Structural Features of the Fragments from Cast Iron Cauldrons of the Medieval Golden Horde: Neutron Tomography Data
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Artioli, G. Scientific Methods and Cultural Heritage: An Introduction to the Application of Materials Science to Archaeometry and Conservation Science; OUP Oxford: Oxford, UK, 2010. [Google Scholar]
- Park, J.-S.; Honeychurch, W.; Chunag, A. Technologies and Complexities as Reflected in Small Cast Iron Fragments Recovered from Medieval Sites in Eastern Mongolia. Archaeol. Anthropol. Sci. 2020, 12, 75. [Google Scholar] [CrossRef]
- Shaykhutdinova, E.; Khramchenkova, R.; Nabiullin, N.; Belyaev, A.; Yanbaev, R.; Sitdikov, A. Interdisciplinary Research of Iron Casting Technologies in the Town of Juketau during the Golden Horde Period. ACTA IMEKO 2017, 6, 87. [Google Scholar] [CrossRef]
- Shaykhutdinova, E.; Khramchenkova, R.; Vladimirovich, B.; Sitdikov, A.; Orazov, D.; Ilyasova, A.; Yanbaev, R. The Chemical and Structural Peculiarities of the Kazan Khanate Cast-Iron Cookware in the 14th–15th Centuries. J. Comput. Theor. Nanosci. 2019, 16, 4534–4539. [Google Scholar] [CrossRef]
- Janssens, K.; van Grieken, R. Non-Destructive Micro Analysis of Cultural Heritage Materials; Elsevier: Amsterdam, The Netherlands, 2005; 828p. [Google Scholar]
- Teixeira, J.; Magli, R.; Loupiac, C. Neutron scattering and imaging: A tool for archaeological studies. Eur. J. Miner. 2015, 27, 289–296. [Google Scholar] [CrossRef]
- Zhomartova, A.; Shaykhutdinova, E.; Bakirov, B.; Kichanov, S.E.; Kozlenko, D.; Sitdikov, A. Structural Studies of the Brass Ingots from the Shcherbet Historical Complex of the Lower Kama Region: Neutron Diffraction and Tomography Studies. Eurasian J. Phys. Funct. Mater. 2022, 6, 180–189. [Google Scholar] [CrossRef]
- Watson, P.J.; LeBlanc, S.A.; Redman, C.L. Archeological Explanation. the Scientific Method in Archeology. In Archeological Explanation. The Scientific Method in Archeology; Columbia University Press: New York, NY, USA, 1984. [Google Scholar]
- Bitossi, G.; Giorgi, R.; Mauro, M.; Salvadori, B.; Dei, L. Spectroscopic Techniques in Cultural Heritage Conservation: A Survey. Appl. Spectrosc. Rev. 2005, 40, 187–228. [Google Scholar] [CrossRef]
- Ruan, F.; Zhang, T.; Li, H. Laser-Induced Breakdown Spectroscopy in Archeological Science: A Review of Its Application and Future Perspectives. Appl. Spectrosc. Rev. 2019, 54, 573–601. [Google Scholar] [CrossRef]
- Amico, S.; Venuti, V. (Eds.) Handbook of Cultural Heritage Analysis; Springer International Publishing: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Lehmann, E.H.; Vontobel, P.; Deschler-Erb, E.; Soares, M. Non-Invasive Studies of Objects from Cultural Heritage. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2005, 542, 68–75. [Google Scholar] [CrossRef]
- Mannes, D.; Schmid, F.; Frey, J.; Schmidt-Ott, K.; Lehmann, E. Combined Neutron and X-Ray Imaging for Non-Invasive Investigations of Cultural Heritage Objects. Phys. Procedia 2015, 69, 653–660. [Google Scholar] [CrossRef]
- Podurets, K.M.; Kichanov, S.E.; Glazkov, V.P.; Kovalenko, E.S.; Murashev, M.M.; Kozlenko, D.P.; Lukin, E.V.; Yatsishina, E.B. Modern Methods of Neutron Radiography and Tomography in Studies of the Internal Structure of Objects. Crystallogr. Rep. 2021, 66, 254–266. [Google Scholar] [CrossRef]
