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Abstract: Brain age prediction from 3D MRI volumes using deep learning has recently become a
popular research topic, as brain age has been shown to be an important biomarker. Training deep
networks can be very computationally demanding for large datasets like the U.K. Biobank (currently
29,035 subjects). In our previous work, it was demonstrated that using a few 2D projections (mean
and standard deviation along three axes) instead of each full 3D volume leads to much faster training
at the cost of a reduction in prediction accuracy. Here, we investigated if another set of 2D projections,
based on higher-order statistical central moments and eigenslices, leads to a higher accuracy. Our
results show that higher-order moments do not lead to a higher accuracy, but that eigenslices provide
a small improvement. We also show that an ensemble of such models provides further improvement.

Keywords: brain age; 3D CNN; 2D projections; deep learning; principal component analysis;
skewness; kurtosis

1. Introduction

With the availability of large amounts of openly available magnetic resonance imaging
(MRI) data and the relative ease of constructing machine learning models, many turn
to training such models to estimate various metrics from MRI volumes [1]. One such
metric that seems to have physiological significance in a range of conditions is brain
age—that is to say, the apparent age estimated from neuroimaging data [2–4]. This was
presented as an important biomarker in categorizing aging subjects by Cole in 2017 [5] and
has since been investigated as a biomarker for different forms of dementia [6], where it
seems particularly promising for Alzheimers (the difference in brain age and chronological
age was well correlated to severity as measured by tau-protein-binding tracer positron
emission tomography (tau-PET) within groups with minor cognitive impairment (MCI) and
Alzheimer’s disease (AD)) [7]. Other researchers have suggested that brain age is correlated
with hypertension [8] and severity of depression [9,10], and that it is also predictive of
the success of certain interventions for chronic pain [11]. Furthermore, an inflated brain
age associated with schizophrenia has been shown to be partly reversed at the onset
of medication [12,13]. There are a few recent review articles that give a more thorough
explanation of the subject [14–16].

1.1. Related Work on Deep-Learning-Based Brain Age Prediction

There have indeed been many deep learning models for brain age prediction suggested
in the recent literature; see Tanveer et al. for a recent review [4]. The goal has often been
to minimize the mean absolute error (MAE) between predicted brain age and biological
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age. More traditional machine learning methods (for example, using the size of different
brain regions in a standard regression model) have also been used for predicting brain
age [17]. Many of the deep models use 3D convolutional neural networks (CNNs) on whole
or possibly down-sampled brain MRI volumes [3,7,18–22], and a large portion of these
studies have trained their models with U.K. Biobank data. Such 3D models can be very
resource-demanding with respect to processing time and memory consumption, while also
suffering from a less mature framework of machine learning software specializing on 3D
CNNs and 3D image grid data in general. Other researchers in this field have therefore used
slices in one plane from brain volumes in 2D CNNs, weighting the estimates together using
some means for the total brain age [23–25]. These techniques still use the same amount
of data and so can be quite slow, although likely faster than a corresponding 3D CNN.
Furthermore, they have an additional problem, which is how to weight all the slices, which
in turn also can be performed with a machine learning model or some other algorithm.
Also, these models cannot react to patterns occurring perpendicular to the slices.

1.2. Our Previous Work

In our previous work, we examined the possibility of assessing brain age using deep
learning using a limited amount of two-dimensional images derived from brain volume [26],
inspired by Langner et al. [27], instead of using each full 3D volume. The result was a
substantially faster training, about 25 min compared to the typical 48 h or more for using
a 3D network. Howlever, the accuracy was not as good as that of some of the CNNs that
we referred to in our previous paper—the best of them had an MAE of 2.14 [20] compared
to about 3.40 with our projection approach—but these methods are hard to compare. For
example, the model did not differ only in training and test sets (which, of course, is quite
natural): it also differed in that it trained a 3D-CNN for 130 h and used an ensemble of
20 such nets.

The specific images used in our previous work [26] were maps of the mean or standard
deviation of values along three axes of the brain volume (transversal, sagittal, coronal). We
selected these three projections as they are natural and easy to work with. Furthermore,
we believe that, for example, using only one of these projections would remove too much
information. The exact nature of these values could conceivably be chosen in any number
of ways, but among the ones we have tried, we have found grey matter likelihood as
computed using the FSL from T1-structural volumes gives the best results. This is also a
very common approach used in studies about predicting brain age (e.g., [3,18,20,28]).

1.3. This Work

In this work, we looked at more sources for similar 2D projections that could even
better extract the essential information from brain volumes (to further improve the accuracy
without increasing training time too much). It should be noted that we here used a looser
definition of projection than both its sense in tomography, which corresponds specifically
to what we here call the mean channel, and its mathematical meaning of idempotent linear
transformation. By projection, we here mean a way to obtain a 2D image from a 3D volume.
Figure 1 shows an overview of our 2D projection approach, which, compared to our
previous method [26], uses more channels per axis. Specifically, we tried adding skewness
and kurtosis to the previous mean and standard deviation maps, thus using up to four 2D
projections per axis. Another idea we here pursued was to find essential information in
a plane, not by in some way aggregating values along a perpendicular axis but rather by
seeing each slice as an example of a two-dimensional representation blueparallel to that
particular plane of its volume. In that case, the most informative projections in this set
should be available for us to extract by means of principle component analysis (PCA). By
seeing each slice (e.g., 256× 256 pixels) in a volume as a long vector (e.g., length 65,536), it
is possible to use PCA to obtain eigenvectors that capture as much variance as possible (of
all slices in the volume). These long eigenvectors can then be reshaped back to what we
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here call eigenslices. We investigated the representations by up to 16 such eigenslices per
axis (perpendicular to the decomposed slices).

