Improving Visual Defect Detection and Localization in Industrial Thermal Images Using Autoencoders
Abstract
:1. Introduction
2. Related Work
3. Materials and Methods
3.1. Dataset and Pipeline
- In the training phase, a model was trained with with its respective loss functions.
- In the test phase, the anomaly score distributions for and were visualized and the threshold for classification was determined .
- and were combined and used for supervised classification using the data labels and .
- The classification performance measures with were calculated.
- The false-positive rate and the true-positive rate for 30 thresholds were determined; a receiver operating characteristic (ROC) curve was drawn; and accordingly, the area under the curve (AUC) was calculated.
- Result tables were prepared with the performance measures, ROC, and the AUC results.
- A visualization of the healthy and defective samples was created, along with residual maps for quantitative analysis.
3.2. Anomaly Detection Using Autoencoders
3.2.1. Training Autoencoder
Mean Squared Error as Loss Function
Structural Similarity as Loss Function
3.2.2. Finding Anomalies in Test Phase
Mean Squared Error as Anomaly Score
Structural Similarity Index as Anomaly Score
Kernel Density Estimation Anomaly
4. Results and Discussion
5. Conclusions and Future Work
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoffmann, M.W.; Drath, R.; Ganz, C. Proposal for requirements on industrial AI solutions. In Proceedings of the Machine Learning for Cyber Physical Systems: Selected Papers from the International Conference ML4CPS 2020; Springer: Berlin/Heidelberg, Germany, 2021; pp. 63–72. [Google Scholar]
- Hoffmann, M.W.; Wildermuth, S.; Gitzel, R.; Boyaci, A.; Gebhardt, J.; Kaul, H.; Amihai, I.; Forg, B.; Suriyah, M.; Leibfried, T.; et al. Integration of novel sensors and machine learning for predictive maintenance in medium voltage switchgear to enable the energy and mobility revolutions. Sensors 2020, 20, 2099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffmann, M.W.; Malakuti, S.; Grüner, S.; Finster, S.; Gebhardt, J.; Tan, R.; Schindler, T.; Gamer, T. Developing industrial cps: A multi-disciplinary challenge. Sensors 2021, 21, 1991. [Google Scholar] [CrossRef] [PubMed]
- Gitzel, R.; Kaul, H.; Dix, M. Maps of Infrared Images to Detect Equipment Faults. In Proceedings of the 2022 IEEE Eighth International Conference on Big Data Computing Service and Applications (BigDataService), Newark, CA, USA, 15–18 August 2022; pp. 167–172. [Google Scholar]
- Yang, J.; Xu, R.; Qi, Z.; Shi, Y. Visual anomaly detection for images: A survey. arXiv 2021, arXiv:2109.13157. [Google Scholar]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning Internal Representations by Error Propagation; Technical Report; California University San Diego La Jolla Institute for Cognitive Science: La Jolla, CA, USA, 1985. [Google Scholar]
- Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bank, D.; Koenigstein, N.; Giryes, R. Autoencoders. arXiv 2020, arXiv:2003.05991. [Google Scholar]
- Japkowicz, N.; Myers, C.; Gluck, M. A novelty detection approach to classification. In Proceedings of the IJCAI, Citeseer, Montreal, QC, Canada, 20–25 August 1995; Volume 1, pp. 518–523. [Google Scholar]
- Beggel, L.; Pfeiffer, M.; Bischl, B. Robust anomaly detection in images using adversarial autoencoders. arXiv 2019, arXiv:1901.06355. [Google Scholar]
- An, J.; Cho, S. Variational autoencoder based anomaly detection using reconstruction probability. Spec. Lect. IE 2015, 2, 1–18. [Google Scholar]
- Kingma, D.P.; Welling, M. Auto-encoding variational bayes. arXiv 2013, arXiv:1312.6114. [Google Scholar]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial networks. Commun. ACM 2020, 63, 139–144. [Google Scholar] [CrossRef]
- Akcay, S.; Atapour-Abarghouei, A.; Breckon, T.P. Ganomaly: Semi-supervised anomaly detection via adversarial training. arXiv 2018, arXiv:1805.06725. [Google Scholar]
- Di Mattia, F.; Galeone, P.; De Simoni, M.; Ghelfi, E. A survey on gans for anomaly detection. arXiv 2019, arXiv:1906.11632. [Google Scholar]
