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Abstract: Despite the continued successes of computationally efficient deep neural network archi-
tectures for video object detection, performance continually arrives at the great trilemma of speed
versus accuracy versus computational resources (pick two). Current attempts to exploit temporal
information in video data to overcome this trilemma are bottlenecked by the state of the art in object
detection models. This work presents motion vector extrapolation (MOVEX), a technique which
performs video object detection through the use of off-the-shelf object detectors alongside existing
optical flow-based motion estimation techniques in parallel. This work demonstrates that this ap-
proach significantly reduces the baseline latency of any given object detector without sacrificing
accuracy performance. Further latency reductions up to 24 times lower than the original latency
can be achieved with minimal accuracy loss. MOVEX enables low-latency video object detection on
common CPU-based systems, thus allowing for high-performance video object detection beyond the
domain of GPU computing.

Keywords: object detection; video; convolutional neural network; motion vector; optical flow

1. Introduction

Object detection has seen significant progress over the last several years [1–7]. Each
new iteration or approach promises higher accuracy at the cost of more inference latency or
less latency at the cost of lower accuracy when compared with the high-latency counterparts.
Latency occurs in object detection systems due to the high amount of computations required
across the entire image for detecting objects. This is compounded by the fact that many
object detection application areas (e.g., surveillance and self-driving) have incredibly strict
latency requirements [8]. Computing companies are in an arms race to provide hardware
that offers the capability to use high-accuracy models at low latencies, but at best, this
introduces a dependency on off-the-shelf GPUs and, at worst, a dependency on expensive
niche co-processors. Despite the progress made, the trilemma persists; there is not a silver
bullet to address the three constraints of accuracy, latency, and cost simultaneously.

Optical flow has also had recent performance gains through the use of CNN architec-
tures [9–11]. Through these methods and GPU hardware acceleration, dense optical flow
techniques have become faster and more accurate over the last several years.

It is well established that image content varies slowly in video data, as following
the same object over time can be viewed as a different task altogether compared with
finding unique objects in every frame. Though there have been attempts to exploit this
temporal information redundancy through feature propagation based on optical flow
methods in the past, performance remains bottlenecked by the latency associated with a
CNN inference [12].

This work proposes MOVEX, an online real-time method of object detection via video.
Through the combination of an arbitrary off-the-shelf object detection deep neural network
(DNN) with a coarse approximation of optical flow and an optimistic sparse detection
propagation parallelism strategy, we demonstrate that fast, accurate, and computationally
inexpensive video object detection can be achieved. Furthermore, this work demonstrates

J. Imaging 2023, 9, 132. https://doi.org/10.3390/jimaging9070132 https://www.mdpi.com/journal/jimaging

https://doi.org/10.3390/jimaging9070132
https://doi.org/10.3390/jimaging9070132
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com
https://orcid.org/0000-0002-8229-0747
https://doi.org/10.3390/jimaging9070132
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com/article/10.3390/jimaging9070132?type=check_update&version=1


J. Imaging 2023, 9, 132 2 of 17

the capability to accelerate object detectors up to 24 times their original performance with
minimal (<1.0 AP) accuracy degradation. Since MOVEX does not require the use of a GPU,
it enables models typically limited to the realm of GPU computing to be used on commodity
CPU hardware with less inference latency than that found in GPU implementations of the
same model.

This work contributes the following:

1. A novel parallelism-based approach for incorporating motion vector data with CNN
object detection, bypassing the existing bottleneck associated with high-latency DNN
inferencing currently present in existing single-threaded motion-based detection and
tracking methodologies;

2. A comparative analysis demonstrating that motion vectors stored as part of the video
encoding, when utilized as a coarse approximation to optical flow, can be effective
for frame-by-frame motion prediction while maintaining backward compatibility for
current state-of-the-art dense optical flow methods such as FlowNet2.0 [10] with this
methodology;

3. A comprehensive evaluation across multiple datasets that demonstrates the efficacy
of the approach in reducing object detection latency in video while quantifying the
accuracy impacts. (Sample characteristic curves are provided for understanding the
trade-off between latency and accuracy.)

The code has been made available at https://github.com/juliantrue/movex, accessed
on 11 May 2023.

2. Related Work

Before reviewing existing approaches, it is critical to make the distinction that MOVEX
is an approach to object detection and not object tracking. Object detection is the problem of
identifying all individual instances of an object class in a single frame, whereas object track-
ing is the problem of identifying all individual instances of an object class and consistently
assigning each instance an ID across consecutive frames [13–15]. Despite the difference in
problem definitions, there is a class of object tracking algorithms from which insights can
be drawn known as tracking by detection [15]. Tracking by detection details a two-step
tracking procedure:

• Compute object detection;
• Compute data association from the previously observed data.

To reiterate, MOVEX does not address the object tracking problem as it is a method of
accelerating object detection in video, but there are similarities in the approaches taken by
tracking-by-detection applications. Particular ideas pertaining to exploitation of temporal
redundancies in video data for detection acceleration are explored but are not directly
comparable as they solve different problems.

