Augmented Reality in Maintenance—History and Perspectives
Abstract
:1. Introduction
2. Research Methodology
3. Augmented Reality
3.1. Basic Techniques for AR
3.2. Virtual Objects
3.3. History of Augmented Reality
4. Augmented Reality in Maintenance
4.1. Automobile Industry Applications
4.2. Military Applications
4.3. Electrical Energy Systems Applications
4.4. Other Areas of Application
4.5. Use of CMMS
4.6. Discussion
5. Applications of Machine Learning for AR
5.1. Object Recognition and Tracking
5.2. Image Feature Matching and Pose Estimation
5.3. Models Using Deep Learning
5.3.1. Models That Use CNN
5.3.2. Yolo—Deep Learning Network
5.3.3. MobileNet—Deep Learning Network
6. Advantages and Disadvantages of AR Using Deep Learning Algorithms
7. Discussion and Perspectives
8. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
API | Application Programming Interface |
AR | Augmented Reality |
ARMAR | Augmented Reality for Maintenance And Repair |
BMW | Bayerische Motoren Werk |
CAD | Computer-Aided Design |
CMMS | Computerized Maintenance Management |
CNN | Convolutional Neural Network |
COCO | Common Objects In Context |
CPU | Central Processing Unit |
CV | Computer Vision |
DL | Deep Learning |
FOV | Field Of View |
GPS | Global Positioning System |
GPU | Graphics Processing Units |
HMD | Head Mounted Device |
HUD | Head-Up Display |
HWD | Head-Worn Display |
IoT | Internet of Things |
KARMA | Knowledge-based Augmented Reality for Maintenance Assistance |
LCD | Liquid Crystal Display |
MAP | Mean Average Precision |
MR | Mixed Reality |
MRTK | Mixed Reality Tool Kit |
MTTR | Mean Time To Repair |
NASA | National Aeronautics and Space Administration |
PC | Personal Computer |
QR | Quick Respons |
R-CNN | Region-Based Convolutional Neural Networks |
SLR | Systematic Literature Review |
USMC | United States Marine Corps |
VR | Virtual Reality |
YOLO | You Only Look Once |
References
- POKEMON GO. Available online: https://pokemongolive.com/ (accessed on 31 May 2022).
- Rony Max. Available online: https://futuroexponencial.com/realidade-virtual-aumentada-mista/ (accessed on 31 May 2022).
- Challenor, J.; Ma, M. A review of augmented reality applications for history education and heritage visualisation. Multimodal Technol. Interact. 2019, 3, 39. [Google Scholar] [CrossRef] [Green Version]
- Hilty, D.M.; Randhawa, K.; Maheu, M.M.; McKean, A.J.S.; Pantera, R.; Mishkind, M.C.; Rizzo, A. “Skip”. A review of telepresence, virtual reality, and augmented reality applied to clinical care. J. Technol. Behav. Sci. 2020, 5, 178–205. [Google Scholar] [CrossRef]
- Tezer, M.; Yıldız, E.; Masalimova, A.; Fatkhutdinova, A.; Zheltukhina, M.; Khairullina, E. Trends of augmented reality applications and research throughout the world: Meta-analysis of theses, articles and papers between 2001–2019 years. Int. J. Emerg. Technol. Learn. (iJET) 2019, 14, 154–174. [Google Scholar] [CrossRef]
- Park, M.K.; Lim, K.J.; Seo, M.K.; Jung, S.J.; Lee, K.H. Spatial augmented reality for product appearance design evaluation. J. Comput. Des. Eng. 2015, 1, 38–46. [Google Scholar] [CrossRef] [Green Version]
- Rauschnabel, P.A.; Ro, Y.K. Augmented reality smart glasses: An investigation of technology acceptance drivers. Int. J. Technol. Mark. 2016, 11, 123–148. [Google Scholar] [CrossRef] [Green Version]
- Scheffer, S.; Martinetti, A.; Damgrave, R.; Thiede, S.; van Dongen, L. How to make augmented reality a tool for railway maintenance operations: Operator 4.0 perspective. Appl. Sci. 2021, 11, 2656. [Google Scholar] [CrossRef]
- Siembra Automacao. Available online: https://www.siembra.com.br/noticias/realidade-aumentada-na-automacao-industrial/ (accessed on 31 May 2022).