Figure 1. A conceptual illustration of our machine learning model used for brain age prediction.
From each brain volume, a number of 2D images (or projections) are created by “collapsing” each of
the three spatial dimensions. Two methods of collapsing each dimension were investigated in this
work: calculating different statistical moments along each axis and calculating so-called eigenslices
perpendicular to each axis. The images are passed to one of three stacks of convolutional and auxiliary
layers corresponding to what dimension is missing. The extracted features from the three stacks are
concatenated and input to a small dense network, which produces the final brain age estimate.

2. Materials and Methods
2.1. Data

Our dataset consists of 29,035 T1-weighted brain volumes from U.K. Biobank [29–32],
which was also used in our previous work [26]. All subjects were scanned using one of four
Siemens Skyra 3T scanners with a Siemens 32-channel RF receive head coil, available in
Newcastle upon Tyne, Stockport, Reading and Bristol. The sequence used is a 3D MPRAGE
sagittal sequence with TI/TR = 880/2000 ms. U.K. Biobank preprocessing of each subject
included gradient distortion correction and skullstripping [31]. Due to the skullstripping, all
voxels outside the brain were set to zero, meaning that any background noise was ignored.
The bias field was already reduced via the on-scanner “pre-scan normalise” option. All
volumes were in native space and were not registered to any template as convolutional
neural networks do not require objects to be aligned in the way that statistical approaches
typically do (and spatial variation can improve generalization). Because of the computation
of the likelihood that any particular point inside a voxel is grey matter, all values were
clamped to the closed interval from 0 to 1. No further intensity normalization was carried
out as preprocessing.

The subjects were divided 70%/15%/15% for training, validation, and testing, respec-
tively. The combined set of training and validation was partitioned in 3 different ways with
mutually disjoint validation sets for cross-validation purposes. FSL FAST [33] was used
for each skullstripped volume to obtain maps of grey matter. See Figure 2 for one example
subject. These grey matter volumes were zero-padded, symmetrically, to match the largest
grid size, resulting in volumes of 256 × 256 × 208 voxels with a size of 1 × 1 × 1 mm3.
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Figure 2. One example subject from U.K. Biobank. Top: Preprocessed T1-weighted volume:
(a) transversal slice, (b) sagittal slice, and (c) coronal slice. Bottom: Grey matter probability map:
(d) transversal slice, (e) sagittal slice, and (f) coronal slice.

2.2. Higher-Order Statistical Moments

According to our previous investigations, the standard deviation contained more
information than the mean, measured by how much the mean average error differed
between otherwise identical models with and without one channel [26]. For this reason,
it seemed promising to include higher-order statistical moments. We used at most four
moment channels. All “intensity” values used from the volumes represent grey matter
likelihood. The first two channels were the mean and standard deviation of the voxels lying
along a line perpendicular to the projection plane, i.e., the same as in our previous work.
For measures of the third and fourth moments (skewness and kurtosis), we calculated the
standardized central moments for the voxels lying within the brain, defined as the interval
from the first nonzero “intensity” value up to and including the last such value along the
aforementioned perpendicular line. Alternatively, for all pairs of coordinates (α, β) in an
axis-aligned slice, we only considered the intensities Iαβ(γ) for γ ∈ hull(supp(Iαβ)). When
few enough values were considered, these higher moments became numerically unstable
or even undefined, so we used a value of zero when the path in the brain was sufficiently
short (less than 8 voxels). Using~x for a vector extracted from the brain volume along the
dimension that is being reduced, the value in each pixel was computed as:

µ̃k(~x) = nk/2−1

ω

∑
i=α

(xi − µ1)
k

(
ω

∑
i=α

(xi − µ1)
2

)k/2 − C (1)

where k is 3 or 4, and the following definitions and conditions are in effect:

α is the first position for which xi 6= 0

ω is the last position for which xi 6= 0

C =

{
0 k = 3
3 k = 4

n , ω− α + 1

n ≥ 8
(
∴~x 6=~0

)
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The constant C in (1), in all likelihood, makes little difference to the CNN since it uses
several batch normalization layers. It is, however, common for software libraries to include
the 3 for kurtosis, thereby making it the so called excess kurtosis, i.e., kurtosis in excess of
that of a normal distribution. An example of the different moments is shown in Figure 3.

Figure 3. A brain volume of grey matter likelihood, reduced along each coordinate axis, using top
(a) mean, (b) standard deviation, (c) skewness, and (d) excess kurtosis. Due to the fact that skewness
and excess kurtosis can be both positive and negative in conjunction with the normalization of the
grey scale, the backgrounds appear as different shades of grey.