To organize the related works better, first, we discuss the image-based object detection
approaches that are relevant to our work in Section 2.1. Then, we discuss works that
have incorporated motion vectors into object tracking in Section 2.2. Finally, in Section 2.3,
we discuss deep feature flow, which is the optical flow-based approach that we compare
MOVEX with.

2.1. Object Detection Approaches

Object detection approaches can be divided into two types: two-stage detectors,
which perform localization first and then classification, and one-stage detectors, which
perform localization and classification simultaneously. Since the proposed approach can be
incorporated into any existing object detector seamlessly, we elaborate upon and compare
them against two popular methods, as described in the following sections.

https://github.com/juliantrue/movex
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2.1.1. Faster R-CNN

Faster R-CNN is a two-step object detection architecture presented by Ren et al. that
consists of feature extraction and region proposal followed by a classifier [3]. This method
achieves state-of-the-art results in object detection tasks such as PASCAL VOC [16] and
COCO [17]. The authors created a region proposal network, which is a fully convolutional
network that acts as a trainable object proposal model, and it simultaneously provides class-
agnostic objectness scores and bounds. These contributions significantly improved the runtime
of the object detection model when compared with its predecessor Fast R-CNN [18].

2.1.2. YOLOv4

Compared with Faster R-CNN, YOLOv4 is a more recent architecture in the object
detection space. YOLOv4 breaks from its YOLO predecessors in the sense that it is the first
YOLO model to implement an architecture inspired by two-stage detection architectures,
being more similar to Faster R-CNN as opposed to the classic single-stage architecture, as
proposed in the original YOLO paper [19]. Bochkovskiy et al. proposed several changes in
this paper that lend to better accuracy with a faster runtime. Namely, they propose the use
of CSPDarknet53 [20] in a two-stage detection scheme with region proposals generated by
spatial pyramid pooling (SPP) [21] and a path aggregation network (PAN) [22]. The head
for their object detector was the original YOLOv3 head network [2]. In addition to this
architecture, the authors present a comprehensive analysis on the use of Bag of Freebies
(BoF) and Bag of Specials (BoS). BoF refers to training methods that result in better accuracy
without raising the cost of inference, and BoS refers to the use of post-processing techniques
that increase the cost of inferencing slightly but significantly improve the performance of
the object detector. YOLOv4 implements many of these BoF and BoS sets, for which the
authors present strong evidence for use in their architecture [1].

2.2. Motion Vector-Based Object Tracking

Several pieces of object tracking research utilize motion vectors to accelerate their tracking
performance [23–25]. The common approach among these works is interactions between an
off-the-shelf object detection approach, such as Faster R-CNN [3] or YOLOv4 [1] explained
above, and the motion vectors or motion predictions of each frame. Each approach computes
a CNN inference as part of the object detection step at a sparse key frame and perturbs the
detections by using the motion vectors through linear interpolation [23–25]. This approach
yields increased the frame processing rates in all three of these approaches, ranging from
4.6 times for Tabani et al. [25] to 6 times for Liu et al. [24] in off-the-shelf hardware and 12 times
in specialized hardware, such as an FPGA, for Ujiie et al. [23].

It is worth considering the claim of “real-time” performance made by these identified
prior works. If a high-latency CNN inference is to be made every k frames, and fast
interpolation computation is to be carried out for all other frames, then the average runtime
will decrease. Yet, despite the average latency decreasing, claiming these approaches
are “real time” is misleading, as the CNN inference latency will limit the instantaneous
performance to its inference latency. When considering an approach to be real time, it
is important to clarify that these approaches may be real time according to the average
frame-rate but not actually real time when considered on a frame-by-frame basis due to the
CNN latency bottleneck.

2.3. Deep Feature Flow

Video object detection is a superset of single-frame object detection, which incorporates
temporal or inter-frame data from more than the current frame to improve the object
detection performance.

This work builds on the problem formulation provided by Zhu et al. known as deep
feature flow [12]. It frames video object detection as a two-step algorithm consisting of
expensive feature extraction at sparse key frames and feature propagation for non-key
frames. Through the use of a function, they coin sparse feature propagation [12]:
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fk =W( fi, Mi→k, Si→k) (1)

Equation (1) provides the ground work for propagating features forward from frame Ii
to frame Ik through the use of the sparse feature propagation functionW , which accepts as
input the feature map from frame i, the 2D optical flow field Mi→k, and a so-called scale
field Si→k. The authors used a CNN-based method known as FlowNet [10] to estimate the
flow Mi→k and added an extra channel to estimate the scale field Si→k. Additionally, they
used a ResNet 50 and 101 network with the classification layers removed for the feature
extractor backbone [26] and turned it into an object detector through the use of an R-FCN
head network on top [12,27].

Through this work, Zhu et al. demonstrated that this approach is effective at reducing
the average latencies associated with video object detection [12]. This technique, however,
did not fully redress the high-latency operation of performing an inference with a CNN.
Although inferencing less on a sequence of images does lower the average, it does not
eliminate the necessity for a blocking high-latency inference every k frames.