- Kardjilov, N.; Fiori, F.; Giunta, G.; Hilger, A.; Rusticheli, F.; Strobl, M.; Banhart, J.; Triolo, R. Neutron Tomography for Archaeological Investigations. J. Neutron Res. 2006, 14, 29–36. [Google Scholar] [CrossRef]
- Szilágyi, V.; Kis, Z.; Szentmiklósi, L. Neutron Imaging for Archaeometry. Archeometriai Muh. 2016, 13, 157–172. [Google Scholar]
- Cataldo, M.; Clemenza, M.; Ishida, K.; Hillier, A.D. A Novel Non-Destructive Technique for Cultural Heritage: Depth Profiling and Elemental Analysis Underneath the Surface with Negative Muons. Appl. Sci. 2022, 12, 4237. [Google Scholar] [CrossRef]
- Wayman, M.L. Metallography and Microstructures; ASM International: Novelty, OH, USA, 2004; ISBN 978-1-62708-177-1. [Google Scholar]
- Bindler, R.; Segerström, U.; Pettersson-Jensen, I.-M.; Berg, A.; Hansson, S.; Holmström, H.; Olsson, K.; Renberg, I. Early Medieval Origins of Iron Mining and Settlement in Central Sweden: Multiproxy Analysis of Sediment and Peat Records from the Norberg Mining District. J. Archaeol. Sci. 2011, 38, 291–300. [Google Scholar] [CrossRef]
- Ashkenazi, D.; Mentovich, E.; Cvikel, D.; Barkai, O.; Aronson, A.; Kahanov, Y. Archaeometallurgical Investigation of Iron Artifacts from Shipwrecks—A Review. In Archaeology; Ollich-Castanyer, I., Ed.; IntechOpen: Rijeka, Croatia, 2012. [Google Scholar]
- Scott, D.A. Metallography and Microstructure of Ancient and Historic Metals. Stud. Conserv. 1992, 37, 282. [Google Scholar]
- Silveira, P.; Falcade, T. Applications of Energy Dispersive X-Ray Fluorescence Technique in Metallic Cultural Heritage Studies. J. Cult. Herit. 2022, 57, 243–255. [Google Scholar] [CrossRef]
- Bartůněk, V.; Lojka, M.; Danielisová, A.; Jankovský, O. Nondestructive microsampling by surface exffoliation in geology and archeology. In Proceedings of the 21st International Multidisciplinary Scientific GeoConference SGEM 2021, Albena, Bulgaria, 14–22 August 2021; Volume 21, pp. 73–81. [Google Scholar]
- Hu, P.; Jia, M.; Li, M.; Sun, J.; Cui, Y.; Hu, D.; Hu, G. Corrosion Behavior of Ancient White Cast Iron Artifacts from Marine Excavations at Atmospheric Condition. Metals 2022, 12, 921. [Google Scholar] [CrossRef]
- Smirnova, V.; Kichanov, S.E.; Petrov, F.; Panteleeva, L.; Bakirov, B.; Kozlenko, D. Structural Studies of a Bronze Zoomorphic Pommel from the Pekunovsky Settlement Using Neutron Diffraction and Tomography Methods. Phys. Part. Nucl. Lett. 2022, 19, 434–439. [Google Scholar] [CrossRef]
- Kichanov, S.; Saprykina, I.; Kozlenko, D.; Nazarov, K.; Lukin, E.; Rutkauskas, A.; Savenko, B. Studies of Ancient Russian Cultural Objects Using the Neutron Tomography Method. J. Imaging 2018, 4, 25. [Google Scholar] [CrossRef]
- Kovalenko, E.S.; Podurets, K.M.; Murashev, M.M.; Glazkov, V.P.; Kartashov, S.I.; Chichaev, I.A.; Kainov, S.Y.; Murasheva, V.V.; Tereschenko, E.Y.; Yatsishina, E.B.; et al. X-Ray, Synchrotron, and Neutron Imaging of Metal Artifacts from the Chernaya Mogila (Black Grave) Burial Mound. Nanotechnol. Russ. 2020, 15, 572–583. [Google Scholar] [CrossRef]
- Fedrigo, A.; Strobl, M.; Williams, A.R.; Lefmann, K.; Lindelof, P.E.; Jørgensen, L.; Pentz, P.; Bausenwein, D.; Schillinger, B.; Kovyakh, A.; et al. Neutron Imaging Study of ‘Pattern-Welded’ Swords from the Viking Age. Archaeol. Anthropol. Sci. 2018, 10, 1249–1263. [Google Scholar] [CrossRef]
