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Abstract: Plant-parasitic nematodes (PPN), especially sedentary endoparasitic nematodes like root-
knot nematodes (RKN), pose a significant threat to major crops and vegetables. They are responsible
for causing substantial yield losses, leading to economic consequences, and impacting the global
food supply. The identification of PPNs and the assessment of their population is a tedious and time-
consuming task. This study developed a state-of-the-art deep learning model-based decision support
tool to detect and estimate the nematode population. The decision support tool is integrated with
the fast inferencing YOLOv5 model and used pretrained nematode weight to detect plant-parasitic
nematodes (juveniles) and eggs. The performance of the YOLOv5-640 model at detecting RKN eggs
was as follows: precision = 0.992; recall = 0.959; F1-score = 0.975; and mAP = 0.979. YOLOv5-640
was able to detect RKN eggs with an inference time of 3.9 milliseconds, which is faster compared
to other detection methods. The deep learning framework was integrated into a user-friendly web
application system to build a fast and reliable prototype nematode decision support tool (NemDST).
The NemDST facilitates farmers/growers to input image data, assess the nematode population,
track the population growths, and recommend immediate actions necessary to control nematode
infestation. This tool has the potential for rapid assessment of the nematode population to minimise
crop yield losses and enhance financial outcomes.

Keywords: plant-parasitic nematodes; root-knot nematodes; YOLO model; nematode detection/
counting; prototype tool; decision support tool

1. Introduction

While the majority of nematodes in the soil are free-living and beneficial to plant
growth [1], plant parasitic nematodes (PPN) infest economically important crops world-
wide [2]. The damage caused by PPN is estimated to be 215 billion USD globally [3]. These
parasites are categorised into two groups: ectoparasitic and endoparasitic. Ectoparasitic
nematodes stay outside their host and feed on root tissue using a stylet, whereas endopara-
sitic nematodes enter the root system and damage root tissue [1]. Sedentary endoparasitic
PPNs are most harmful as they inhabit inside of their host plant tissues for the majority of
their life span and evolve to feed on root tissue perpetually [1]. The root-knot nematodes
(RKN) and cyst nematodes are widely studied pestiferous sedentary endoparasites due to
their worldwide agronomic influences [4]. These PPNs use a stylet to penetrate the host
plant cell and also release protein to modify the host cell into a nutrient source [5]. On the
other hand, plants infested by PPN release molecules that help nematodes move toward
the plants and explore feeding sites [6]. The deformation and damage caused by PPN
may lead to a malfunction of the root system, making it incapable of absorbing nutrients
and water from the rhizosphere. PPN invasion may appear obscure because farmers are
often unclear about the symptoms of the microscopic pest infestation [7]. In addition, the

J. Imaging 2023, 9, 240. https://doi.org/10.3390/jimaging9110240 https://www.mdpi.com/journal/jimaging

https://doi.org/10.3390/jimaging9110240
https://doi.org/10.3390/jimaging9110240
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com
https://orcid.org/0000-0003-0188-9641
https://orcid.org/0000-0002-1010-7552
https://doi.org/10.3390/jimaging9110240
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com/article/10.3390/jimaging9110240?type=check_update&version=1


J. Imaging 2023, 9, 240 2 of 18

symptoms of the affected plants are similar to those caused by nutrient deficiency, poor
yield, and wilt appearance [1]. These nematodes can survive through the infestation period
of most crops [8,9].

To mitigate the problem caused by PPN, farmers commonly use a range of tradi-
tional and mechanical methods such as crop rotation, resistant cultivars, and destruction
of crop root remnants [10,11]. PPN may also be controlled using chemical nematicides
(e.g., organophosphates and carbamates) to optimise crop yield [12]. However, overuse of
chemicals may degrade soil quality, become hazardous to the environment [13], and may
cause groundwater contamination and poison food materials. Chemical nematicides are
thus restricted because of their potentially harmful effects [13].

Effective and efficient application of pesticides can eliminate pests while minimising
soil damage and environmental contamination, thus maximising crop productivity. This
can be facilitated by the accurate identification and quantification of PPN. Traditionally,
PPN are identified and counted using a manual microscope. Although this method is
relatively simple, it is laborious and time consuming. Alternative approaches to the manual
identification and quantification of nematodes include methods based on Deoxyribonucleic
Acid (DNA) [14,15], morphological image [16,17], and sequence [18,19].