3. Motion Vector Extrapolation (MOVEX)

The MOVEX technique involves modifying the deep feature flow approach to object
detection in three ways:

1. Motion vectors stored as part of the video encoding are evaluated as a coarse approxi-
mation to optical flow while maintaining backward compatibility for dense optical
flow methods such as FlowNet2.0 [10].

2. The sparse feature propagation function is reimagined as statistical aggregation fol-
lowed by perturbation. This has the benefit of not requiring a GPU to perform
pixel-wise computations for propagating features to the next frame, as required by
the original technique [12].

3. A parallelism strategy building on the sparse feature propagation idea was imple-
mented to remove the bottleneck of key frame computation present in the original
sparse feature propagation approach. This method is called optimistic sparse detection
propagation.

3.1. Coarse Optimal Flow Approximation

Modern video codecs such as VP9 and H.265, as well as older codecs such as H.264,
encode video with intra-frame and inter-frame coding techniques. In order to reduce the
entropy between successive frames, these video codecs implement a macroblock (MB)
structure that allows for pixel patches to be translated within the frame before subsequently
finding the difference between successive frames. These intra-frame translations that
minimize the mean absolute difference (MAD) between image patches (and thus successive
frames) are referred to as motion vectors (MVs) [28].

It is notable that these vectors do not specifically encode inter-frame object transla-
tions; despite their name, they encode the vector that minimizes the differences between
successive macroblocks. However, it is often the case that they provide a reasonable ap-
proximation of such inter-frame object motion [29]. It is important to note that not all
H.264 encodings are created equally. Lower-quality settings for such video codecs often
yield poor motion vector representations while achieving their goal of minimizing the
MAD in a lower search time or fewer vectors, if any. As such, the scope of motion vector en-
coding’s applicability to optical flow approximation remains limited to only higher-quality
encodings.

Despite downstream applications attaining these artifacts or features for free, since
they are pre-computed at encoding time, very few applications make use of them. When
taking into account the quality considerations, H.264 motion vectors allow for extremely
fast optical flow approximations.

In addition to the inherent computational savings associated with using pre-computed
optical flow vector approximations, the encoded vectors are also sparse (one vector per
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macroblock), allowing for further computational savings if subsequent computational steps
are considered. Performing pixel-level optical flow computation becomes expensive as
the image resolution increases, and thus the necessity for GPU-based parallelism becomes
apparent even at reduced resolutions, as shown in Table 1.

Table 1. Typical resolutions for associated numbers of optical flow vectors and motion vectors.

Image Resolution Dense Flow Vectors 16 × 16 MVs

720× 1280 9.216 × 105 3600

1080× 1920 2.0736× 106 8100

3840× 2160 8.2944× 106 32,400

3.2. Optimistic Sparse Detection Propagation

The objective of optimistic sparse detection propagation is to accept a prior set of detec-
tions and perturb them according to the sparse detection propagation function (SDPF)W
which, similar to the work of Zhu et al. [12], takes a 2D flow field (Mi→k) (In our case, this will
be the set of motion vectors.) as input, and rather than passing a set of features, our function
accepts a prior set of object detection bounding boxes Di. This difference allows our approach
to be entirely model agnostic and thus not tied to one particular object detector:

Dk =W(Di, Mi→k) (2)

The SDPF iterates over each detection dj in the set Di and applies an aggregation function
φ to the enclosed flow vectors muv, resulting in a net flow vector to perturb the detection with.
Each 2D flow field is stored in a temporary buffer B. A specific flow vector is defined as the
difference in image coordinates from starting frame 1 to consecutive frame 2, resulting in a
vector formatted as muv = (u2 − u1, v2 − v1) where u and v are the image coordinates:

dk = φ(dj, muv) (3)

In practice, the aggregation function is simply the mean or median in x and y, but
more complicated aggregation functions that weigh areas of the detection more than others
can be considered. Figure 1 depicts the role of the aggregation function in propagating
detections from the current frame to a consecutive frame.

Figure 1. Visualization of utilizing motion vectors to propagate a prior set of detections from a source
frame to a consecutive frame (Motion vectors are denoted with green arrows. Red squares denote the
detection bounding boxes). The only motion vectors considered in the source frame i are those which
fall within the area of the bounding box. The median perturbation of those motion vectors is computed
and applied to the source bounding box in order to predict the bounding box in frame i + 1.
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Since the aggregation function only considers local features, global frame movement
information is not effectively captured. In early iterations, it was observed that this led
to compounding errors in video streams with camera movement. In order to combat the
observed compounding errors, a global motion compensation term was implemented to
correct for such camera movements through aggregating over the entire frame’s motion
vectors. Equation (4) provides the final equation utilized as the aggregation function, which
includes both the aforementioned local detection motion aggregation as well as the global
frame motion aggregation:

dk = φlocal(dj, muv) + φglobal(muv) (4)

The SDPF requires a starting set of detections to propagate forward through the video.
This particular set is known as the prior detection set, which is an estimate provided from a
key frame inference. However, rather than evoke a computationally expensive and blocking
DNN inference at a key frame, this inference is computed in parallel. The object detector
runs in parallel with another worker which simply iteratively applies an SPDF following
Equation (2) to the existing detection set at frame i.