- Grazzi, F.; Cantini, F.; Salvemini, F.; Scherillo, A.; Schillinger, B.; Kaestner, A.; Edge, D.; Williams, A. The Investigation of Indian and Central Asian Swords through Neutron Methods. J. Archaeol. Sci. Rep. 2018, 20, 834–842. [Google Scholar] [CrossRef]
- Herringer, S.N.; Ryzewski, K.; Bilheux, H.Z.; Bilheux, J.-C.; Sheldon, B.W. Evaluation of Segregation in Roman Sestertius Coins. J. Mater. Sci. 2018, 53, 2161–2170. [Google Scholar] [CrossRef]
- Salvemini, F.; Olsen, S.R.; Luzin, V.; Garbe, U.; Davis, J.; Knowles, T.; Sheedy, K. Neutron Tomographic Analysis: Material Characterization of Silver and Electrum Coins from the 6th and 5th Centuries BCE. Mater. Charact. 2016, 118, 175–185. [Google Scholar] [CrossRef]
- Bakirov, B.; Saprykina, I.; Kichanov, S.; Mimokhod, R.; Sudarev, N.; Kozlenko, D. Phase Composition and Its Spatial Distribution in Antique Copper Coins: Neutron Tomography and Diffraction Studies. J. Imaging 2021, 7, 129. [Google Scholar] [CrossRef]
- Salvemini, F.; Grazzi, F.; Angelini, I.; Vontobel, P.; Vigoni, A.; Artioli, G.; Zoppi, M. Morphological Reconstruction of Roman Styli from Iulia Concordia—Italy. Archaeol. Anthropol. Sci. 2018, 10, 781–794. [Google Scholar] [CrossRef]
- Tarbay, J.G.; Maroty, B.; Kis, Z.; Kali, G.; Szentmiklosi, L. Non-destructive analysis of a Late Bronze Age hoard from the Velem-Szent Vid hillfort. J. Archaeol. Sci. 2021, 127, 105320. [Google Scholar] [CrossRef]
- Mednikova, M.; Saprykina, I.; Kichanov, S.; Kozlenko, D. The Reconstruction of a Bronze Battle Axe and Comparison of Inflicted Damage Injuries Using Neutron Tomography, Manufacturing Modeling, and X-Ray Microtomography Data. J. Imaging 2020, 6, 45. [Google Scholar] [CrossRef]
- Nelson, H.G. Hydrogen Embrittlement. In Embrittlement of Engineering Alloys; Briant, C.L., Banerji, S.K., Eds.; Elsevier: Amsterdam, The Netherlands, 1983; Volume 25, pp. 275–359. ISBN 0161-9160. [Google Scholar]
- Sertucha, J.; Lacaze, J. Casting Defects in Sand-Mold Cast Irons—An Illustrated Review with Emphasis on Spheroidal Graphite Cast Irons. Metals 2022, 12, 504. [Google Scholar]
- Martin, M.; Connolly, M.; DelRio, F.; Slifka, A. Hydrogen Embrittlement in Ferritic Steels. Appl. Phys. Rev. 2020, 7, 041301. [Google Scholar] [CrossRef]
- Neeraj, T.; Srinivasan, R.; Li, J. Hydrogen Embrittlement of Ferritic Steels: Observations on Deformation Microstructure, Nanoscale Dimples and Failure by Nanovoiding. Acta Mater. 2012, 60, 5160–5171. [Google Scholar] [CrossRef]
- Song, J.; Curtin, W.A. Atomic Mechanism and Prediction of Hydrogen Embrittlement in Iron. Nat. Mater. 2013, 12, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Gait, J.; Bajnok, K.; Szilágyi, V.; Szenti, I.; Kukovecz, A.; Kis, Z. Quantitative 3D orientation analysis of particles and voids to differentiate hand-built pottery forming techniques using X-ray microtomography and neutron tomography. Archaeol. Anthropol. Sci. 2022, 14, 223. [Google Scholar] [CrossRef]
- Rudenko, K.A. Occurrence of cities Volga Bulgaria and Bulgars areas of the Gold Horde. Volga River Reg. Achaelogy 2012, 1, 68–77. [Google Scholar] [CrossRef]