2.3. Eigenslices

The other sort of image we here employed was produced from each brain volume,
which was regarded as a stack of slices in the plane of two coordinate axes, using PCA.
The motivation for this is that of all linear bases of dimension k, by construction, the one
obtained by the first k eigenvectors is the one that preserves the most variation in the
projected data. It could be noted that this type of 2D image does not have a very intuitive
anatomic interpretation. Rather, it represents a way to reduce the amount of data while
retaining a large amount of information. The problem of interpretation is thereby deferred
to the deep learning network. The assumption is thus that the deep learning model can be
trained to use this information, even if a human cannot.

The procedure of generating these slices is performed independently for each subject
and each projection axis. If we regard each 2D-slice as a vector (rows or columns could be
concatenated), we can assemble these as column vectors into a matrix M. In terms of M,
we want to find the eigenvectors with the highest eigenvalues of MMT. This is a very large
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matrix ( 65,536× 65,536 or 53,248× 53,248, for projections of 256× 256 and 256× 208 pixels,
respectively, but with low rank (the number of nonzero 2D slices)). We therefore employed
the technique used by Sirovich et al. in 1987 and Turk et al. in 1991 in the context of facial
recognition [34,35], whereby we use the following relationship:

MTM−→v i = λi
−→v i

⇓
MMTM−→v i = Mλi

−→v i

m
MMT(M−→v i) = λi(M

−→v i)

In other words, if we compute the eigenpairs (λi,~vi) of the much smaller MTM such
that λ1 ≥ λ2 ≥ . . . ≥ λn, the corresponding M~vi is the eigenvectors originally sought, here
called eigenslices. See Figure 4 for eigenslices 1 to 4 for one subject.

Figure 4. A brain volume of grey matter likelihood, reduced along each coordinate axis, using, from
top to bottom, (a) eigenslice 1, (b) eigenslice 2, (c) eigenslice 3, and (d) eigenslice 4. The eigenslices
were obtained using principal component analysis, where each slice in a volume was seen as a long
vector. The eigenslices were calculated for one volume (subject) at a time.
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2.4. Two-Dimensional Projection CNN

Figure 1 shows an overview of our 2D projection approach, where the statistical
moments or eigenslices are used for brain age prediction in a 2D CNN with three stacks
(one per axis: transversal, sagittal, and coronal). Both the generation of the two-dimensional
images and all machine learning models were implemented in and run with Julia version
1.8.5 [36]. In the machine learning parts, we made use of the Julia module Flux version
0.13.11 [37]. The training was performed on an Nvidia RTX 8000 graphics card with 48 GB
of memory.

Once the two-dimensional images are obtained, they are cached to permanent storage
to obviate the need to compute them repeatedly and fed to a machine learning model with
three parallel 2D CNN stacks for the different “projection” planes. The stacks are made up
of units of convolution → activation → convolution → batch-normalization → activation
→ dropout, each of which doubles the number of features and halved the resolution along
each axis. It also has a capping module to produce a one-dimensional feature vector, which
contains another convolutional layer. The model then aggregates the features from all three
views and produces an age estimate. It can use either mean square error or mean absolute
error as the loss function for training. The used 2D CNN has 13 convolutional layers with
4 filters in the first layer. For more details, see our prior work [26].

The hyperparameters were optimized manually. Different positions for the dropout
layers and different dropout rates comparisons are shown in our earlier article [26]. Op-
timization was performed using the Adam optimiser with a learning rate of 0.003 [38]
and a batch size of 32. All models were trained for 400 epochs, but the model state after
training was chosen to be the one with the best validation accuracy, as in early stopping.
The constant epoch training was performed mainly for more complete speed metrics. See-
ing as these models take relatively little time to train and that we already had several of
them trained and saved, we also looked at if the models could be used in ensemble to
further improve the accuracy. The used code is available at (accessed on 1 December 2023)
https://github.com/emojjon/eigen-moments-brain-age.

3. Results

The network was trained repeatedly with different combinations of in-channels. Every
variation was furthermore trained several times in order to estimate a measure of dis-
persion (except for the ensembles, as this would require much more time). All trainings
here used the corresponding channels for all three projections (although having different
combinations of channels per projection is also supported). Channels 1 to n were used, or
just channel n for n ∈ {1, . . . , 8}, for the eigenslices and n ∈ {1, . . . , 4} for the moments.

It should be said that the trainings were initially run—and possibly rerun—to give
an overview to us as researchers and possibly to suggest improvements (for convenience,
the models remained mathematically equivalent). After that, new trainings were run
so that at least four trainings exists for every combination of parameters here presented.
In the cases where more trainings had already been run, all were kept, as having more
measurements does not per se affect the expected value of the mean or the standard
deviation, if correctly computed.

