Appl. Math. Comput. Sci. 2018, 28, 735–744. [Google Scholar] [CrossRef]
- Zhu, X.; Lyu, S.; Wang, X.; Zhao, Q. TPH-YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios. In Proceedings of IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 2778–2788. [Google Scholar]
- Liu, G.; Hu, Y.; Chen, Z.; Guo, J.; Ni, P. Lightweight object detection algorithm for robots with improved YOLOv5. Eng. Appl. Artif. Intell. 2023, 123, 106217. [Google Scholar] [CrossRef]
- Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Ke, Z.; Li, Q.; Cheng, M.; Nie, W. YOLOv6: A single-stage object detection framework for industrial applications. arXiv 2022, arXiv:2209.02976. [Google Scholar]
- Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 18–22 June 2023; pp. 7464–7475. [Google Scholar]
- Rubio, D. Beginning Django; Springer: New York, NY, USA, 2017. [Google Scholar]
- Pun, T.B.; Neupane, A.; Koech, R.; Walsh, K. Detection and counting of root-knot nematodes using YOLO models with mosaic augmentation. Biosens. Bioelectron. X 2023, 15, 100407. [Google Scholar] [CrossRef]
- Deng, X.; Liu, Q.; Deng, Y.; Mahadevan, S. An improved method to construct basic probability assignment based on the confusion matrix for classification problem. Inf. Sci. 2016, 340, 250–261. [Google Scholar] [CrossRef]
- Nagelkerke, N.J. A note on a general definition of the coefficient of determination. Biometrika 1991, 78, 691–692. [Google Scholar] [CrossRef]
- Kim, S.; Kim, H. A new metric of absolute percentage error for intermittent demand forecasts. Int. J. Forecast. 2016, 32, 669–679. [Google Scholar] [CrossRef]
- Farahani, A.; Voghoei, S.; Rasheed, K.; Arabnia, H.R. A brief review of domain adaptation. In Advances in Data Science and Information Engineering, Proceedings from ICDATA 2020 and IKE 2020; Springer: Cham, Switzerland, 2021; pp. 877–894. [Google Scholar]
- Pun, T.B.; Neupane, A.; Koech, R.; Owen, K.J. Detection and Quantification of Root-Knot Nematode (Meloidogyne Spp.) Eggs From Tomato Plants Using Image Analysis. IEEE Access 2022, 10, 123190–123204. [Google Scholar] [CrossRef]
- Kalwa, U.; Legner, C.; Wlezien, E.; Tylka, G.; Pandey, S. New methods of removing debris and high-throughput counting of cyst nematode eggs extracted from field soil. PLoS ONE 2019, 14, e0223386. [Google Scholar] [CrossRef] [PubMed]
- Szewczyk, N.J.; Kozak, E.; Conley, C.A. Chemically defined medium and Caenorhabditis elegans. BMC Biotechnol. 2003, 3, 19. [Google Scholar] [CrossRef]
- Nass, R.; Hamza, I. The nematode C. elegans as an animal model to explore toxicology in vivo: Solid and axenic growth culture conditions and compound exposure parameters. Curr. Protoc. Toxicol. 2007, 31, 1.9.1–1.9.18. [Google Scholar] [CrossRef]
- Olivares, B.O.; Vega, A.; Calderón, M.A.R.; Rey, J.C.; Lobo, D.; Gómez, J.A.; Landa, B.B. Identification of soil properties associated with the incidence of banana wilt using supervised methods. Plants 2022, 11, 2070. [Google Scholar] [CrossRef]
- Rodríguez-Yzquierdo, G.; Olivares, B.O.; Silva-Escobar, O.; González-Ulloa, A.; Soto-Suarez, M.; Betancourt-Vásquez, M. Mapping of the susceptibility of Colombian Musaceae lands to a deadly disease: Fusarium oxysporum f. sp. cubense Tropical Race 4. Horticulturae 2023, 9, 757. [Google Scholar] [CrossRef]
- Olivares, B. Machine learning and the new sustainable agriculture: Applications in banana production systems of Venezuela. Agric. Res. Updates 2022, 42, 133–157. [Google Scholar]
- Olivares, B.O.; Rey, J.C.; Perichi, G.; Lobo, D. Relationship of microbial activity with soil properties in banana plantations in Venezuela. Sustainability 2022, 14, 13531. [Google Scholar] [CrossRef]
- Olivares, B.O.; Vega, A.; Rueda Calderón, M.A.; Montenegro-Gracia, E.; Araya-Almán, M.; Marys, E. Prediction of banana production using epidemiological parameters of black sigatoka: An application with random forest. Sustainability 2022, 14, 14123. [Google Scholar] [CrossRef]