- Estrada, J.; Paheding, S.; Yang, X.; Niyaz, Q. Deep-Learning-Incorporated Augmented Reality Application for Engineering Lab Training. Appl. Sci. 2022, 12, 5159. [Google Scholar] [CrossRef]
- SOFTTEK. Quais São os Diferentes Tipos de Realidade Aumentada? Available online: https://softtek.eu/pt-pt/tech-magazine-pt/user-experience-pt-pt/quais-sao-os-diferentes-tipos-de-realidade-aumentada/ (accessed on 31 May 2022).
- Aircards. Ar Sem Marcadores vs. Baseado em Marcadores Com Exemplos. Available online: https://www.aircards.co/blog/markerless-vs-marker-based-ar-with-examples (accessed on 31 May 2022).
- Chen, K.; Xue, F. The renaissance of augmented reality in construction: History, present status and future directions. Smart Sustain. Built Environ. 2020, in press. [CrossRef]
- Tonn, C.; Petzold, F.; Bimber, O.; Grundhöfer, A.; Donath, D. Spatial augmented reality for architecture—Designing and planning with and within existing buildings. Int. J. Archit. Comput. 2008, 6, 41–58. [Google Scholar] [CrossRef]
- Mendes, M.; Almeida, J.; Mohamed, H.; Giot, R. Projected Augmented Reality Intelligent Model of a City Area with Path Optimization. Algorithms 2019, 12, 140. [Google Scholar] [CrossRef] [Green Version]
- Vujica Herzog, N.; Buchmeister, B.; Beharic, A.; Gajsek, B. AVisual and optometric issues with smart glasses in Industry 4.0 working environment. Adv. Prod. Eng. Manag. 2018, 13, 417–428. [Google Scholar]
- Rejeb, A.; Keogh, J.G.; Leong, G.K.; Treiblmaier, H. Potentials and challenges of augmented reality smart glasses in logistics and supply chain management: A systematic literature review. Int. J. Prod. Res. 2021, 59, 3747–3776. [Google Scholar] [CrossRef]
- Damiani, L.; Demartini, M.; Guizzi, G.; Revetria, R.; Tonelli, F. Augmented and virtual reality applications in industrial systems: A qualitative review towards the industry 4.0 era. IFAC-PapersOnLine 2018, 51, 624–630. [Google Scholar] [CrossRef]
- Deac, C.N.; Deac, G.C.; Popa, C.L.; Ghinea, M.; Cotet, C.E. Using augmented reality in smart manufacturing. Ann. DAAAM Proc. 2017, 28, 727–732. [Google Scholar]
- Henderson, S.J.; Feiner, S. Evaluating the benefits of augmented reality for task localization in maintenance of an armored personnel carrier turret. In Proceedings of the 2009 8th IEEE International Symposium on Mixed and Augmented Reality, Orlando, FL, USA, 19–22 October 2009; pp. 135–144. [Google Scholar]
- Augmented Reality—The Past, The Present and The Future. Available online: https://www.interaction-design.org/literature/article/augmented-reality-the-past-the-present-and-the-future (accessed on 12 October 2022).
- Thomas, P.C.; David, W.M. Augmented reality: An application of heads-up display technology to manual manufacturing processes. In Proceedings of the Hawaii International Conference on System Sciences, Kauai, HI, USA, 7–10 January 1992; Volume 26. [Google Scholar]
- Rosenberg, L.B. The Use of Virtual Fixtures as Perceptual Overlays to Enhance Operator Performance in Remote Environments; Stanford University CA Center for Design Research: Stanford, CA, USA, 1992. [Google Scholar]
- Oliveira, R.; Farinha, T.; Raposo, H.; Pires, N. Augmented Reality and the Future of Maintenance. Parte: Colecao. 2014. Available online: http://hdl.handle.net/10316.2/33309 (accessed on 11 May 2023).