The results are visualized in Figure 5 and presented in a more comprehensive form in
Table 1. Using higher-order moments does not seem to improve the accuracy compared to
using mean and standard deviation. As expected, when only using a single eigenslice, the
accuracy deteriorates for higher-order eigenslices, as these eigenslices represent less and less
of the variance. Using the first two eigenslices leads to a slightly better accuracy (MAE of
3.36 years) compared to using mean and standard deviation (MAE of 3.47 years). Somewhat
surprisingly, the performance is reduced when using increasingly more eigenslices together.

Some further variations were preliminarily evaluated but discontinued because they
did not provide any advantages. This included all runs involving eigenslices 9 to 16
and—perhaps surprisingly—runs with mean absolute error as the loss function.

https://github.com/emojjon/eigen-moments-brain-age
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The training times for these models were comparatively short. Both the early stopping
time and the time to train for 400 epochs, which was considered to be enough to train any
of the models, are listed in Table 1. A leap in training time was typically seen between
using three channels per projection axis and using four. This is due to the fact that the
model estimates the amount of GPU memory needed to fit the training data and resorts
to a strategy of uploading smaller parts to GPU memory during each epoch of training
should this amount not be available.

Figure 5. The average MAE for models trained with n channels (along each projection axis) or only
the channel numbered n (along each projection axis). The standard deviation was not calculated for
the ensembles, but it should be expected to be between 1√

4
and 1 times that of the eigenchannels 1 to

n series for purely algebraic reasons. These values are also shown in Table 1.

We also tried to use four trained models in ensembles for all models trained with the
2–5 first eigenchannels. Only one ensemble of each kind was evaluated, where there is no
standard deviation for the MAE. The corresponding dispersion measure for the constituent
models transpired from the table. Clearly, the accuracy improved compared to using a
single model. For example, the MAE decreased from 3.36 to 3.18 years when using the two
first eigenslices.
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Table 1. Results for our 2D projection approach regarding number of training subjects (N), brain
age test accuracy (mean absolute error (MAE) in years, RMSE in parenthesis), and training time.The
means and standard deviations in the eigenchannel parts were derived from sets of at least 4 trainings
(if more than 4 such trainings, for various reasons, had been run, these values were also included to
obtain better estimates); no set contained more than 11 trainings), whereas the corresponding values
for the moment parts were derived from 4 trainings per row. Even though several publications use
the U.K. Biobank data, a direct comparison of the test accuracy was not possible as different test sets,
in terms of size and the specific subjects, were used. The training times refer to running on a single
GPU. The training times are presented for early stopping and for the full 400 epochs in parentheses.

Input No. Subjects Test Accuracy Parameters Training Time
”moment” channels

from 1 to n

2 20,325 3.47± 0.029
(4.38± 0.049 ) 2,009,369 28 m 44 s (3 h 19 m)

3 20,325 3.59± 0.069
(4.51± 0.079 ) 2,009,477 1 h 27 m (5 h 7 m)

4 20,325 3.50± 0.020
(4.44± 0.031 ) 2,009,585 1 h 50 m (21 h 23 m)

”moment” channel
n only

1 20,325 3.52± 0.044
(4.45± 0.042 ) 2,009,261 20 m 51 s (2 h 49 m)

2 20,325 3.54± 0.062
(4.46± 0.071 ) 2,009,261 17 m 9 s (3 h 3 m)

3 20,325 3.62± 0.088
(4.58± 0.081 ) 2,009,261 2 h 28 m(3 h 48 m)

4 20,325 3.49± 0.047
(4.44± 0.040 ) 2,009,261 1 h 39 m (20 h 44 m)

“eigenchannels”
from 1 to n

2 20,325 3.36± 0.049
(4.25± 0.055 ) 2,009,369 19 m 53 s (3 h 9 m)

3 20,325 3.39± 0.031
(4.28± 0.040 ) 2,009,477 28 m 5 s (4 h 19 m)

4 20,325 3.41± 0.076
(4.32± 0.088 ) 2,009,585 1 h 59 m (17 h 5 m)

5 20,325 3.44± 0.082
(4.35± 0.096 ) 2,009,693 3 h 57 m (1 d 7 h)

6 20,325 3.42± 0.049
(4.34± 0.071 ) 2,009,801 3 h 23 m (1 d 13 h)

7 20,325 3.46± 0.081
(4.37± 0.093 ) 2,009,909 6 h 1 m (2 d 2 h)

8 20,325 3.46± 0.069
(4.38± 0.092 ) 2,010,017 6 h 8 m (2 d 1 h)
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Table 1. Cont.