Since there is no waiting for object detection to complete before proceeding, the process
which iteratively applies the SDPF works several frames ahead of the object detector
before receiving the computed detections. As such, there is a discrepancy of several
frames between the current set of detections and the returned detections from the object
detector. However, since the flow fields have been retained every frame in the flow vector
buffer B, the detections received from the inferencing process are propagated forward
through iteratively applying the SDPF on said buffer of flow vectors in order to update the
prior ones. At the end of this update, the detections at the current frame incorporate the
computed detection information from the DNN worker. Articulated another way, when
new information is returned for a frame that has already passed, the stored flow fields
are used to re-propagate the new detection set forward to the current frame. The buffer is
emptied in this update to allow for new flow vectors to be added.

Since there is no scheduling for prior key frame updates based on the elapsed time or
frame index, existing detections will continue to be propagated forward in time until the
prior is updated with new information from the object detector. As such, the object detector
latency does not directly contribute to the computation time of predicting detections at a
frame i. However, as the object detector latency increases, more frames will have passed
during the elapsed computation time and thus will fill the motion vector buffer B to a
greater capacity. As B fills with more frame data, the cost of a prior update becomes larger
due to the number of frames for which detections need to be propagated forward to arrive
back at the current frame i.

As the object detector latency increases, the interplay between updating detections
based on image content versus updating based on flow vectors becomes apparent. New
detection targets can only be detected with the object detector, and thus higher latencies
will ultimately determine the performance in applications that have targets which enter
and exit the image frame quickly.

This parallelism strategy is depicted in Figure 2, which highlights the interactions be-
tween the object detector and the detection propagation function. It is clear that Worker 1 ap-
plied the SDPF repetitively, which required significantly less single-threaded performance
as its runtime was significantly faster than its object detection counterpart in Worker 2.
Decoupling the object detection latency from the perturbation of existing information
allows MOVEX to treat the SDPF as the rate-limiting step as opposed to object detection.
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Figure 2. MOVEX implementation diagram.

4. Experiments
4.1. Set-Up

In order to evaluate the capabilities of this approach, two critical metrics were consid-
ered: average precision (AP) and average detection latency. The datasets used to evaluate
these metrics were the MOT20 and MOT16 datasets [14,30]. The reason for using these
datasets was that the data in this case were taken directly from the video and maintained
the temporal context between images, unlike other object detection datasets. The MOT
challenge series of datasets that MOT20 and MOT16 are a part of are widely used for
benchmarking throughout object tracking [15]. Through the combination of these two
datasets, a representative evaluation of performance in various scenarios was able to be
quantified. Datasets such as KITTI [31,32] were not considered, since they are primarily
based on automotive data and will not form a representative evaluation of performance
across domains.

MOT20 maintains a consistent camera location throughout each video sequence but
has many detection targets per frame, making it challenging in that regard. Dendorfer et al.
created this dataset specifically to create a benchmark for evaluating object detectors and
trackers in “. . . very crowded scenes in which the density can reach values of 246 pedestrians
per frame” [14]. As mentioned earlier, the videos of this dataset were all taken from a static
camera at a high vantage point, and they range in time from 17 s up to 2 min and 12 s. The
video was recorded at various locations such as a train station, a crowded plaza, and a
crowded parking lot, possibly after an event of some sort. All videos in this dataset are at a
1080× 1920 resolution except for one video sequence, which is 1174× 880 [14].
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MOT16 was evaluated as well, since it includes video sequences that contain a lot of
global camera movement. The videos in this dataset are also far more diverse in terms
of scenarios compared with the MOT20 dataset, including stationary video from a plaza,
street, and inside a mall, as well as dynamic video taken from a handheld cell phone
(presumably inside a mall), on the street, and video from a camera mounted on top of
a large vehicle [30]. The videos in MOT16 are also of varying resolutions, as the lowest
resolution is 640× 480 and the highest is 1080× 1920 [30]. The lengths of the videos were
overall much shorter than those in the MOT20 dataset, as the shortest video was 17 s and
the longest was 59 s [30].

MOT20 and MOT16 provide data in the form of JPEG-encoded images, which were
converted to video data through the use of an H.264 encoder with encoding parameters
given by the seqinfo.ini file for each evaluation sequence. Specifically, the libx264 open-
source video codec was used with the built-in “slow” preset in order to ensure that the
motion vectors generated were of good quality. The video was also generated such that
there were no B frames computed. Through forcing this constraint on the codec, it ensured
that the motion vectors generated frame by frame and referred to the forward differences
only, thus maximizing the performance for the online nature of this technique.

When considering real-time scenarios, such as robotics applications, this evaluation
approach will not present a full representation of the latency performance since the video
under testing is encoded ahead of time. However, this latency can be accounted for in a
particular application through measuring the latency of a specific encoder and adding it
directly to the latency results we present. This self-imposed limitation on the latency results
was due to the wide array of codec implementations in software and hardware available for
use. In order to make our results pertinent to the most applications possible, we considered
only the decoding time in the total latency and not the encoding time.