- Schmalstieg, D.; Hollerer, T. A Brief History of Augmented Reality. Available online: https://www.informit.com/articles/article.aspx?p=2516729&seqNum=2 (accessed on 31 May 2022).
- Rekimoto, J. Matrix: A realtime object identification and registration method for augmented reality. In Proceedings of the 3rd Asia Pacific Computer Human Interaction (Cat. No. 98EX110), Shonan Village Center, Japan, 17 July 1998; pp. 63–68. [Google Scholar]
- Oufqir, Z.; El Abderrahmani, A.; Satori, K. From marker to markerless in augmented reality. In Embedded Systems and Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2020; pp. 599–612. [Google Scholar]
- Goose, S.; Güven, S.; Zhang, X.; Sudarsky, S.; Navab, N. Paris: Fusing vision-based location tracking with standards-based 3d visualization and speech interaction on a PDA. In Proceedings of the IEEE DMS 2004 (International Conference on Distributed Multimedia Systems), Redwood City, SF, USA, 8–10 September 2004; pp. 75–80. [Google Scholar]
- Ong, S.K.; Pang, Y.; Nee, A.Y.C. Augmented reality aided assembly design and planning. CIRP Ann. 2007, 56, 9–52. [Google Scholar] [CrossRef]
- Schönfelder, R.; Schmalstieg, D. Augmented reality for industrial building acceptance. In Proceedings of the 2008 IEEE Virtual Reality Conference, Reno, NV, USA, 8–12 March 2008; pp. 83–90. [Google Scholar]
- Microsoft. Available online: https://www.microsoft.com/en-us/hololens (accessed on 31 May 2022).
- Goolgle Glsses. Available online: https://www.google.com/glass/start/ (accessed on 31 May 2022).
- Halim, A.Z.A. Applications of augmented reality for inspection and maintenance process in automotive industry. J. Fundam. Appl. Sci. 2018, 20, 412–421. [Google Scholar]
- MarketingDive. Available online: https://www.marketingdive.com/ex/mobilemarketer/cms/news/software-technology/21686.html (accessed on 31 May 2022).
- Dini, G.; Dalle Mura, M. Application of augmented reality techniques in through-life engineering services. Procedia CIRP 2015, 38, 14–23. [Google Scholar] [CrossRef]
- Platonov, J.; Heibel, H.; Meier, P.; Grollmann, B. A mobile markerless AR system for maintenance and repair. In Proceedings of the 2006 IEEE/ACM International Symposium on Mixed and Augmented Reality, Santa Barbara, CA, USA, 22–25 October 2006; pp. 105–108. [Google Scholar]
- Boboc, R.G.; Gîrbacia, F.; Butilă, E.V. The application of augmented reality in the automotive industry: A systematic literature review. Appl. Sci. 2020, 10, 4259. [Google Scholar] [CrossRef]
- Henderson, S.J.; Feiner, S.K. Augmented Reality for Maintenance and Repair (Armar); Columbia University New York Department of Computer Science: New York, NY, USA, 2007. [Google Scholar]
- Rolland, J.P.; Hua, H. Head-mounted display systems. Encycl. Opt. Eng. 2005, 2, 1–14. [Google Scholar]
- LaViola, J.; Williamson, B.; Brooks, C.; Veazanchin, S.; Sottilare, R.; Garrity, P. Using augmented reality to tutor military tasks in the wild. In Proceedings of the 2018 3rd International Conference on Information Technology Research (ICITR), Moratuwa, Sri Lanka, 5–7 December 2018; pp. 1–6. [Google Scholar]
- Zhukovskiy, Y.L.; Koteleva, N.I. Electrical equipment maintenance system with elements of augmented reality technologyn. IOP Conf. Ser. Mater. Sci. Eng. 2019, 643, 012024. [Google Scholar] [CrossRef]