Input No. Subjects Test Accuracy Parameters Training Time
“eigenchannel”

n only

1 20,325 3.48± 0.032
(4.39± 0.044 ) 2,009,261 21 m 8 s (2 h 52 m)

2 20,325 3.57± 0.023
(4.50± 0.025 ) 2,009,261 14 m 20 s (2 h 57 m)

3 20,325 3.93± 0.067
(4.94± 0.072 ) 2,009,261 20 m 34 s (4 h 39 m)

4 20,325 3.99± 0.068
(5.03± 0.082 ) 2,009,261 1 h 52 m (19 h 35 m)

5 20,325 4.00± 0.044
(5.02± 0.056 ) 2,009,261 1 h 49 m (1 d)

6 20,325 4.11± 0.074
(5.18± 0.097 ) 2,009,261 2 h 22 m (1 d 7 h)

7 20,325 4.17± 0.039
(5.22± 0.024 ) 2,009,261 4 h 39 m (2 d 20 h)

8 20,325 4.28± 0.073
(5.36± 0.090 ) 2,009,261 11 h 57 m (2 d 11 h)

“eigenchannels”
1 to n

ensembles of 4
2 20,325 3.18 (4.02) 8,037,476 N/A
3 20,325 3.23 (4.09) 8,037,908 N/A
4 20,325 3.19 (4.06) 8,038,340 N/A
5 20,325 3.21 (4.07) 8,038,772 N/A

4. Discussion

This is the continuation of our previous work [26], where we investigated a similar
approach but using only the mean and standard deviation over each dimension to obtain
six channels. In this work, we included more channels to feed into the network to improve
accuracy without increasing training time too much. We added skewness and kurtosis to
the projections with mean and standard deviation. We also investigated using eigenslices
from the PCA of one “stack” of slices per dimension and subject.

The measure we studied here was brain age, and we trained our models with the
assumption that all used subjects should be healthy and thus present a brain age equal to
their biological age. It should therefore be noted that less than perfect correlation between
brain age and biological age in healthy subjects, as well as a less than perfect classification
of who is “healthy”, would be part of the error of the models. Furthermore, even a model
that could predict the biological age perfectly would have an MAE of 0.25 years because of
the rounding of the recorded ages to whole years (for anonymization purposes). All of this
taken together means that as we refine our models, the residual deviation from a perfect
result should be compared to that of an unknown “best possible result” rather than zero.

For what we here chose to call the “moment” channels (because they largely represent
the first through fourth central moments of the grey matter likelihood along an axis-aligned
path), the results are hard to interpret. Mainly we saw that the skewness channel seems
to perform worse than the others, not only alone: it also seems to confuse models trained
with channels 1 to 3 (though strangely not channels 1 to 4).

With the eigenslices, we noticed how each consecutive slice by itself (applied in all
three directions) leads to a worse prediction of brain age than the one before it. This is
expected as the eigenslices are sorted by their eigenvalues, which in turn should give a
measure of the explanatory power of that slice. In the case of slices 1 to n, i.e., all slices up
to number n, we noticed a much more even curve although there did not seem to be any
benefit to including more than two or perhaps three slices in each dimension.
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In general, the explanatory power of the eigenslices tapers off quite fast. This is
probably because, although (roughly) corresponding eigenslices might be generated for
different brains, as we proceed down the stack, the eigenvalues lie closer and closer to each
other and hence the order of corresponding eigenslices can change. This would make the
data much harder for our model to learn from. A possible development to the technique
could be to change the order of some eigenslices so as to increase their correspondence. The
exact algorithm would have to be investigated further. Another solution can in theory be
to perform PCA on all subjects concurrently. However, this may be very computationally
expensive and would require an extra step to obtain subject specific eigenslices from the
group eigenslices. At this point, we have not verified that this extra step is possible, but
it would be inspired by the dual regression (spatial and temporal) approach used for 4D
functional MRI data [39]. Another idea is to perform PCA on all 20,325 training volumes
to first obtain eigenvolumes and then project the volume from each subject on the k first
eigenvolumes. Then, one could use these coordinates directly or use them to construct a
new volume and calculate 2D projections from it.

We also looked at making ensembles of trained models. The advantage of this is
contingent on how highly the errors in different models are correlated. Making ensembles
of four models—each with eigenslice channels 1 to n—for a range of ns, we could see a
clear improvement in the accuracy.

The measured times are potentially not representative for a model working under
optimal conditions because no provisions have been made for picking and mixing channels,
only for limiting them to the n first ones along each axis. This means that even if only
one channel is used for the training, the lower-numbered channels would still be loaded
into memory and either past in its entirety or shuttled on demand in little pieces to the
GPU. Should one need to do this on a regular basis, one could write a short definition of a
projection containing a minimal set of channels to a Julia file and include it like any other
projection, specifying a cache name and making sure to provide the bundle of channels in
the corresponding directory or include instructions for how to generate them and let them
be created on demand.

5. Conclusions

To summarize, to use higher-order moments does not improve the results obtained
in our previous study [26], where only mean and standard deviation were used. To
instead use the first two eigenslices provides a small improvement, from an MAE of
3.47 to 3.36 years, compared to using mean and standard deviation (but we did not test
for statistical significance). It is possible that somehow sorting the eigenslices or using
eigenvolumes can further improve the results. Using an ensemble of models provides
further improvement, from an MAE of 3.36 to 3.18 years, while the total training time is
still much shorter compared to that of 3D CNNs.

Author Contributions: Conceptualization, A.E.; methodology, J.J. and A.E.; formal analysis, J.J.;
resources, A.E. data curation, J.J.; writing—original draft preparation, J.J.; writing—review and
editing, all authors; visualization, J.J.; supervision, A.E.; project administration, A.E.; funding
acquisition, A.E. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the ITEA/VINNOVA-funded project Automation, Surgery
Support and Intuitive 3D visualization to optimize workflow in IGT SysTems (ASSIST) (grant
2021-01954), and by the Åke Wiberg foundation (grant M22-0088).