Recently, state-of-the-art deep learning methods have been applied to agricultural
problems such as plant phenotyping [20] and fruit detections [21,22]. It has also been used
to identify PPN [23]. For instance, a deep learning model was employed to detect and count
soybeancyst nematode eggs in the microscopic images [24]. Traditional image processing
and computer vision methods are still irreplaceable in domain-specific problems (virtual
reality, video processing, and motion captures); however, they have been outperformed by
deep learning methods in object detection, image classification, and semantic segmenta-
tion [25]. Deep learning and computer vision were used to identify Globodera pallida and
Globodera rostochiensis morphological features (stylet length) [26]. Another deep learning
model, NemaNet was developed to detect phytonematodes in soybean crops [27]. The
NemaNet model utilised features of the DenseNet and Inception models and achieved an
accuracy of 0.9817 and an F1 score of 0.9821. The deep learning model based on ResNet 101
was developed to detect and classify different genera of nematodes [28]. The deep learning
models EfficientNetV2B0 ResNet101v2, EfficientNetV2M, and CoAtNet-0 were used to
detect nematodes in Indonesian soils [29]. EfficientNetV2M scored the highest accuracy
with a 98.66% mean class accuracy and a 98.26% average precision. All these models
were only used to detect and classify nematodes. Nevertheless, there remains a gap be-
tween model innovation and practical implementation strategies for the benefit of farmers.
A significant benefit of pest monitoring and management systems is to collect data and
enable farmers to make rapid pest control decisions [30].

Thus, this prototype deep learning-based decision support tool (NemDST) was de-
signed to support farmers, offer an easy-to-use interactive interface for image data upload,
rapidly detect nematodes, and display estimated nematode populations clearly and effi-
ciently. In addition, this tool monitors nematode population growth and suggests effective
nematode control strategies.

2. Related Works

A typical decision support system (DSS) consists of tools to support decision mak-
ing [31] and often contains some interactive features. With the advancement of information
and communication technologies, decision support systems have been widely applied in
production and operation management, transportation, logistics, marketing and finance,
hospitals, and healthcare facilities [32]. Poor decision making, crop selection, and a shortage
of support systems or tools for enhanced crop output are significant hurdles in agricultural
production [33]. The essential purpose of a DSS in agriculture is to support farmers in
their decision-making processes [34]. A DSS has the potential to facilitate farmers to solve
agriculture problems efficiently with a complete understanding of the farm management
process. Various decision support systems used in agriculture are shown in Table 1. These
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decision support systems collect and analyse soil, pest, crop, and environmental data to
maximise crop productivity and financial return. Certain DSS include economic data along
with optimisation methods to generate comprehensive solutions for the user.

Table 1. Decision support systems used in agriculture.

DSS Application Methods Reference

NemaDecide Crop rotation Stochastic and probabilistic
methods [35]

SBN-Watch Crop rotation Seinhorst equations [36]

Spatial DSS Pest management Degree day model and harvest
date estimation [37]

AgroDSS Prediction of pest population Random forest and time
series analysis [38]

Soil Navigator Soil function assessment
and management Decision Tree, if then rules [39]

Spatial DST Soil temperature prediction Generalised additive
mixed model [40]

Great Plains Framework for Agricultureal
Resource Management (GPFARM)

Weed control, fertilisation,
and harvest management If then rules [41]

Smart Irrigation Decision Support
System (SIDSS) Irrigation management Partial least square regression and

fuzzy inference system [42]

Irrigation decision support system (IDSS) Irrigation management Fuzzy inference system [43]

Land-use Decision Support
System (LDSS) Land Management Multivariate linear programming [44]

Deep neural network-based DSS Crop yield prediction Back propagation neural network
and grey decision-making system [45]

Bayesian model-based DSS Wireworm pest risk
assessment Bayesian model [46]

Following our review of the literature, it appears that NemaDecide was the first
decision support system developed to manage plant parasitic nematodes by implementing
crop rotation with ware and seed potatoes for the succeeding year [35]. The NemaMod
component serves as the core engine of NemaDecide, providing nematological information
necessary for conducting a cost–benefit analysis on the soil sampling methods. SBN-Watch
was used to analyse the effect of crop rotation and sugar beet varieties on the Heterodera
schachtii Schmidt population [36]. The spatial decision support system was employed to
estimate the Rhagoletis cerasi severity and reduce the chemical footprint on cherry fruit
and its surroundings [37]. This method used two algorithms: one based on day degree
mode and the other relying on parameters such as harvest dates, pre-harvest date, and
percentage of the trap. The DSS then estimated the efficacy of chemical control strategies.
Soil Navigator is another example of a DSS used to investigate soil function and provide
soil management guidance to farmers [39]. This system used if-then rules to analyse soil
function data such as climate regulation, water purification, primary production, and
nutrient cycling. Similarly, a web-based spatial decision support tool was developed to
predict soil temperature using generalised additive mixed modeling [40].