With each evaluation sequence, MOT20 provides detections from a Faster R-CNN [3]
with ResNet 101 [26] backbone for evaluating tracking-by-detection applications. MOT16
also provides detections, but they are not from a Faster R-CNN model. For consistency,
detections from a Faster R-CNN model provided by Yu et al. were used [33] for this dataset.
Each model was trained solely on the MOT20 or MOT16 dataset. They also provided the
evaluation kit for calculating the metrics of interest, such as the AP [14,30].

A mock RPC with adjustable latency was developed to serve these detections as if it
came from a live RPC object detector. Through this method, it was possible to simulate the
same model as if it were running as a remote process with variable latency. If one were to
set the simulated latency of this mock RPC to zero, then every output detection would be
the same as the provided detections. However, if the latency were to be increased, then
frames would need to be extrapolated with MOVEX in order to remain as close to real
time as possible. The simulated latency of the object detector was increased in order to
characterize the relationship between the AP and output frame rate.

The aggregation function φ was implemented as a simple two-dimensional median
calculation.

All evaluations were conducted on an Intel i7-8700K CPU (3.70 GHz) with an Nvidia
GTX 1080Ti 12 GB GPU. Tests marked with “CPU” were evaluated solely on the CPU
without exposing GPU capabilities to the test; otherwise, the GPU was used for evaluation.

4.2. Evaluations

We evaluated four key areas regarding this technique:

1. Object detector latency versus accuracy: we show the latency decrease versus the
accuracy characteristics of the technique.

2. H.264 motion vectors and flowNet2.0: we show the performance implications of using
H.264 motion vectors as opposed to a state-of-the-art method such as FlowNet2.0 [9].
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3. High-resolution versus low-resolution object detection models: we show the viability
of increasing the accuracy while decreasing the latency through the use of higher-input
resolution models.

4. Object detection model inference on a CPU versus a GPU: we show the impacts of
running the object detection model on a CPU instead of a GPU.

These four areas would be evaluated through AB testing of a model with and without
the attribute of interest.

An ablation study was also conducted in order to further understand the contributions
of each individual component in the MOVEX algorithm. The following elements of the
MOVEX technique were ablated:

1. Global frame compensation was removed from the SPDF so that only the motion
vectors located inside a given detection were considered in the propagating detections.
We expected that through removing this component, the performance on the MOT20
dataset would remain roughly the same as there was very little camera movement.
However, we expected that the performance on the MOT16 dataset would fall since
there was a significant amount of camera movement in half the video sequences.

2. Multi-processing was removed from the optimistic SDPF and was replaced with
a blocking inference every kth frame, which mimics the approach of Zhu et al. to
detection propagation and other state-of-the-art approaches [12,23–25].

3. The aggregation function was replaced with a center sample approach to aggregating
motion vectors. Rather than considering all motion vectors contained in a detection,
only the center-most motion vector was considered. This test was performed in order
to assess the impact of aggregation on the performance of the detection propagation
function.

4. Detection propagation based on motion vectors was removed entirely, and instead,
individual detections were persisted in place until a new detection was received,
hence demonstrating the efficacy of the SPDF in its entirety. It was our expectation
to see the performance fall significantly in the MOT16 dataset with this ablation, as
that dataset has a great deal of variation from frame to frame. We also expected a
less significant yet still large drop in accuracy in the MOT20 dataset. The reason we
expected this is due to the sheer volume of the detection targets per frame moving in
many different directions, as well as the associated occlusions.

5. The encoding quality was varied from high- to low-quality H.264 encodings as defined
by the FFMPEG presets for the H.264 codec [34]. Not every application is able to use
the specific encoding described in our approach, and as such, we quantified the effects
the encoding quality had on MOVEX based on said common FFMPEG presets.

5. Results and Discussion
5.1. Object Detector Latency versus Accuracy and Overall Latency

As shown in Figure 3, the AP decreased as the simulated latency increased. Since
the extrapolation step can only predict movements from existing detections, when new
objects entered the scene, they were initially not detected and as such, driving down the AP.
This has implications on types of objects tracked. If objects in the video are entering and
exiting the frame on a relatively slow basis, than a high latency detector may be used with
confidence. However, if objects are entering and exiting the frame at a rate much higher
than the object detector latency, then the detection AP performance will fall.
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(a) AP versus simulated object detector latency.
(b) Average computation time per frame versus simulated
object detector latency.

Figure 3. Simulated object detector latency versus AP (a) and average computation time for the
proposed Movex approach on the MOT20 dataset (b). As the simulated object detector latency
increased, the AP decreased, but the decrease only became apparent after increasing the latency
to 200 ms. For reference, a data point with 0 ms of latency was included to depict the original
performance of the object detector detections provided with the MOT20 dataset. The average
computation time per frame rose as the object detector latency increased, and the prior update
step became incredibly time consuming due to the size of the buffer accumulated during the object
detector inference time.