- Koteleva, N.I.; Zhukovskiy, Y.L.; Valnev, V. Augmented reality technology as a tool to improve the efficiency of maintenance and analytics of the operation of electromechanical equipment. J. Phys. Conf. Ser. 2021, 1753, 012058. [Google Scholar] [CrossRef]
- Hasançebi, G.; Yeğin, E.M.; Karaarslan, K. Fault Maintenance and Repair Application Based on Augmented Reality Technology in Electrical Distribution Systems. Kocaeli J. Sci. Eng. 2021, 4, 69–78. [Google Scholar] [CrossRef]
- Peng, Y.; Yu, G.; Ni, W.; Lv, Z.; Jiang, Y.; Chen, J. Design and development of intelligent operation and maintenance training system for substation based on augmented reality. In Proceedings of the 2017 Chinese Automation Congress (CAC), Jinan, China, 20–22 October 2017; pp. 4765–4769. [Google Scholar]
- Cordonnier, M.; Martino, S.; Boisseau, C.; Paslier, S.; Recapet, J.-P.; Blanc, F.; Augustin, B. Contribution of augmented reality to the maintenance of network equipment. CIRED-Open Access Proc. J. 2017, 1, 87–90. [Google Scholar] [CrossRef] [Green Version]
- Martino, S.; Gonbeau, O.; Boisseau, C.; Recapet, J.-P.; Blanc, F.; Augustin, B. Enedis field experience of augmented and virtual-reality technologies at the service of network operators. CIRED-Open Access Proc. J. 2017, 2017, 1081–1084. [Google Scholar] [CrossRef] [Green Version]
- Henderson, S.J.; Feiner, S.K. Augmented reality in the psychomotor phase of a procedural task. In Proceedings of the 2011 10th IEEE International Symposium on Mixed and Augmented Reality, Washington, DC, USA, 2–5 November 2004; pp. 191–200. [Google Scholar]
- Mourtzis, D.; Siatras, V.; Angelopoulos, J. Real-time remote maintenance support based on Augmented Reality (AR). Appl. Sci. 2020, 10, 1855. [Google Scholar] [CrossRef] [Green Version]
- Tang, A.; Owen, C.; Biocca, F.; Mou, W.T. Comparative effectiveness of augmented reality in object assembly. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Ft. Lauderdale, FL, USA, 5–10 April 2003; pp. 73–80. [Google Scholar]
- Alves, J.B.; Marques, B.; Ferreira, C.; Dias, P.; Santos, B.S. Comparing augmented reality visualization methods for assembly procedures. Virtual Real. 2021, 26, 235–248. [Google Scholar] [CrossRef]
- Ariansyah, D.; Rosa, F.; Colombo, G. Smart maintenance: A wearable augmented reality application integrated with CMMS to minimize unscheduled downtime. Comput.-Aided Des. Appl. 2020, 17, 740–751. [Google Scholar] [CrossRef]
- Aschauer, A.; Reisner-Kollmann, I.; Wolfartsberger, J. Creating an open-source augmented reality remote support tool for industry: Challenges and learnings. Procedia Comput. Sci. 2021, 180, 269–279. [Google Scholar] [CrossRef]
- Manuri, F.; Sanna, A. A survey on applications of augmented reality. ACSIJ Adv. Comput. Sci. Int. J. 2016, 5, 18–27. [Google Scholar]
- Tang, S.-L.; Kwoh, C.-K.; Teo, M.-Y.; Sing, N.W.; Ling, K.-V. Augmented reality systems for medical applications. IEEE Eng. Med. Biol. Mag. 1998, 17, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, Y.; Jeong, H.; Choi, S.H.; Park, K.-B.; Lee, J.Y. Deep learning-based object detection in augmented reality: A systematic review. Comput. Ind. 2022, 139, 103661. [Google Scholar] [CrossRef]