Few machine learning-based decision support systems have been developed and used
in the agricultural sector. A rule-based agriculture DSS incorporated soil, weather, and
pest data to support farm management decisions [41]. This DSS enabled farmers to easily
test farm management rules for farm production and revenue. Smart irrigation decision
support systems use soil sensors to estimate the soil moisture and temperature in addition
to weather data such as temperature, rainfall, relative humidity, and dew point [42]. Then,
partial least square regression (PLSR) and an adaptive neuro-fuzzy inference system were
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used to help farmers in irrigation management [42]. Likewise, fuzzy inference system-
based IDSS was implemented for irrigation management [43]. The IDSS analysed weather
data, soil moisture, and alfalfa height to infer appropriate irrigation time and quantity.
Similarly, LDSS was developed to manage agricultural land based on environmental
constraints [44]. LDSS analysed soil quality, irrigation data, and ecological factors and
computed the optimal land-use structure. In agriculture, decision support systems can be
applied for better management of fertiliser, crop rotation, pest monitoring, and optimising
livestock diets [47]. AgroDSS uses data mining methods that include predictive modeling,
time series clustering functionalities, and structure change detection to assist farmers
in effective farm management [38]. The neural network-based DSS was developed to
analyse geospatial data and predict seasonal catastrophes and agricultural indicators [45].
Agriculture DSS was also used to manage nutrients and irrigation on the farm [48]. A
Bayesian model-based DSS was developed to predict the potential risk of wireworm [46].
The model used soil, field, and weather data to analyse the effects on the wireworm
population. This study revealed that the spring season with mild temperatures boosted
the wireworm population. Sandy soil is unfavourable to the wireworm development cycle;
however, the acidic nature of the soil increases wireworms. Field history with diversified
rotation and meadow has a positive effect on the wireworm population.

Nematode Management

Once the population of PPN in the sample is determined, their severity is estimated
by subtracting the damage threshold, which is defined as the density of the nematode
population tolerable based on the particular crops and soil type without causing yield
losses [49]. The damage threshold for a particular crop differs for each nematode genus.
Damage thresholds are presented in different standards and are expressed in 100 cm3 soil
and per gram dry root [49]. However, a 200 g sample size was reported to be a reliable
and precise measure of the nematode population density [50]. Another study expressed
a damage threshold per 250 g of soil [51]. After an accurate assessment of plant parasitic
nematodes, a suitable nematode control measure is applied to suppress the nematode
population. There are different nematode control methods such as biological control [52],
chemical control [53], and cultural practice [54].

The most common control strategy for nematodes involves the utilisation of chemical
compounds called nematicides. There are more than 20 chemicals available for chemical
control and the most common chemicals are methylbromide and chloropropene [53]. These
are fumigant nematicides used before sowing crops and are transferred through the soil
in the form of gas. The use of these nematicities, including methyl bromide, are restricted
to use because of increasing environmental safety concerns [55]. These products destroy
beneficial rhizosphere microorganisms [56] and soil exposed to fumigants is more suscep-
tible to nematode reinfestation [57]. Alternative to fumigants, non-fumigant nematicides
are water soluble or formulated in solid. Non-fumigant nematicides such as fluopyram
(Velum) and fluensulfone (Nimitiz) are capable of suppressing PPN without damaging the
natural ecosystem [58]. Amides, esters, ketones, thioethers, hydrazones, and tioxazafen are
the current nematicides used for nematode population suppression [59]. The appropriate
dose of nematicide can eliminate 85-90%. However, improperly applied nematicide can
delay plant growth and be highly toxic to some plants.

Crop rotation is one common cultural practice to minimise the nematode popula-
tion [54]. Crop rotation is accomplished by cultivating highly resistant crops to particular
species of nematode. Crop rotation is not applicable to suppress all types of nematode
species. Organic materials are used to minimise the RKN population. These organic
amendments include cattle manure, chicken litter, and compost [60]. These organic amend-
ments not only suppress the nematode population but also improve plant health and crop
yield. Predatory nematodes can be grown from decomposing organic material that feeds
plant-parasitic nematodes. Cultivating crop varieties with resistant nematodes is another
possible way to minimise plant parasitic nematode infestation. Some genetic varieties of
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crops have nematode resistance that limits the nematode population growth because of
an unsuitable host for nematode reproduction and poor feeding environment [61]. Also,
the transgenic plant can decrease the root galls and eggs by suppressing the parasitism
gene [62]. These control measures are implemented based on the impact of PPN on crops,
seasonal variabilities, and soil properties.