Institutional Review Board Statement: This study was ethically approved according to the Swedish
ethical review authority, application number 2017/17-31.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study, see U.K. Biobank for details.

Data Availability Statement: The data used in this work are available through U.K. Biobank, accessed
on 1 September 2021, https://www.ukbiobank.ac.uk/.

https://www.ukbiobank.ac.uk/


J. Imaging 2023, 9, 271 12 of 13

Conflicts of Interest: A.E. has previously received hardware from Nvidia. Otherwise, the authors
declare that the research was conducted in the absence of any commercial or financial relationships
that could be construed as a potential conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the
decision to publish the results.

References
1. Lundervold, A.S.; Lundervold, A. An overview of deep learning in medical imaging focusing on MRI. Z. Für Med. Phys. 2019,

29, 102–127. [CrossRef] [PubMed]
2. Cole, J.H.; Franke, K. Predicting Age Using Neuroimaging: Innovative Brain Ageing Biomarkers. Trends Neurosci. 2017, 40, 681–690.

[CrossRef] [PubMed]
3. Cole, J.H.; Poudel, R.P.; Tsagkrasoulis, D.; Caan, M.W.; Steves, C.; Spector, T.D.; Montana, G. Predicting brain age with deep

learning from raw imaging data results in a reliable and heritable biomarker. NeuroImage 2017, 163, 115–124. [CrossRef] [PubMed]
4. Tanveer, M.; Ganaie, M.; Beheshti, I.; Goel, T.; Ahmad, N.; Lai, K.T.; Huang, K.; Zhang, Y.D.; Del Ser, J.; Lin, C.T. Deep learning for

brain age estimation: A systematic review. Inf. Fusion 2023, 96, 130–143. [CrossRef]
5. Cole, J.H. Neuroimaging-derived brain-age: An ageing biomarker? Aging 2017, 9, 1861–1862. [CrossRef] [PubMed]
6. Etminani, K.; Soliman, A.; Davidsson, A.; Chang, J.R.; Martínez-Sanchis, B.; Byttner, S.; Camacho, V.; Bauckneht, M.; Stegeran, R.;

Ressner, M.; et al. A 3D deep learning model to predict the diagnosis of dementia with Lewy bodies, Alzheimer’s disease, and
mild cognitive impairment using brain 18F-FDG PET. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 563–584. [CrossRef] [PubMed]

7. Lee, J.; Burkett, B.J.; Min, H.K.; Senjem, M.L.; Lundt, E.S.; Botha, H.; Graff-Radford, J.; Barnard, L.R.; Gunter, J.L.; Schwarz,
C.G.; et al. Deep learning-based brain age prediction in normal aging and dementia. Nat. Aging 2022, 2, 412–424. [CrossRef]

8. Mouches, P.; Wilms, M.; Aulakh, A.; Langner, S.; Forkert, N.D. Multimodal brain age prediction fusing morphometric and imaging
data and association with cardiovascular risk factors. Front. Neurol. 2022, 13, 979774. [CrossRef]

9. Han, L.K.M.; Dinga, R.; Hahn, T.; Ching, C.R.K.; Eyler, L.T.; Aftanas, L.; Aghajani, M.; Aleman, A.; Baune, B.T.; Berger, K.; et al.
Brain aging in major depressive disorder: Results from the ENIGMA major depressive disorder working group. Mol. Psychiatry
2021, 26, 5124–5139. [CrossRef]

10. Dunlop, K.; Victoria, L.W.; Downar, J.; Gunning, F.M.; Liston, C. Accelerated brain aging predicts impulsivity and symptom
severity in depression. Neuropsychopharmacology 2021, 46, 911–919. [CrossRef]

11. Hung, P.S.P.; Zhang, J.Y.; Noorani, A.; Walker, M.R.; Huang, M.; Zhang, J.W.; Laperriere, N.; Rudzicz, F.; Hodaie, M. Differential
expression of a brain aging biomarker across discrete chronic pain disorders. Pain 2022, 163, 1468–1478. [CrossRef]

12. Man, W.; Ding, H.; Chai, C.; An, X.; Liu, F.; Qin, W.; Yu, C. Brain age gap as a potential biomarker for schizophrenia: A multi-site
structural MRI study. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine &
Biology Society (EMBC), Virtual, 1–5 November 2021.