Additionally, in Figure 3, the average computation time per frame is given in relation
to the object detector latency. The highest average computation time per frame occurred at
an object detector latency of 200 ms, which indicates that the proportion of computation
between prior updates and the looks ahead was dominated by the cost of prior updates.
Figure 4 further demonstrates this point in the spikes in computation time for each prior
update step.

Shown in Figure 4 is the output latency per frame for MOVEX when predicting
detections. In order for this technique to be considered real time, it must compute the
results before receiving the next input. This threshold is denoted by 1

f rame−rate for a sample
MOT20 sequence shown on the graph. The spikes in latency are the points in the sequence
in which a prior update occurred. These peaks in latency represent the lowest possible
latency for which MOVEX could be considered real time. In this case, approximately 26 ms
(corresponding to a frame rate of 38.46 fps) was the fastest real-time update rate possible
with an object detector latency of 200 ms.

Additionally, in Table 2, we show the results of the MOT16 evaluations. They are
largely consistent with the results obtained from the MOT20 evaluations, with the exception
of two notable entries. The third row and last rows of the table depict a much larger
drop in AP in contrast to the MOT20 evaluations. Through observing the detection data
overlaid on the video, the drop in performance on this dataset appears to be due to the
challenging nature of the video sequences. Observationally, the significant increase in
camera movement as well as varying camera perspectives caused many more instances of
detections not forming a tight bound with their respective targets.



J. Imaging 2023, 9, 132 11 of 17

Figure 4. Latency versus frame number for a sample trace taken from the MOT20 dataset and the
total computation time for first 100 frames of the sequence MOT20-02 using an object detector with
200 ms latency. The dashed line depicts the threshold considered real time for this particular sequence
with a frame rate of 25 fps.

As shown in Figure 5, the MOT20 dataset derives its difficulty from the sheer number
of targets to detect, whereas MOT16 derives its difficulty from the challenging scenarios in
which the videos were taken. We can conclude that these challenging, high camera move-
ment scenarios presented in MOT16 result in a larger accuracy difference in higher latency
object detectors. The subsequent sections present the results from MOT20 exclusively, since
it was the most recent dataset in the MOTChallenge series at the time of writing and the
MOT16 results corroborated the conclusions.

Figure 5. Sample frames from MOT16 dataset (left) and MOT20 dataset (right). These samples
represent the different types of challenges inherent to the datasets. MOT16 is composed of moving
cameras with a moderate number of people, while MOT20 is composed of largely static cameras
focusing on large clusters of people.
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Table 2. Evaluation of MOVEX with H.264 MVs or FlowNet2 optical flow [9] against baseline Faster
R-CNN model across both MOT20 [14] and MOT16 [30] datasets. Additionally, two YOLOv4 models [1]
trained on the COCO dataset [17] with varied input resolutions (416× 416 and 960× 960) demonstrate
the accuracy gains possible without sacrificing inference latency when using the MOVEX technique.

Method Dataset Avg Latency
(ms) ↓ AP ↑

FRCNN [14] MOT20 131.52 0.63

FRCNN [14] with MOVEX + FlowNet2 MOT20 259.17 0.629

FRCNN [14] with MOVEX + H.264 MVs MOT20 13.81 0.625

YOLOv4 [1] (960 × 960) MOT20 79.46 0.405

YOLOv4 [1] (960 × 960) MOT20 11.73 0.404
with MOVEX + H.264 MVs

YOLOv4 [1] (416 × 416) MOT20 26.34 0.261

YOLOv4 [1] (416 × 416) on CPU MOT20 190.41 0.261

YOLOv4 [1] (416 × 416) on CPU MOT20 7.96 0.257
with MOVEX + H.264 MVs

FRCNN [33] MOT16 130.22 0.688

FRCNN [33] with MOVEX + FlowNet2 MOT16 198.38 0.527

FRCNN [33] with MOVEX + H.264 MVs MOT16 4.78 0.546

YOLOv4 [1] (960 × 960) MOT16 81.80 0.672

YOLOv4 [1] (960 × 960) MOT16 4.14 0.59
with MOVEX + H.264 MVs

YOLOv4 [1] (416 × 416) MOT16 28.26 0.455

YOLOv4 [1] (416 × 416) on CPU MOT16 215.28 0.455

YOLOv4 [1] (416 × 416) on CPU MOT16 3.76 0.34
with MOVEX + H.264 MVs

Downwards arrow depicts lower is better, while upwards arrow depicts higher is better.

5.2. H.264 Motion Vectors and FlowNet2.0

When examining the performance results in Table 2, the latency of the original Faster
R-CNN model was reduced by a factor of 9.52 times when run with MOVEX using the
H.264 MVs. However, when using FlowNet2 as the source for the motion vectors, perfor-
mance was greatly impacted, presenting a 1.97 increase in latency. The FlowNet2-s model
was used to compute the optical flow, which claimed to have a runtime of approximately
7 ms on a GTX 1080Ti [9], but the performance when running it was nowhere near this, as
the model’s forward passes were routinely reaching 80 ms. One reason for this discrepancy
may be due the increased image resolutions of the images in the MOT20 dataset compared
with the images the authors used for demonstration originally. The images in MOT20 all
have a 1920× 1080 resolution, while the images in KITTI 2015 have a 1248× 384 resolu-
tion [31,32], and the Sintel dataset images’ resolution is 1024× 436 [35]. This resolution
difference resulted in a decrease of approximately four times in the image pixels when
compared with the MOT20 data and thus could have lead to the latency increases ob-
served. Shifting the focus to the AP differences between the three evaluated Faster R-CNN
models demonstrates that the use of MOVEX decreased the AP of the baseline model by
approximately 0.5 when using H.264 MVs but only led to a decrease of 0.1 when using the
FlowNet2.0 model.