3. Materials and Methods

NemDST was developed in this study using web-based tools integrated with a deep
learning model. The deep learning-based pest detection system has three important tasks:
data labeling, model training, and model inference [63]. The model was trained using
self-collected data; however, the use of publicly available datasets is also possible. The
DSS system was designed for PPN and used pre-trained weights to detect and count
PPN. NemDST was implemented using Python and Django frameworks as shown in
Figure 1. The database management tool is facilitated by MySQL. The PyTorch library
was implemented to integrate the YOLO model into the NemDST web system. The YOLO
model consists of the pre-trained weight of nematode detection. The libraries used for this
decision support system are Django 3.2.5, Pillow 9.5.0, MySQL client 2.1.1, and Torch 2.0.1.
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3.1. Sample Collection and Nematode Extraction

Initially, the soil was prepared by combining sand and potting mix in a 1:1 ratio.
Then, tomato seedlings were transferred to a transparent 600 mL plastic container in
a greenhouse located at 24◦54′5′′ S, 152◦18′45′′ E (Central Queensland University Sci-
ence Laboratory, Bundaberg Queensland, Australia). The temperature was maintained at
20 ± 5 ◦C with 12 h of light. The RKN eggs were inserted into the roots of these plants after
five weeks. Subsequently, the roots were investigated five weeks later. The presence of root
galls confirmed the infestation of RKN in the plant’s roots.

The infected roots were then chopped and washed gently in the lab. This study used
Hussey methods to extract nematodes [64]. Roots were cut into 1 cm pieces and poured into
a 0.05% concentrated sodium hypochlorite solution. After five minutes, the root particles
were washed in a 135 µm aperture sieve stacked with a 25 µm aperture sieve. The eggs and
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residue were collected in the 25 µm sieve. This leftover was washed out from the sieve
using distilled water and kept in the container as a nematode egg sample. This nematode
egg sample was put in the petri dish for microscopic inspection. A sample of nematode
eggs is shown in Figure 2.
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3.2. Image Acquisition and Settings

Once the nematode egg sample was ready after extraction, a 5 mL sample was trans-
ferred to a 55 mm petri dish and placed on a microscope stage. A BX53 microscopic camera
was used with a 4× objective lens to acquire images. The differential interference contrast
(DIC) microscopy feature was used with high contrast and manual focus for the optimum
image quality. The captured image size was 1200 × 1600 pixels.

3.3. Data Collection and Data Preparation

After collecting image data of the nematode eggs, the eggs were labeled separately
using the annotation tool (labelImg). The labeling of nematode eggs was manually drawn
in the labeling software. The label information of the image was saved in Yolo format in
a text file. This nematode dataset was partitioned into training and validation sets in an
80:20 ratio, respectively. Similarly, the RKN egg dataset consisted of 415 images and was
split into training and validation sets in an 80:20 ratio.

3.4. YOLO Model

To detect plant parasitic nematodes, the YOLOv5 model was implemented to discern
and count PPN. The YOLO model uses a stage bounding box regressor to formulate object
detection problems [65]. The image is divided into sparse grids. The grid cell containing
the center of the object is accountable for object detection as shown in Figure 3. The grid cell
with a bounding box coordinate is assigned with a probability score, whereas the absence
of a bounding box coordinate in the grid cell is denoted with zero scores. YOLO models
initiate training by optimising the loss function shown in Equation (1).

Loss function = λcoord ∑S2

i=0 ∑B
j=0 1obj

ij (xi − x̂i)
2 + (yi − ŷ)2]

+λcoord ∑S2

i=0 ∑B
j=0 1obj

ij

(√wi −
√ŵi

)2
+

(√hi −
√ĥi

)2
]

+∑S2

i=0 ∑B
j=0 1obj

ij
(
Ci − Ĉi

)2
+ λnoobj ∑S2

i=0 ∑B
j=0 1obj

ij
(
Ci − Ĉi

)2

+∑S2

i=0 1obj
i ∑c∈classes (pi(c)− p̂i(c))

2

(1)

where 1obj
i represents the object appearance in cell i and 1obj

ij represents the jth bounding
box in cell i.
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This study employed YOLOv5, YOLOv6, and YOLOv7 to identify RKN eggs. The
High-Performance Computing graphic node (NVIDIA ® Tesla® P100, 16 GB Memory,
1328 MHz base clock, 3584 CUDA cores) owned by CQUniversity Australia was used to
run these models. These models were trained on three different image sizes (224 × 224,
480 × 480, and 640 × 640) to balance the computation burden associated with high-
resolution images and reduced accuracy due to low-resolution images [66]. The parameters
were set as 16 batch sizes, 105 epochs, 0.01 learning rate, and 0.937 momentum.