13. Xi, Y.B.; Wu, X.S.; Cui, L.B.; Bai, L.J.; Gan, S.Q.; Jia, X.Y.; Li, X.; Xu, Y.Q.; Kang, X.W.; Guo, F.; et al. Neuroimaging-based brain-age
prediction of first-episode schizophrenia and the alteration of brain age after early medication. Br. J. Psychiatry 2021, 220, 1–8.
[CrossRef]

14. Wrigglesworth, J.; Ward, P.; Harding, I.H.; Nilaweera, D.; Wu, Z.; Woods, R.L.; Ryan, J. Factors associated with brain ageing—A
systematic review. BMC Neurol. 2021, 21, 312. [CrossRef]

15. Franke, K.; Gaser, C. Ten years of BrainAGE as a neuroimaging biomarker of brain aging: What insights have we gained? Front.
Neurol. 2019, 10, 789. [CrossRef]

16. Sone, D.; Beheshti, I. Neuroimaging-based brain age estimation: A promising personalized biomarker in neuropsychiatry. J. Pers.
Med. 2022, 12, 1850. [CrossRef]

17. Beheshti, I.; Ganaie, M.; Paliwal, V.; Rastogi, A.; Razzak, I.; Tanveer, M. Predicting brain age using machine learning algorithms: A
comprehensive evaluation. IEEE J. Biomed. Health Inform. 2021, 26, 1432–1440. [CrossRef]

18. Wang, J.; Knol, M.J.; Tiulpin, A.; Dubost, F.; de Bruijne, M.; Vernooij, M.W.; Adams, H.H.; Ikram, M.A.; Niessen, W.J.; Roshchupkin,
G.V. Gray matter age prediction as a biomarker for risk of dementia. Proc. Natl. Acad. Sci. USA 2019, 116, 21213–21218. [CrossRef]

19. Jónsson, B.A.; Bjornsdottir, G.; Thorgeirsson, T.; Ellingsen, L.M.; Walters, G.B.; Gudbjartsson, D.; Stefansson, H.; Stefansson, K.;
Ulfarsson, M. Brain age prediction using deep learning uncovers associated sequence variants. Nat. Commun. 2019, 10, 5409.
[CrossRef]

20. Peng, H.; Gong, W.; Beckmann, C.F.; Vedaldi, A.; Smith, S.M. Accurate brain age prediction with lightweight deep neural networks.
Med. Image Anal. 2021, 68, 101871. [CrossRef]

21. Ning, K.; Duffy, B.A.; Franklin, M.; Matloff, W.; Zhao, L.; Arzouni, N.; Sun, F.; Toga, A.W. Improving brain age estimates with deep
learning leads to identification of novel genetic factors associated with brain aging. Neurobiol. Aging 2021, 105, 199–204. [CrossRef]

22. Dinsdale, N.K.; Bluemke, E.; Smith, S.M.; Arya, Z.; Vidaurre, D.; Jenkinson, M.; Namburete, A.I. Learning patterns of the ageing
brain in MRI using deep convolutional networks. NeuroImage 2021, 224, 117401. [CrossRef]

23. Huang, T.W.; Chen, H.T.; Fujimoto, R.; Ito, K.; Wu, K.; Sato, K.; Taki, Y.; Fukuda, H.; Aoki, T. Age estimation from brain MRI
images using deep learning. In Proceedings of the IEEE International Symposium on Biomedical Imaging (ISBI), Melbourne, VIC,
Australia, 18–21 April 2017; pp. 849–852.

http://doi.org/10.1016/j.zemedi.2018.11.002
http://www.ncbi.nlm.nih.gov/pubmed/30553609
http://dx.doi.org/10.1016/j.tins.2017.10.001
http://www.ncbi.nlm.nih.gov/pubmed/29074032
http://dx.doi.org/10.1016/j.neuroimage.2017.07.059
http://www.ncbi.nlm.nih.gov/pubmed/28765056
http://dx.doi.org/10.1016/j.inffus.2023.03.007
http://dx.doi.org/10.18632/aging.101286
http://www.ncbi.nlm.nih.gov/pubmed/28858849
http://dx.doi.org/10.1007/s00259-021-05483-0
http://www.ncbi.nlm.nih.gov/pubmed/34328531
http://dx.doi.org/10.1038/s43587-022-00219-7
http://dx.doi.org/10.3389/fneur.2022.979774
http://dx.doi.org/10.1038/s41380-020-0754-0
http://dx.doi.org/10.1038/s41386-021-00967-x
http://dx.doi.org/10.1097/j.pain.0000000000002613
http://dx.doi.org/10.1192/bjp.2021.169
http://dx.doi.org/10.1186/s12883-021-02331-4
http://dx.doi.org/10.3389/fneur.2019.00789
http://dx.doi.org/10.3390/jpm12111850
http://dx.doi.org/10.1109/JBHI.2021.3083187
http://dx.doi.org/10.1073/pnas.1902376116
http://dx.doi.org/10.1038/s41467-019-13163-9
http://dx.doi.org/10.1016/j.media.2020.101871
http://dx.doi.org/10.1016/j.neurobiolaging.2021.03.014
http://dx.doi.org/10.1016/j.neuroimage.2020.117401


J. Imaging 2023, 9, 271 13 of 13

24. Bashyam, V.M.; Erus, G.; Doshi, J.; Habes, M.; Nasrallah, I.M.; Truelove-Hill, M.; Srinivasan, D.; Mamourian, L.; Pomponio, R.;
Fan, Y.; et al. MRI signatures of brain age and disease over the lifespan based on a deep brain network and 14,468 individuals
worldwide. Brain 2020, 143, 2312–2324. [CrossRef]

25. Gupta, U.; Lam, P.K.; Ver Steeg, G.; Thompson, P.M. Improved brain age estimation with slice-based set networks. In Proceedings
of the 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), Nice, France, 13–16 April 2021; pp. 840–844.