- Brito, P.Q.; Stoyanova, J. Marker versus markerless augmented reality. Which has more impact on users. Int. J. Hum. Comput. Interact. 2018, 34, 819–833. [Google Scholar] [CrossRef]
- Aggarwal, R.; Singhal, A. Augmented Reality and its effect on our life. In Proceedings of the 2019 9th International Conference on Cloud Computing, Data Science & Engineering (Confluence), Noida, India, 10–11 January 2019; pp. 510–515. [Google Scholar]
- Sherafat, B.; Ahn, C.R.; Akhavian, R.; Behzadan, A.H.; Golparvar-Fard, M.; Kim, H.; Lee, Y.-C.; Rashidi, A.; Azar, E.R. Automated methods for activity recognition of construction workers and equipment: State-of-the-art review. J. Constr. Eng. Manag. 2020, 146, 03120002. [Google Scholar] [CrossRef]
- Lacerda, J. Visão Computacional: Conheça as Aplicações e a Importância para a Transformação Digital. Available online: https://certi.org.br/blog/visao-computacional/ (accessed on 31 May 2022).
- Cruz, S.; Paulino, A.; Duraes, J.; Mendes, M. Real-Time Quality Control of Heat Sealed Bottles Using Thermal Images and Artificial Neural Network. J. Imaging 2021, 7, 24. [Google Scholar] [CrossRef]
- Tedeschi, A.; Benedetto, F. A real-time automatic pavement crack and pothole recognition system for mobile Android-based devices. Adv. Eng. Inform. 2017, 32, 11–25. [Google Scholar] [CrossRef]
- Ahmadyan, A.; Hou, T.; Wei, J.; Zhang, L.; Ablavatski, A.; Grundmann, M. Instant 3D object tracking with applications in augmented reality. arXiv 2020, arXiv:2006.13194. [Google Scholar]
- Sarlin, P.-E.; Dusmanu, M.; Schönberger, J.L.; Speciale, P.; Gruber, L.; Larsson, V.; Miksik, O.; Pollefeys, M. Lamar: Benchmarking localization and mapping for augmented reality. In Proceedings of the A Computer Vision—ECCV 2022: 17th European Conference, Tel Aviv, Israel, 23–27 October 2022; pp. 686–704. [Google Scholar]
- Konstantinidis, F.K.; Kansizoglou, I.; Santavas, N.; Mouroutsos, S.G.; Gasteratos, A. Marma: A mobile augmented reality maintenance assistant for fast-track repair procedures in the context of industry 4.0. Machines 2020, 8, 88. [Google Scholar] [CrossRef]
- Mourtzis, D.; Angelopoulos, J.; Panopoulos, N. A framework for automatic generation of augmented reality maintenance & repair instructions based on convolutional neural networks. Procedia CIRP 2020, 93, 977–982. [Google Scholar]
- Zhao, P.; Wu, H.; Shi, X.; Li, J.; Yi, X.; Liu, S. Research on maintenance guiding system based on augmented reality. In Proceedings of the 2019 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC), Beijing, China, 15–17 August 2019; pp. 944–949. [Google Scholar]
- Lai, Z.-H.; Tao, W.; Leu, M.C.; Yin, Z. Smart augmented reality instructional system for mechanical assembly towards worker-centered intelligent manufacturing. J. Manuf. Syst. 2020, 55, 69–81. [Google Scholar] [CrossRef]
- Zheng, L.; Liu, X.; An, Z.; Li, S.; Zhang, R. A smart assistance system for cable assembly by combining wearable augmented reality with portable visual inspection. Virtual Real. Intell. Hardw. 2020, 2, 12–27. [Google Scholar] [CrossRef]
- Park, K.-B.; Choi, S.H.; Kim, M.; Lee, J.Y. Deep learning-based mobile augmented reality for task assistance using 3D spatial mapping and snapshot-based RGB-D data. Comput. Ind. Eng. 2020, 146, 106585. [Google Scholar] [CrossRef]