5.3. High-Resolution versus Low-Resolution Object Detection Models

The effect of increasing the input resolution for CNN object detectors is known to be
increased accuracy. As shown in Table 2, YOLOv4 trained on the COCO dataset [17] was
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compared against itself at two different resolutions, 416× 416 and 960× 960, resulting in
AP values of 26.1% (row 6) and 40.5% (row 4), respectively. This confirms the relationship
between the input resolution and accuracy but also demonstrates an opportunity for
improvement through the use of MOVEX. Consider that when using the higher resolution
model with MOVEX (row 5), the AP dropped by a mere 0.1, yet the latency fell below that
of the low resolution model (11.73 ms and 26.34 ms in row 5 versus row 6, respectively).
This caries the implication that through using MOVEX, it is possible to achieve significantly
more accurate object detection results for a given application latency budget through the
use of a high-resolution model.

5.4. Object Detection Model Inference on the CPU versus the GPU

It is well known by practitioners that hardware accelerators such as GPUs or TPUs are
needed to achieve low-latency computation with CNNs. This point is further articulated
by the latency data point given in row 7 of Table 2, running the YOLOv4 model with an
input resolution of 416× 416 on a CPU. This yielded a latency of 190.41 ms, which is far too
large for any real-time application. When using MOVEX in conjunction with this model,
as shown in row 8 of Table 2, the latency fell below that of the original GPU computation
latency, resulting in a latency reduction of 23.92 times while the AP only dropped by 0.4
when compared with the original model.

GPU computational resources are orders of magnitude more expensive than standard
CPU-based systems. Employing MOVEX in systems looking to perform object detection on
video data would lead to large cost savings by switching from GPU- to CPU-focused com-
puting. Furthermore, emerging applications in edge computing where the cost, space, and
computing capabilities are typically limited would greatly benefit from using this technique,
since modern GPU-centered computing often clashes directly with these constraints.

5.5. Ablation Study
5.5.1. Global Frame Compensation

The first ablation that was made was the removal of the global movement compensa-
tion mechanism. We present the results of this ablation in Table 3, which demonstrate that
this step did not add significant latency to the process, since the latency was reduced by
less than 1 ms in both datasets once removed. Additionally, since the AP decreased by 4.4
and 4.1 in both the MOT20 and MOT16 datasets, respectively, it is demonstrated that this
global statistic is an important factor in the performance of the MOVEX technique.

Table 3. Comparison between using global movement compensation in addition to local aggregations
versus only local aggregation.

Method Dataset Avg Latency (ms) AP

Proposed MOT20 [14] 13.81 0.626

Without Global Comp MOT20 [14] 13.17 0.582

Proposed MOT16 [30] 4.78 0.546

Without Global Comp MOT16 [30] 4.46 0.505

5.5.2. Multi-Processing

Table 4 denotes the results of inferencing every kth frame, such as in [12,23–25], versus
the proposed multi-processing-based approach. The values of 5 and 10 in evaluation for k
were compared.

It is shown in Table 4 that using this single-process approach resulted in significantly
higher latencies than those for the proposed method and also resulted in substantial losses
in accuracy in the cases where 10 was substituted for k.
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Table 4. Comparison between traditional single-process approaches versus multi-process-based
optimistic sparse detection propagation.

Method Dataset Avg Latency (ms) AP

Proposed MOT20 [14] 13.81 0.626

Fifth Frame MOT20 [14] 42.75 0.619

Tenth Frame MOT20 [14] 29.46 0.501

Proposed MOT16 [30] 4.78 0.546

Fifth Frame MOT16 [30] 33.60 0.519

Tenth Frame MOT16 [30] 19.43 0.426

5.5.3. Aggregation Function

The impact of the aggregation function was ablated through the use of sampling one
motion vector contained in the target detection, rather than combining all motion vectors
from within said detection. The expectation from aggregating more information into the
estimate of the detection target’s inter-frame motion would be that a more accurate propa-
gated detection would be calculated. Thus, sampling the same location in the detection
consistently would lead to a biased estimate and therefore a less accurate result.

The center of the motion vectors composed in the detection was found through computing
the centroid of motion vectors given in Equation (5), where n is the number of motion vectors
contained in the width of the detection and m is the number contained in the height, while x
and y are the image coordinates of the starting point of said motion vectors:

c = (
1
n

n

∑
i=1

xi,
1
m

m

∑
i=1

yi) (5)

Since the centroid of the motion vectors does not necessarily correspond to a specific
motion vector, the motion vector minimizing the Euclidean distance to the centroid was
sampled as given by the following equation. Table 5 shows the results of this test:

mvuv = minxy

√
(cx − x)2 + (cy − y)2 (6)

Table 5. Comparison between using the median as an aggregation function versus perturbing based
on the center motion vector in a given detection.