- Pigarev, E.M. Rare type of panagia from Selitrenny settlement. Volga River Reg. Achaelogy 2012, 1, 120–121. [Google Scholar] [CrossRef]
- Somenkov, V.A.; Glazkov, V.P.; Em, V.T.; Gureev, A.I.; Murashev, M.M.; Sadykov, R.A.; Axenov, S.N.; Trunov, D.N.; Stolyarov, A.A.; Alexeev, A.A.; et al. On the Complex Radiation Diagnostics Facility “Dragon”. J. Surf. Investig. 2019, 13, 870–876. [Google Scholar] [CrossRef]
- Andersen, A.H.; Kak, A.C. Simultaneous Algebraic Reconstruction Technique (SART): A Superior Implementation of the ART Algorithm. Ultrason. Imaging 1984, 6, 81–94. [Google Scholar] [CrossRef]
- Brun, F.; Massimi, L.; Fratini, M.; Dreossi, D.; Billé, F.; Accardo, A.; Pugliese, R.; Cedola, A. SYRMEP Tomo Project: A Graphical User Interface for Customizing CT Reconstruction Workflows. Adv. Struct. Chem. Imaging 2017, 3, 4. [Google Scholar] [CrossRef]
- Zel, I.; Kenessarin, M.; Kichanov, S.; Nazarov, K.; Bǎlǎșoiu, M.; Kozlenko, D. Pore Segmentation Techniques for Low-Resolution Data: Application to the Neutron Tomography Data of Cement Materials. J. Imaging 2022, 8, 242. [Google Scholar] [CrossRef]
- Li, Z.; Qin, L.; Guo, B.; Yuan, J.; Zhang, Z.; Li, W.; Mi, J. Characterization of the Convoluted 3D Intermetallic Phases in a Recycled Al Alloy by Synchrotron X-Ray Tomography and Machine Learning. Acta Metall. Sin. (Engl. Lett.) 2022, 35, 115–123. [Google Scholar] [CrossRef]
- Sitdikov, A.G.; Izmailov, I.L.; Khuzin, F.S. Migrations and Formation of the Volga Bulgarian State (VIII-X C.): Results of the Complex Analysis. Man India 2017, 97, 171–178. [Google Scholar]
- Park, B.U.; Marron, J.S. Comparison of Data-Driven Bandwidth Selectors. J. Am. Stat. Assoc. 1990, 85, 66–72. [Google Scholar] [CrossRef]
- Sheather, S.J.; Jones, M.C. A Reliable Data-Based Bandwidth Selection Method for Kernel Density Estimation. J. R. Stat. Soc. Ser. B 1991, 53, 683–690. [Google Scholar] [CrossRef]
- Raykar, V.C.; Duraiswami, R. Fast Optimal Bandwidth Selection for Kernel Density Estimation. In Proceedings of the SDM, Seoul, Korea, 10–11 September 2006. [Google Scholar]
- Monroe, R.W. Porosity in Castings. ChemInform 2006, 37. [Google Scholar] [CrossRef]
- Qin, M.; Xie, S.; Zhang, J.; Zhang, T.; Carranza, E.J.M.; Li, H.; Ma, J. Petrophysical Texture Heterogeneity of Vesicles in Andesite Reservoir on Micro-Scales. J. Earth Sci. 2021, 32, 799–808. [Google Scholar] [CrossRef]
- Kröner, S.; Doménech Carbó, M.T. Determination of Minimum Pixel Resolution for Shape Analysis: Proposal of a New Data Validation Method for Computerized Images. Powder Technol. 2013, 245, 297–313. [Google Scholar] [CrossRef]
- Brown, A.D.; Pham, Q.; Fortin, E.V.; Peralta, P.; Patterson, B.M.; Escobedo, J.P.; Cerreta, E.K.; Luo, S.N.; Dennis-Koller, D.; Byler, D.; et al. Correlations Among Void Shape Distributions, Dynamic Damage Mode, and Loading Kinetics. JOM 2017, 69, 198–206. [Google Scholar] [CrossRef]
- Zel, I.Y.; Kenessarin, M.; Kichanov, S.E.; Balasoiu, M.; Kozlenko, D.P.; Nazarov, K.; Nicu, M.; Ionascu, L.; Dragolici, A.C.; Dragolici, F. Spatial distribution of graphite in cement materials used for radioactive waste conditioning: An approach to analysis of neutron tomography data. Cem. Concr. Compos. 2021, 119, 103993. [Google Scholar] [CrossRef]