3.4.1. YOLOv5 Model

The YOLOv5 model consists of the YOLOv4 head, PANet, and CSPDarknet53 as the
main architecture [67] (Figure 4). The YOLOv5 model has five different variants; however,
the YOLOv5s model was employed to train on the nematode egg data set [68]. The
YOLOv5s model was chosen because it is applicable to lightweight computing. All other
variants of the YOLOv5 model were discarded because of a tradeoff between computational
burden and speed.
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3.4.2. YOLOv6 Model

The YOLOv6 model uses advanced architecture and training strategies to optimise
precise localisation and object detection [69] as shown in Figure 5. The model comprises the
backbone, neck, and head parts. The backbone consists of a convolutional neural network
that is responsible for feature extraction. The neck part uses Rep-PAN to extract deep-level
features with high-level attributes. YOLOv6 employs a hybrid channel method in the head
that detects objects and classes.
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3.4.3. YOLOv7 Model

The YOLOv7 model employs an advanced architecture called an extended efficient
layer aggregation network (E-ELAN) with a network learning enhancement feature
(Figure 6) [70]. The model also uses a scaling model to achieve greater inference speed. The
YOLOv7 model offers planned re-parameterisation training strategies to improve accuracy.
The YOLOv7 model is equipped with lead head prediction in the head part to optimise the
learning process dynamically and obtain accurate labels of objects.

J. Imaging 2023, 9, x FOR PEER REVIEW 9 of 19 
 

 

 
Figure 6. Architecture of YOLOv7. 

3.5. Django Web Framework 
Django is a Python server-side framework that facilitates Model-View-Controller 

(MVC) architecture and supports relational databases [71]. The MVC design pattern was 
utilised to design a web application on which the controller controls user requests and 
data. The controller can handle multiple views. The view manages presentation logic by 
rendering appropriate messages and data to the user. Models communicate with data-
bases to manipulate data such as ‘insert’, ‘update’, and ‘delete’. The model also validates 
integrity constraints and describes the relationship between objects. 

3.6. Database Diagram 
The MySQL database was used to store NemDST data. Three main modules for the 

preliminary testing of PPN detection and counting NemDST were designed (Figure 7). 
The Entity Relationship diagram was designed using the MySQL database tool and con-
sists of five entities. The user entity stores information about the user who can access the 
nematode decision support system. The farm and the plot info entities store information 
about the farm. The egg and juvenile entities store information about the image and the 
number of eggs and juveniles in the image data. 

Figure 6. Architecture of YOLOv7.

3.5. Django Web Framework

Django is a Python server-side framework that facilitates Model-View-Controller
(MVC) architecture and supports relational databases [71]. The MVC design pattern was
utilised to design a web application on which the controller controls user requests and
data. The controller can handle multiple views. The view manages presentation logic by
rendering appropriate messages and data to the user. Models communicate with databases
to manipulate data such as ‘insert’, ‘update’, and ‘delete’. The model also validates integrity
constraints and describes the relationship between objects.

3.6. Database Diagram

The MySQL database was used to store NemDST data. Three main modules for the
preliminary testing of PPN detection and counting NemDST were designed (Figure 7). The
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Entity Relationship diagram was designed using the MySQL database tool and consists of
five entities. The user entity stores information about the user who can access the nematode
decision support system. The farm and the plot info entities store information about the
farm. The egg and juvenile entities store information about the image and the number of
eggs and juveniles in the image data.
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3.7. Pest Detection Module

The pest detection module uses the YOLOv5 model as a background process to classify
and count the number of PPN and FLN. For juvenile detection, this module employs the
YOLOv5 weight file computed from the RKN detection model [72]. It facilitates the user to
choose the type of sample such as eggs, juvenile, and root galls. Then, the user can upload
images acquired from a microscopic camera. Once the user submits the images to NemDST,
the YOLO module will detect, classify, and count the PPN and FLN and present the totals
in the interface. The results of the detection module are shown in the result section.

3.8. Evaluation Matrix

In machine learning, a confusion matrix is an arrangement of actual and predicted
classes of objects in rows and columns [73]. The evaluation of classification can be per-
formed in terms of a confusion matrix. The common evaluation measures used in this study
are precision, recall, F1 score, mean average precision, coefficient of determination, and
mean absolute percentage error. Mean average precision is another popular metric in object
detection and classification. To calculate mAP, we first compute the average precision (AP)
of each class and compute the mean of AP over all classes as shown in Equation (2).

mAP =
1
n ∑k=n

k=1 APk (2)

where n is the number of classes and APk is the average precision of class k.
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The coefficient of determination (Equation (3)) is a dimensionless measurement of the
proportion of variance in the dependent variable that can be computed from independent
variables [74].