- Schlegl, T.; Seeböck, P.; Waldstein, S.M.; Schmidt-Erfurth, U.; Langs, G. Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In Proceedings of the International Conference on Information Processing in Medical Imaging, Boone, NC, USA, 25–30 June 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 146–157. [Google Scholar]
- Donahue, J.; Krähenbühl, P.; Darrell, T. Adversarial feature learning. arXiv 2016, arXiv:1605.09782. [Google Scholar]
- Huang, L.; Qin, J.; Zhou, Y.; Zhu, F.; Liu, L.; Shao, L. Normalization techniques in training dnns: Methodology, analysis and application. arXiv 2020, arXiv:2009.12836. [Google Scholar] [CrossRef] [PubMed]
- Kandanaarachchi, S.; Muñoz, M.A.; Hyndman, R.J.; Smith-Miles, K. On normalization and algorithm selection for unsupervised outlier detection. Data Min. Knowl. Discov. 2020, 34, 309–354. [Google Scholar] [CrossRef] [Green Version]
- Bergmann, P.; Löwe, S.; Fauser, M.; Sattlegger, D.; Steger, C. Improving unsupervised defect segmentation by applying structural similarity to autoencoders. arXiv 2018, arXiv:1807.02011. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feeney, P.; Hughes, M.C. Evaluating the Use of Reconstruction Error for Novelty Localization. arXiv 2021, arXiv:2107.13379. [Google Scholar]
- Meissen, F.; Paetzold, J.; Kaissis, G.; Rueckert, D. Unsupervised Anomaly Localization with Structural Feature-Autoencoders. arXiv 2022, arXiv:2208.10992. [Google Scholar]
- Węglarczyk, S. Kernel density estimation and its application. In Proceedings of the ITM Web of Conferences, EDP Sciences, Girne, Turkey, 4–6 May 2018; Volume 23, p. 00037. [Google Scholar]
- Zhang, Y. A Better Autoencoder for Image: Convolutional Autoencoder. 2018. Available online: http://users.cecs.anu.edu.au/~Tom.Gedeon/conf/ABCs2018/paper/ABCs2018_paper_58.pdf (accessed on 10 April 2023).
- Chow, J.K.; Su, Z.; Wu, J.; Tan, P.S.; Mao, X.; Wang, Y.H. Anomaly detection of defects on concrete structures with the convolutional autoencoder. Adv. Eng. Inform. 2020, 45, 101105. [Google Scholar] [CrossRef]
- Chen, M.; Shi, X.; Zhang, Y.; Wu, D.; Guizani, M. Deep Feature Learning for Medical Image Analysis with Convolutional Autoencoder Neural Network. IEEE Trans. Big Data 2021, 7, 750–758. [Google Scholar] [CrossRef]
Camera | Anomaly Score | Accuracy | Precision | Recall | AUC |
---|---|---|---|---|---|
94716 | MSE | 95.33% | 100.00% | 98.00% | 0.98 |
SSIM | 94.12% | 94.37% | 98.45% | 0.98 | |
KDE | 99.95% | 100.00% | 99.90% | 1.00 | |
94706 | MSE | 92.57% | 87.07% | 100.00% | 0.93 |
SSIM | 96.20% | 98.90% | 99.79% | 1.00 | |
KDE | 100.00% | 100.00% | 100.00% | 1.00 | |
94693 | MSE | 94.80% | 97.00% | 98.80% | 0.90 |
SSIM | 63.18% | 57.60% | 99.90% | 0.63 | |
KDE | 71.29% | 63.52% | 100.00% | 0.71 | |
94689 | MSE | 100.00% | 100.00% | 100.00% | 1.00 |
SSIM | 100.00% | 100.00% | 100.00% | 1.00 | |
KDE | 100.00% | 100.00% | 100.00% | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Behrouzi, S.; Dix, M.; Karampanah, F.; Ates, O.; Sasidharan, N.; Chandna, S.; Vu, B. Improving Visual Defect Detection and Localization in Industrial Thermal Images Using Autoencoders. J. Imaging 2023, 9, 137. https://doi.org/10.3390/jimaging9070137
Behrouzi S, Dix M, Karampanah F, Ates O, Sasidharan N, Chandna S, Vu B. Improving Visual Defect Detection and Localization in Industrial Thermal Images Using Autoencoders. Journal of Imaging. 2023; 9(7):137. https://doi.org/10.3390/jimaging9070137
Chicago/Turabian StyleBehrouzi, Sasha, Marcel Dix, Fatemeh Karampanah, Omer Ates, Nissy Sasidharan, Swati Chandna, and Binh Vu. 2023. "Improving Visual Defect Detection and Localization in Industrial Thermal Images Using Autoencoders" Journal of Imaging 9, no. 7: 137. https://doi.org/10.3390/jimaging9070137
APA StyleBehrouzi, S., Dix, M., Karampanah, F., Ates, O., Sasidharan, N., Chandna, S., & Vu, B. (2023). Improving Visual Defect Detection and Localization in Industrial Thermal Images Using Autoencoders. Journal of Imaging, 9(7), 137. https://doi.org/10.3390/jimaging9070137