Method Dataset Avg Latency (ms) AP

Proposed (Median) MOT20 [14] 13.81 0.626

Center Sample MOT20 [14] 15.63 0.623

Proposed (Median) MOT16 [30] 4.78 0.546

Center Sample MOT16 [30] 5.21 0.54

As is common among other ablations, the removal of this feature appeared to yield
very minute differences in the MOT20 data due to the slow varying nature of the data.
However, the fast varying data of MOT16 were quite sensitive to this change, and omitting
this resulted in a 0.6 drop in the AP.

5.5.4. Detection Propagation

In the previous ablation, the aggregation function was replaced with the center sample
approach to evaluate the impact of aggregation. This ablation extended that idea a step
further through ablation of the entire SPDF in order to evaluate its performance impact.
This was accomplished through replacing the aggregation function with a passthrough



J. Imaging 2023, 9, 132 15 of 17

function which merely returned the detections it received as input. No aggregation or
propagation was performed on the set of detections between frames; rather, the existing set
of detections merely persisted from frame to frame. The detections in this ablation were
only updated upon the object detector completing a computation and remained visually
frozen in place across subsequent frames until another detection inference was completed.

In Table 6, it is shown that for MOT20, there was minimal impact from removing the
detection propagation, while for MOT16, there was a significant drop in the AP from 54.6 to
50.1%, a drop of 4.5 in the AP. Through observing the video in the two datasets, it is clear
that the high camera movement data, which were found in the MOT16 dataset, caused large
drop-offs in accuracy when not accounted for by this technique. The order of magnitude of the
drop in latency, however, is an interesting benefit to removing inter-frame detection propagation
altogether. For video data that are sufficiently similar between DNN inferences, such as the
surveillance camera-style footage of slow-walking pedestrians found throughout MOT20, it
may be a worthwhile trade-off for some to deliberately omit the detection propagation step
entirely to gain the order of magnitude for the latency decrease. However, it is unlikely that this
would be a viable option for higher latency object detectors, since this approach would result in
more frames with detections persisting in place, leading to poor accuracy.

Table 6. Comparison between detections not using any perturbation versus with perturbation.

Method Dataset Avg Latency (ms) AP

Proposed MOT20 [14] 13.81 0.626

No Perturbation MOT20 [14] 1.07 0.618

Proposed MOT16 [30] 4.78 0.546

No Perturbation MOT16 [30] 0.63 0.501

5.5.5. Encoding Quality

As MOVEX is dependent on the motion vectors present in the encoded video, it is a
worthy question to ask what the impact on the encoding quality is on the performance of
MOVEX. We can envision MOVEX being utilized in applications where the video is being
streamed with a particular encoding quality, depending on the availability of resources.
Therefore, we need to know what effect the encoding quality has on the performance of
MOVEX. To answer this question, we varied the encoding quality presets inside the H.264
codec by using FFMPEG presets [34]. Specifically, we made use of the slow, medium, and fast
presets, which correspond to the encoding qualities of high, medium, and low. This is by no
means an exhaustive evaluation of specific variations arising from encoding variable changes,
but it does provide a general overview of performance against the most common presets.

As shown in Table 7, for MOT20, there was a mere 0.1 change in the AP upon decreasing
to the lower-quality encodings. However, for MOT16, there was a drop from the original
performance of 54.6 to 50.9% when comparing the high quality to the medium and low qualities.

Table 7. Performance comparison between various encoding qualities. The proposed results made
use of the high quality encoder settings.

Method Dataset Avg Latency (ms) AP

Proposed MOT20 [14] 13.81 0.626

Medium Quality MOT20 [14] 16.19 0.625

Low Quality MOT20 [14] 14.66 0.625

Proposed MOT16 [30] 4.78 0.546

Medium Quality MOT16 [30] 5.47 0.509

Low Quality MOT16 [30] 5.30 0.509
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6. Conclusions

We presented MOVEX, a technique that can be applied to an arbitrary off-the-shelf
object detector and reduce its inference latency on video data by large margins with minimal
sacrificing of accuracy. We demonstrated that MOVEX improves performance for existing
object detection models, for which online real-time video object detection would not have
been possible prior. Additionally, we showed that accuracy improvements are possible
without sacrificing latency through increasing the resolutions of the models and using
these models with MOVEX. Lastly, MOVEX allows for models typically restricted to the
domain of GPU or TPU computing due to latency concerns to expand to less expensive
CPU devices.

There are several opportunities for further improvements to this technique. Further
parallelism improvements are possible within the optimistic sparse detection propagation
function since the application of the function to a detection is independent of the other
detections, allowing for updating multiple detections simultaneously. This would allow for
further latency reduction but would add a nonnegotiable dependency on having a GPU, as
the number of detections could be large.
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