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (3)

where n denotes the number of samples, yi represents the actual value, ŷi denotes the
predicted value, and ȳi is the mean value of the actual value for i = 1 . . ... n.

Mean absolute percentage error (Equation (4)) is defined as the proportion of actual
values and predicted value to the actual value taken for the n number of data points [75].

MAPE = 1/n ∑n
1
|y− y′|

y
(4)

where y is the actual value, y′ is the predicted value, and n is the number of samples.

4. Results and Discussion

After training three YOLO models, they are subsequently assessed on the validation
set. The result of nematode egg detection on the test set is shown in Table 2. The RKN egg
detection result showed that YOLOv7-640 achieved the highest score of precision (0.990),
recall (0.994), F1 score (0.996), and mAP(0.991) with an inference time of 15.1 milliseconds
(ms). However, YOLOv5-640 attained similar accuracy while retaining an inference time
of 3.9 ms. Although YOLOv7-224 showed a 3.5 ms inference time, it produced lower
accuracy, demonstrating a precision of 0.955, recall of 0.993, F1 score of 0.973, and mAP
of 0.987, respectively. The inference time was lowest (2.5 ms) on YOLOv5-224 detection
whereas the highest was on YOLOv5-640 (3.9 ms). In addition, the YOLOv6 model with a
224 × 224 input image found the lowest accuracy with a precision of 0.913, recall of 0.940,
F1 score of 0.927, mAP of 0.970, and a 3.01 ms inference time. The RKN egg detection results
showed a slight reduction in the performance with low-resolution images. All the models
demonstrated more than a 90% accuracy; nevertheless, the YOLOv6 model had slightly
lower accuracy compared to YOLOv5 and YOLOv7. The YOLOv5-640 model exceeded
the results obtained from the convolutional selective autoencoder (CSAE) developed to
detect and count soybean-cyst nematode eggs [24]. In addition, the YOLOv5 model de-
tected nematode eggs faster compared to the CSAE model which required 1 frame per
second. Nevertheless, the deep learning model performance decreases as target domains
are shifted because it is sampled on the same distribution. To avoid these issues, various
deep domain adaptation techniques can be implemented, such as the feature-based adap-
tation method, instance-based adaptation, feature reconstruction, feature transformation,
adversarial method, and discrepancy-based method [76].

The machine and manual counting results of RKN eggs are shown in Table 3 and
Figures 8 and 9. YOLOv7-640 attained the highest correlation of manual and machine
counting of RKN eggs with R2 = 0.964 and MAPE = 3.582, whereas YOLOv6-480 showed the
lowest correlation of manual and machine counting with R2 = 0.957 and MAPE = 2.978. The
lowest correlation was due to an increase in the number of false positives, as the YOLOv6
model detected soil particles as RKN eggs. This might be caused by insufficient training
data. The YOLOv7-640 surpassed the outcome of RKN egg detection using conventional
image processing and computer vision methods [77]. YOLOv7-640 achieved results similar
to those of counting soybeancyst nematode eggs using CSAE [78]. The threshold method
used in the conventional image processing method cannot differentiate soil particles that
have a length and width similar to the RKN eggs [77]. YOLOv5-640 and YOLOv7-640
outperformed the image processing method used in [77] and accurately discriminate be-
tween soil particles and nematode eggs. However, the accuracies of both YOLOv5-640
and YOLOv7-640 could not attain the top scores because they were unable to discriminate
between certain soil particles that share the same colour as RKN eggs. Also, the model
was unable to distinguish spoiled RKN eggs, which seemed slightly faded and transpar-
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ent compared to RKN fertile eggs. This problem might be avoided by using a training
model with a large variety of data (limited amount of data was used to train the model in
our study).

Table 2. Result of nematode detection using YOLOv5, YOLOv6, and YOLOv7.

Model Precision Recall F1-Score mAP (IoU Threshold 50%) Inference
Time

YOLOv5-224 0.951 0.896 0.924 0.917 2.5 ms

YOLOv5-480 0.974 0.991 0.983 0.993 2.7 ms

YOLOv5-640 0.992 0.959 0.975 0.979 3.9 ms

YOLOv6-224 0.913 0.940 0.927 0.970 3.01 ms

YOLOv6-480 0.962 0.970 0.966 0.983 5.15 ms

YOLOv6-640 0.969 0.960 0.965 0.982 8.22 ms

YOLOv7-224 0.955 0.993 0.973 0.987 3.5 ms

YOLOv7-480 0.991 0.990 0.990 0.995 8.3 ms

YOLOv7-640 0.990 0.994 0.996 0.991 15.1 ms

Table 3. Correlation between manual and machine nematode egg detection using YOLOv5, YOLOv6,
and YOLOv7.