26. Jönemo, J.; Akbar, M.U.; Kämpe, R.; Hamilton, J.P.; Eklund, A. Efficient brain age prediction from 3D MRI volumes using 2D
projections. Brain Sci. 2023, 13, 1329. [CrossRef]

27. Langner, T.; Wikström, J.; Bjerner, T.; Ahlström, H.; Kullberg, J. Identifying morphological indicators of aging with neural networks
on large-scale whole-body MRI. IEEE Trans. Med. Imaging 2019, 39, 1430–1437. [CrossRef]

28. Doan, N.T.; Engvig, A.; Zaske, K.; Persson, K.; Lund, M.J.; Kaufmann, T.; Cordova-Palomera, A.; Alnæs, D.; Moberget, T.; Brækhus,
A.; et al. Distinguishing early and late brain aging from the Alzheimer’s disease spectrum: Consistent morphological patterns
across independent samples. Neuroimage 2017, 158, 282–295. [CrossRef]

29. Sudlow, C.; Gallacher, J.; Allen, N.; Beral, V.; Burton, P.; Danesh, J.; Downey, P.; Elliott, P.; Green, J.; Landray, M.; et al. UK biobank:
An open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015,
12, e1001779. [CrossRef]

30. Miller, K.L.; Alfaro-Almagro, F.; Bangerter, N.K.; Thomas, D.L.; Yacoub, E.; Xu, J.; Bartsch, A.J.; Jbabdi, S.; Sotiropoulos, S.N.;
Andersson, J.L.; et al. Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat. Neurosci.
2016, 19, 1523–1536. [CrossRef]

31. Alfaro-Almagro, F.; Jenkinson, M.; Bangerter, N.K.; Andersson, J.L.; Griffanti, L.; Douaud, G.; Sotiropoulos, S.N.; Jbabdi, S.;
Hernandez-Fernandez, M.; Vallee, E.; et al. Image processing and Quality Control for the first 10,000 brain imaging datasets from
UK Biobank. Neuroimage 2018, 166, 400–424. [CrossRef]

32. Littlejohns, T.J.; Holliday, J.; Gibson, L.M.; Garratt, S.; Oesingmann, N.; Alfaro-Almagro, F.; Bell, J.D.; Boultwood, C.; Collins, R.;
Conroy, M.C.; et al. The UK Biobank imaging enhancement of 100,000 participants: Rationale, data collection, management and
future directions. Nat. Commun. 2020, 11, 2624. [CrossRef]

33. Zhang, Y.; Brady, M.; Smith, S. Segmentation of brain MR images through a hidden Markov random field model and the
expectation-maximization algorithm. IEEE Trans. Med. Imaging 2001, 20, 45–57. [CrossRef] [PubMed]

34. Sirovich, L.; Kirby, M. Low-dimensional procedure for the characterization of human faces. J. Opt. Soc. Am. A 1987, 4, 519–524.
[CrossRef]

35. Turk, M.; Pentland, A. Eigenfaces for recognition. J. Cogn. Neurosci. 1991, 3, 71–86. [CrossRef]
36. Bezanson, J.; Edelman, A.; Karpinski, S.; Shah, V.B. Julia: A fresh approach to numerical computing. Siam Rev. 2017, 59, 65–98.

[CrossRef]
37. Innes, M. Flux: Elegant machine learning with Julia. J. Open Source Softw. 2018, 3, 602. [CrossRef]
38. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
39. Beckmann, C.F.; Mackay, C.E.; Filippini, N.; Smith, S.M. Group comparison of resting-state FMRI data using multi-subject ICA and

dual regression. Neuroimage 2009, 47, S148. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1093/brain/awaa160
http://dx.doi.org/10.3390/brainsci13091329
http://dx.doi.org/10.1109/TMI.2019.2950092
http://dx.doi.org/10.1016/j.neuroimage.2017.06.070
http://dx.doi.org/10.1371/journal.pmed.1001779
http://dx.doi.org/10.1038/nn.4393
http://dx.doi.org/10.1016/j.neuroimage.2017.10.034
http://dx.doi.org/10.1038/s41467-020-15948-9
http://dx.doi.org/10.1109/42.906424
http://www.ncbi.nlm.nih.gov/pubmed/11293691
http://dx.doi.org/10.1364/JOSAA.4.000519
http://dx.doi.org/10.1162/jocn.1991.3.1.71
http://dx.doi.org/10.1137/141000671
http://dx.doi.org/10.21105/joss.00602
http://dx.doi.org/10.1016/S1053-8119(09)71511-3

	Introduction
	Related Work on Deep-Learning-Based Brain Age Prediction
	Our Previous Work
	This Work

	Materials and Methods
	Data
	Higher-Order Statistical Moments
	Eigenslices
	Two-Dimensional Projection CNN

	Results
	Discussion
	Conclusions
	References