- Olivares Campos, B.O. Evaluation of the Incidence of Banana Wilt and its Relationship with Soil Properties. In Banana Production in Venezuela: Novel Solutions to Productivity and Plant Health; Springer: Cham, Switzerland, 2023; pp. 95–117. [Google Scholar]
- Olivares Campos, B.O. Fusarium Wilt of Bananas: A Threat to the Banana Production Systems in Venezuela. In Banana Production in Venezuela: Novel Solutions to Productivity and Plant Health; Springer: Cham, Switzerland, 2023; pp. 59–93. [Google Scholar]
- Li, D.; Ahmed, F.; Wu, N.; Sethi, A.I. Yolo-JD: A Deep Learning Network for jute diseases and pests detection from images. Plants 2022, 11, 937. [Google Scholar] [CrossRef] [PubMed]
DSS | Application | Methods | Reference |
---|---|---|---|
NemaDecide | Crop rotation | Stochastic and probabilistic methods | [35] |
SBN-Watch | Crop rotation | Seinhorst equations | [36] |
Spatial DSS | Pest management | Degree day model and harvest date estimation | [37] |
AgroDSS | Prediction of pest population | Random forest and time series analysis | [38] |
Soil Navigator | Soil function assessment and management | Decision Tree, if then rules | [39] |
Spatial DST | Soil temperature prediction | Generalised additive mixed model | [40] |
Great Plains Framework for Agricultureal Resource Management (GPFARM) | Weed control, fertilisation, and harvest management | If then rules | [41] |
Smart Irrigation Decision Support System (SIDSS) | Irrigation management | Partial least square regression and fuzzy inference system | [42] |
Irrigation decision support system (IDSS) | Irrigation management | Fuzzy inference system | [43] |
Land-use Decision Support System (LDSS) | Land Management | Multivariate linear programming | [44] |
Deep neural network-based DSS | Crop yield prediction | Back propagation neural network and grey decision-making system | [45] |
Bayesian model-based DSS | Wireworm pest risk assessment | Bayesian model | [46] |
Model | Precision | Recall | F1-Score | mAP (IoU Threshold 50%) | Inference Time |
---|---|---|---|---|---|
YOLOv5-224 | 0.951 | 0.896 | 0.924 | 0.917 | 2.5 ms |
YOLOv5-480 | 0.974 | 0.991 | 0.983 | 0.993 | 2.7 ms |
YOLOv5-640 | 0.992 | 0.959 | 0.975 | 0.979 | 3.9 ms |
YOLOv6-224 | 0.913 | 0.940 | 0.927 | 0.970 | 3.01 ms |
YOLOv6-480 | 0.962 | 0.970 | 0.966 | 0.983 | 5.15 ms |
YOLOv6-640 | 0.969 | 0.960 | 0.965 | 0.982 | 8.22 ms |
YOLOv7-224 | 0.955 | 0.993 | 0.973 | 0.987 | 3.5 ms |
YOLOv7-480 | 0.991 | 0.990 | 0.990 | 0.995 | 8.3 ms |
YOLOv7-640 | 0.990 | 0.994 | 0.996 | 0.991 | 15.1 ms |
Model | Coefficient of Determination (R2) | Mean Absolute Percentage Error (MAPE) |
---|---|---|
YOLOv5-224 | 0.850 | 12.311 |
YOLOv5-480 | 0.944 | 4.375 |
YOLOv5-640 | 0.957 | 2.978 |
YOLOv6-224 | 0.763 | 14.191 |
YOLOv6-480 | 0.726 | 16.243 |
YOLOv6-640 | 0.775 | 16.458 |
YOLOv7-224 | 0.846 | 12.119 |
YOLOv7-480 | 0.940 | 4.011 |
YOLOv7-640 | 0.964 | 3.582 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pun, T.B.; Neupane, A.; Koech, R. A Deep Learning-Based Decision Support Tool for Plant-Parasitic Nematode Management. J. Imaging 2023, 9, 240. https://doi.org/10.3390/jimaging9110240
Pun TB, Neupane A, Koech R. A Deep Learning-Based Decision Support Tool for Plant-Parasitic Nematode Management. Journal of Imaging. 2023; 9(11):240. https://doi.org/10.3390/jimaging9110240
Chicago/Turabian StylePun, Top Bahadur, Arjun Neupane, and Richard Koech. 2023. "A Deep Learning-Based Decision Support Tool for Plant-Parasitic Nematode Management" Journal of Imaging 9, no. 11: 240. https://doi.org/10.3390/jimaging9110240
APA StylePun, T. B., Neupane, A., & Koech, R. (2023). A Deep Learning-Based Decision Support Tool for Plant-Parasitic Nematode Management. Journal of Imaging, 9(11), 240. https://doi.org/10.3390/jimaging9110240