Model Coefficient of Determination (R2)
Mean Absolute Percentage

Error (MAPE)

YOLOv5-224 0.850 12.311

YOLOv5-480 0.944 4.375

YOLOv5-640 0.957 2.978

YOLOv6-224 0.763 14.191

YOLOv6-480 0.726 16.243

YOLOv6-640 0.775 16.458

YOLOv7-224 0.846 12.119

YOLOv7-480 0.940 4.011

YOLOv7-640 0.964 3.582

J. Imaging 2023, 9, x FOR PEER REVIEW 12 of 19 
 

 

counting of RKN eggs with R2 = 0.964 and MAPE = 3.582, whereas YOLOv6-480 showed 
the lowest correlation of manual and machine counting with R2 = 0.957 and MAPE = 2.978. 
The lowest correlation was due to an increase in the number of false positives, as the 
YOLOv6 model detected soil particles as RKN eggs. This might be caused by insufficient 
training data. The YOLOv7-640 surpassed the outcome of RKN egg detection using con-
ventional image processing and computer vision methods [77]. YOLOv7-640 achieved re-
sults similar to those of counting soybeancyst nematode eggs using CSAE [78]. The thresh-
old method used in the conventional image processing method cannot differentiate soil 
particles that have a length and width similar to the RKN eggs [77]. YOLOv5-640 and 
YOLOv7-640 outperformed the image processing method used in [77] and accurately dis-
criminate between soil particles and nematode eggs. However, the accuracies of both 
YOLOv5-640 and YOLOv7-640 could not attain the top scores because they were unable 
to discriminate between certain soil particles that share the same colour as RKN eggs. 
Also, the model was unable to distinguish spoiled RKN eggs, which seemed slightly faded 
and transparent compared to RKN fertile eggs. This problem might be avoided by using 
a training model with a large variety of data (limited amount of data was used to train the 
model in our study). 

Table 3. Correlation between manual and machine nematode egg detection using YOLOv5, 
YOLOv6, and YOLOv7. 

Model Coefficient of Determination 
(R2) 

Mean Absolute Percentage Error 
(MAPE) 

YOLOv5-224 0.850 12.311 
YOLOv5-480 0.944 4.375 
YOLOv5-640 0.957 2.978 
YOLOv6-224 0.763 14.191 
YOLOv6-480 0.726 16.243 
YOLOv6-640 0.775 16.458 
YOLOv7-224 0.846 12.119 
YOLOv7-480 0.940 4.011 
YOLOv7-640 0.964 3.582 

 
Figure 8. Manual and machine counting of RKN egg using YOLOv7-640. Figure 8. Manual and machine counting of RKN egg using YOLOv7-640.



J. Imaging 2023, 9, 240 12 of 18J. Imaging 2023, 9, x FOR PEER REVIEW 13 of 19 
 

 

 
Figure 9. Manual and machine counting of RKN egg using YOLOv6-480. 

Most nematode studies are limited to the identification task [26,27,29]; nonetheless, 
this study explored the detection and counting of RKN eggs which is essential in estimat-
ing the magnitude of the negative impact on plants or animals. Although C. elegans can 
be cultured in the lab, economically important plant-parasitic nematodes are dependent 
on the feeding of host plant tissue and cannot be cultured in substantial numbers [7,79,80]. 
Thus, it makes them challenging pathogens for laboratory experiments. The characteris-
tics of image data rely on the extraction methods used for nematodes. This study em-
ployed a root extraction method to collect samples that can be further expanded using the 
soil extraction method. As nematode sample images are acquired from the camera at-
tached to the specific microscope, these sample images can be taken from a variety of sen-
sors and microscopes to efficiently obtain high-quality image data. 

Even though YOLOv5-640 achieved the highest accuracy in terms of detecting nem-
atodes, this model can be modified in terms of the loss function and optimisation criteria 
to attain greater accuracy in nematode detection and counting. In addition, the YOLOv5-
640 model can be compared to several other convolution neural networks for nematode 
detection. Further, these models can be utilised to assess different datasets of nematodes 
from a wider range of geographical locations and growing conditions or even detect mi-
croorganisms and pests. In addition, this study can be further explored by utilising the 
latest YOLOv8 model to estimate the nematode population. 

Simulation Result of YOLOv5-Based DST 
Once the user submits the plant-parasitic nematode images, the DST system displays 

the detection of nematodes and their quantity as shown in Figure 10. The inference speed 
for nematode detection was four frames per second whereas the inference speed for nem-
atode egg detection was 1.3 frames per second in normal computing resources. The detec-
tion and counting of RKN and FLN nematodes and the counting results are saved in the 
juvenile table of the MySQL database (Figure 11). Once the user submits the image of the 
egg sample, the DST displays the inference and counting results as shown in Figure 12, 
and the detection and counting results are saved in the egg table of the MySQL database 
(Figure 13). 