- Wang, S.; Zargar, S.A.; Yuan, F.-G. Augmented reality for enhanced visual inspection through knowledge-based deep learning. Struct. Health Monit. 2021, 20, 426–442. [Google Scholar] [CrossRef]
- Coscetti, S.; Moroni, D.; Pieri, G.; Tampucci, M. Factory maintenance application using augmented reality. In Proceedings of the 3rd International Conference on Applications of Intelligent Systems, Las Palmas de Gran Canaria, Spain, 7–9 January 2020; pp. 1–6. [Google Scholar]
- Sun, Y.; Kantareddy, S.N.R.; Siegel, J.; Armengol-Urpi, A.; Wu, X.; Wang, H.; Sarma, S. Towards industrial iot-ar systems using deep learning-based object pose estimation. In Proceedings of the 2019 IEEE 38th International Performance Computing and Communications Conference (IPCCC), London, UK, 29–31 October 2019; pp. 1–8. [Google Scholar]
- Bastes, A.; Ribeiro, S.; Pinto, A.; Marques, F.; Baldissin, D.; Reis, F. Augmented Reality for Training and Maintenance of Reclosers: A Case Study of a Wearable Application. In Proceedings of the S2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC), Madrid, Spain, 12–16 July 2021; pp. 426–442. [Google Scholar]
- Li, S.; Zheng, P.; Zheng, L. An AR-assisted deep learning-based approach for automatic inspection of aviation connectors. IEEE Trans. Ind. Inform. 2020, 17, 1721–1731. [Google Scholar] [CrossRef]
- Perez, H.; Tah, J.H.M.; Mosavi, A. Deep learning for detecting building defects using convolutional neural networks. Sensors 2019, 19, 3556. [Google Scholar] [CrossRef] [Green Version]
- Malta, A.; Mendes, M.; Farinha, T. Augmented reality maintenance assistant using yolov5. Appl. Sci. 2021, 11, 4758. [Google Scholar] [CrossRef]
- Chen, Z.-H.; Juang, J.-C. YOLOv4 Object Detection Model for Nondestructive Radiographic Testing in Aviation Maintenance Tasks. AIAA J. 2022, 60, 526–531. [Google Scholar] [CrossRef]
- Bahri, H.; Krčmařík, D.; Kočí, J. Accurate object detection system on hololens using yolo algorithm. In Proceedings of the 2019 International Conference on Control, Artificial Intelligence, Robotics & Optimization (ICCAIRO), Athens, Greece, 8–10 December 2019; pp. 219–224. [Google Scholar]
- Corneli, A.; Naticchia, B.; Carbonari, A.; Bosché, F. Augmented reality and deep learning towards the management of secondary building assets. In Proceedings of the ISARC, International Symposium on Automation and Robotics in Construction, Banff, AB, Canada, 21–24 May 2019; pp. 332–339. [Google Scholar]
- Thiwanka, N.; Chamodika, U.; Priyankara, L.; Sumathipala, S.; Weerasuriya, G.T. Augmented Reality Based Breadboard Circuit Building Guide Application. In Proceedings of the 2018 3rd International Conference on Information Technology Research (ICITR), Moratuwa, Sri Lanka, 5–7 December 2018. [Google Scholar]
- Devagiri, J.S.; Paheding, S.; Niyaz, Q.; Yang, X.; Smith, S. Augmented Reality and Artificial Intelligence in industry: Trends, tools, and future challenges. Expert Syst. Appl. 2022, 207, 118002. [Google Scholar] [CrossRef]
- Park, K.-B.; Kim, M.; Choi, S.H.; Lee, J.Y. Deep learning-based smart task assistance in wearable augmented reality. Robot. Comput.-Integr. Manuf. 2020, 63, 101887. [Google Scholar] [CrossRef]