- Cai, G.; Shirai, T.; Wan, Y.; Uzawa, K.; Takahashi, J. Application of X-ray Computed Tomography to Measuring Fiber Orientation Distribution of Chopped Carbon Fiber Tape Reinforced Thermoplastics. Appl. Compos. Mater. 2021, 28, 573–586. [Google Scholar] [CrossRef]
- Zel, I.Y.; Petružálek, M.; Kichanov, S.E.; Nazarov, K.M.; Lokajíček, T.; Kozlenko, D.P.; Turková, I.; Kotrlý, M.; Onysko, R. Original Paper Contribution of Neutron Tomography to 3d Heterogeneity Analysis of Granitic Rocks. Acta Geodyn. Geomater. 2020, 17, 259–267. [Google Scholar] [CrossRef]
- Zhang, M.; Ge, L.; Qiu, T.; Gan, Q.; Yang, B.; Li, Y. Forging or Casting: New Evidence of Iron Production in the Chengdu Plain in the Han Dynasty. Archaeol. Anthropol. Sci. 2021, 13, 111. [Google Scholar] [CrossRef]
- Nabiullin, N.; Belyaev, A.; Shaykhutdinova, E.; Khramchenkova, R.; Yanbaev, R. Cast Iron Dishware from Juketau: Preliminary Interdisciplinary Research Results. Volga River Reg. Achaelogy 2017, 2, 236–254. [Google Scholar] [CrossRef]
- Scott, D.A. Metallography and Microstructure of Metallic Artifacts. In Archaeometallurgy in Global Perspective: Methods and Syntheses; Roberts, B.W., Thornton, C.P., Eds.; Springer New York: New York, NY, USA, 2014; pp. 67–89. ISBN 978-1-4614-9017-3. [Google Scholar]
Fragment | Total Volume, mm3 | Pores Volume, mm3 | Porosity, % | Mean of Equivalent Diameter, mm | Median of Equivalent Diameter, mm |
---|---|---|---|---|---|
SS-3 | 5462.12 (2) | 68.2 4(8) | 1.25 (1) | 1.02 (1) | 0.92 (8) |
SS-5 | 5735.67 (5) | 420.85 (7) | 7.33 (8) | 0.92 (1) | 0.81 (9) |
SS-6 | 36882.14 (4) | 97.03 (9) | 0.26 (3) | 1.17 (6) | 0.96 (9) |
SS-7 | 344044.94 (8) | 16961.55 (2) | 4.93 (1) | 2.69 (3) | 2.01 (9) |
SS-8 | 44234.14 (3) | 1003.86 (3) | 2.26 (9) | 1.59 (5) | 1.22 (8) |
BS-25 | 1214.76 (8) | 0 | 0.00 | - | - |
BS-48 | 3856.79 (5) | 0 | 0.00 | - | - |
BS-65 | 21479.66 (8) | 65.01 (1) | 0.30 (3) | 1.09 (2) | 1.00 (1) |
BS-69 | 1386.374 | 1.77 (1) | 0.12 (8) | - * | - * |
BS-73 | 1050.08 (6) | 13.85 (1) | 1.31 (9) | - * | - * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakirov, B.; Smirnova, V.; Kichanov, S.; Shaykhutdinova, E.; Murashev, M.; Kozlenko, D.; Sitdikov, A. Structural Features of the Fragments from Cast Iron Cauldrons of the Medieval Golden Horde: Neutron Tomography Data. J. Imaging 2023, 9, 97. https://doi.org/10.3390/jimaging9050097
Bakirov B, Smirnova V, Kichanov S, Shaykhutdinova E, Murashev M, Kozlenko D, Sitdikov A. Structural Features of the Fragments from Cast Iron Cauldrons of the Medieval Golden Horde: Neutron Tomography Data. Journal of Imaging. 2023; 9(5):97. https://doi.org/10.3390/jimaging9050097
Chicago/Turabian StyleBakirov, Bulat, Veronica Smirnova, Sergey Kichanov, Eugenia Shaykhutdinova, Mikhail Murashev, Denis Kozlenko, and Ayrat Sitdikov. 2023. "Structural Features of the Fragments from Cast Iron Cauldrons of the Medieval Golden Horde: Neutron Tomography Data" Journal of Imaging 9, no. 5: 97. https://doi.org/10.3390/jimaging9050097
APA StyleBakirov, B., Smirnova, V., Kichanov, S., Shaykhutdinova, E., Murashev, M., Kozlenko, D., & Sitdikov, A. (2023). Structural Features of the Fragments from Cast Iron Cauldrons of the Medieval Golden Horde: Neutron Tomography Data. Journal of Imaging, 9(5), 97. https://doi.org/10.3390/jimaging9050097