Figure 9. Manual and machine counting of RKN egg using YOLOv6-480.

Most nematode studies are limited to the identification task [26,27,29]; nonetheless,
this study explored the detection and counting of RKN eggs which is essential in estimating
the magnitude of the negative impact on plants or animals. Although C. elegans can be
cultured in the lab, economically important plant-parasitic nematodes are dependent on
the feeding of host plant tissue and cannot be cultured in substantial numbers [7,79,80].
Thus, it makes them challenging pathogens for laboratory experiments. The characteristics
of image data rely on the extraction methods used for nematodes. This study employed
a root extraction method to collect samples that can be further expanded using the soil
extraction method. As nematode sample images are acquired from the camera attached to
the specific microscope, these sample images can be taken from a variety of sensors and
microscopes to efficiently obtain high-quality image data.

Even though YOLOv5-640 achieved the highest accuracy in terms of detecting nema-
todes, this model can be modified in terms of the loss function and optimisation criteria to
attain greater accuracy in nematode detection and counting. In addition, the YOLOv5-640
model can be compared to several other convolution neural networks for nematode detec-
tion. Further, these models can be utilised to assess different datasets of nematodes from
a wider range of geographical locations and growing conditions or even detect microor-
ganisms and pests. In addition, this study can be further explored by utilising the latest
YOLOv8 model to estimate the nematode population.

Simulation Result of YOLOv5-Based DST

Once the user submits the plant-parasitic nematode images, the DST system displays
the detection of nematodes and their quantity as shown in Figure 10. The inference speed for
nematode detection was four frames per second whereas the inference speed for nematode
egg detection was 1.3 frames per second in normal computing resources. The detection and
counting of RKN and FLN nematodes and the counting results are saved in the juvenile
table of the MySQL database (Figure 11). Once the user submits the image of the egg
sample, the DST displays the inference and counting results as shown in Figure 12, and the
detection and counting results are saved in the egg table of the MySQL database (Figure 13).

This study explored a deep learning-based decision support tool for plant-parasitic
nematode management that holds promising applications in modern agriculture. By imple-
menting state-of-the-art deep learning techniques and integrating them with the YOLOv5
model, this tool offers a great advantage in rapidly estimating nematode populations,
particularly their juveniles and eggs. The performance of the YOLOv5 model exhibited
significant application in pest management. This tool enables farmers to assess nematode
populations efficiently, enabling timely intervention and minimising crop yield losses. The
implications of this innovation extend beyond improved yields; it has the potential to
enhance financial outcomes, ensure food security, and reduce the environmental impact
caused by unnecessary pesticide use. In comparison to conventional machine learning
methods like random forest [81,82], support vector machines [83], and discriminant anal-
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ysis [84], the deep learning-based approach extracts information from complex image
data, and thus, it is appropriate for overcoming the challenges posed by plant-parasitic
nematodes and pest management.
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When compared with similar studies in the context of plant diseases in tropical crops,
this research has significant applications. Plant diseases can have catastrophic effects
on tropical crops, where climatic conditions often favour the proliferation of pests and
diseases [82,85]. While other machine learning methods have demonstrated utility in
disease detection, their efficacy can be limited in the face of nuanced and rapidly evolving
pathogens [86,87]. The deep learning-based decision support tool discussed in this study
showcases adaptability and versatility by effectively solving nematode adversity and the
prevalent issue of pests in agriculture [88]. This tool can handle image-based data and
offers a path toward addressing plant diseases as well, potentially revolutionizing disease
management in tropical crops. The ability to harness cutting-edge technology for pest and
disease management could pave the way for more sustainable and resilient agricultural
practices, ensuring a stable food supply for regions heavily reliant on crops.
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5. Conclusions

This study built a new prototype decision support tool (NemDST) integrated with
a deep learning-based detection model that facilitates rapid and innovative methods for
plant parasitic nematode identification and assesses the magnitude of nematode infestation.
The NemDST utilises the state-of-the-art YOLOv5 to classify and count plant parasitic
nematodes at juvenile and egg stages. The system provides fast and efficient tools to
estimate the plant-parasitic nematode population and provide information about nematode
management tactics. Further, the NemDST stores nematode data in the database, helps
the farmer keep track of the nematode population for future studies, and applies appropri-
ate nematode management practices. The NemDST can be further extended to develop
integrated pest management (IPM) using machine learning and deep learning technologies.
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