- Etonam, A.K.; Di Gravio, G.; Kuloba, P.W.; Njiri, J.G. Augmented reality (ar) application in manufacturing encompassing quality control and maintenance. Int. J. Eng. Adv. Technol. 2019, 9, 197–204. [Google Scholar] [CrossRef]
- Le, H.; Nguyen, M.; Yan, W.Q.; Nguyen, H. Augmented reality and machine learning incorporation using YOLOv3 and ARKit. Appl. Sci. 2021, 11, 6006. [Google Scholar] [CrossRef]
- Gamberini, L.; Orso, V.; Beretta, A.; Jacucci, G.; Spagnolli, A.; Rimondi, R. Evaluating user experience of augmented reality eyeglasses. Annu. Rev. Cybertherapy Telemed. 2015 2016, 2015, 28–32. [Google Scholar]
- Pal, S.K.; Pramanik, A.; Maiti, J.; Mitra, P. Deep learning in multi-object detection and tracking: State of the art. Appl. Intell. 2021, 51, 6400–6429. [Google Scholar] [CrossRef]
- Wu, X.; Sahoo, D.; Hoi, S.C.H. Recent advances in deep learning for object detection. Neuro Comput. 2020, 396, 39–64. [Google Scholar] [CrossRef] [Green Version]
- Lampropoulos, G.; Keramopoulos, E.; Diamantaras, K. Enhancing the functionality of augmented reality using deep learning, semantic web and knowledge graphs: A review. Vis. Inform. 2020, 4, 32–42. [Google Scholar] [CrossRef]
- Khalil, R.A.; Saeed, N.; Masood, M.; Fard, Y.M.; Alouini, M.S.; Al-Naffouri, T.Y. Deep learning in the industrial internet of things: Potentials, challenges, and emerging applications. IEEE Internet Things J. 2021, 8, 11016–11040. [Google Scholar] [CrossRef]
- Nosratabadi, S.; Mosavi, A.; Keivani, R.; Ardabili, S.; Aram, F. State of the art survey of deep learning and machine learning models for smart cities and urban sustainability. In Proceedings of the International Conference on Global Research and Education, Budapest, Hungary, 4–7 September 2019; pp. 228–238. [Google Scholar]
- Ekpo, R.H.; Osamor, I.P.; Osamor, V.C.; Abiodun, T.N.; Omoremi, A.O.; Odim, M.O.; Oladipo, O. Understanding e-health application utilizing internet of things (iot) technologies. In Proceedings of the 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), San Diego, CA, USA, 18–21 September 2019; pp. 1465–1469. [Google Scholar]
- Englert, M.; Klomann, M.; Weber, K.; Grimm, P.; Jung, Y. Enhancing the ar experience with machine learning services. In Proceedings of the 24th International Conference on 3D Web Technology, Los Angeles, CA, USA, 26–28 July 2019; pp. 1–9. [Google Scholar]
- Palmarini, R.; Erkoyuncu, J.A.; Roy, R. An innovative process to select Augmented Reality (AR) technology for maintenance. Procedia Cirp 2017, 59, 23–28. [Google Scholar] [CrossRef]
Problem | Hardware | Results |
---|---|---|
Maintenance tasks inside an armored vehicle | HWD: 1280 × 1024 px and 60 diagonal FOV; HWD: 800 × 600 px and 34 diagonal FOV | Average task completion: 42 s; Average task location: 4.9 s. |
Combustion chamber assembly and disassembly process | NVIS nVisor ST60: 1280 × 1024 px 60 diagonal FOV | Task execution was 21.31 s or 46.8% faster using AR. |
AR instructions for LEGO buildings | Sony Glasstron LDI-100B 30 diagonal FOV | The system can improve task performance (lower average time and number of errors). |
AR-based real-time remote maintenance support | Microsoft HoloLens | Minimizes the MTTR. |
AR systems with a CMMS to plan for preventive and predictive actions | Microsoft HoloLens | The system can minimize unexpected failures. |
AR system for maintenance and repair of an electrical system | - | The system can reduce maintenance cost and reduce human error. |
AR system to improve operation and training for power grid operations staff | - | Enhanced training and effectiveness, |
AR application to facilitate the use of a voltage control panel | - | Reduction in intervention preparation time and increased level of safety. |
Network | Some Results | Hardware | Problem |
---|---|---|---|
CNN | Disassembly task was 60 min | Microsoft HoloLens PC—Intel i7, 16 GB of RAM and 8 GB of GPU | Assembly and disassembly of combustion chambers [65] |
CNN | Improved maintenance efficiency and effectiveness. | Microsoft HoloLens | Remote control tower maintenance and induction system [66] |
YOLOv1 | System mAP: 71.44 and FPS: 4.2 | Microsoft HoloLens 2 NVIDIA Quadro P4000-type GPU | Recognize Objects [78] |
YOLOv2 | System mAP: 79.74 and FPS: 4.6 | ||
YOLOv3 | System mAP: 96.28 and FPS: 5 | ||
YOLOv4 | System mAP: 72.2 and FPS: 30.6 | Conventional GPU NVIDIA Jetson TX2 | Recognize potential cracks in aeroegine [77] |
YOLOv5 | System mAP: 79.7 and FPS: 83.3 | Tesla v100 | Recognize car engine parts [76] |
MobileNet V2 | Testing images: mAP: 0.81 Samsung FPS: 8.5 One Plus FPS: 5.5 | Android plataforms | Platform for teaching how to use electrical equipment [10] |
MobileNet | Dataset with 15 classes Training mAP: 92.0 | Android plataforms | AR visualization of the expected circuit on a breadboard [80] |
Mask R-CNN ResNet101 | - | Microsoft HoloLens NVIDIA GeForce GTX 1080 Ti (11 GB) | Task assistance [69,82] |
Faster R-CNN | Detection in five real tools: mAP: 84.7 | AR-display NVIDIA GTX 1080 Ti GPU | Mechanical assembly instruction [67] |
VGG-8 | Dataset: 7290 samples Proposed approach: mAP: 85.69 | Wearable AR device | Manage aircraft cable assembly process [68] |
SSD MobileNet | Task: Damage detection mAP in 120 test images: 91.67 | Epson BT-300 | Enabling automated damage detection in real-time [70] |
Encoder–decoder CNN-ResNet18 | Proposed pose estimation model achieved better accuracy than competing methods | Microsoft HoloLens Nvidia Titan X GPU (12 GB) | Improving IoT-AR by integrating DL with AR [72] |
Neural Network | - | Realwear HMT-1 | Optimizing workflow [73] |
Combination of FPN and BiLSTM | Tests in pin detection mAP: 99.00 | AR glasses and two GPUs (RTX 2080) | Three tasks in aviation connector inspection [74] |
Based on pre-trained VGG-16 | Test overall accuracy: 87.50 | - | Detection and localization of key building defects [75] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malta, A.; Farinha, T.; Mendes, M. Augmented Reality in Maintenance—History and Perspectives. J. Imaging 2023, 9, 142. https://doi.org/10.3390/jimaging9070142
Malta A, Farinha T, Mendes M. Augmented Reality in Maintenance—History and Perspectives. Journal of Imaging. 2023; 9(7):142. https://doi.org/10.3390/jimaging9070142
Chicago/Turabian StyleMalta, Ana, Torres Farinha, and Mateus Mendes. 2023. "Augmented Reality in Maintenance—History and Perspectives" Journal of Imaging 9, no. 7: 142. https://doi.org/10.3390/jimaging9070142
APA StyleMalta, A., Farinha, T., & Mendes, M. (2023). Augmented Reality in Maintenance—History and Perspectives. Journal of Imaging, 9(7), 142. https://doi.org/10.3390/jimaging9070142