Classification of a 3D Film Pattern Image Using the Optimal Height of the Histogram for Quality Inspection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fast Fourier Transform Algorithm for Cutting 3D Film Pattern Images
2.2. Inspection Algorithm based on a Specific Height of Histogram
3. Results
3.1. Data and Experimental Environment
3.2. Evaluation Metrics
3.3. Performance of the Proposed Algorithm and Comparative Algorithms
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sa, J.; Sun, X.; Zhang, T.; Li, H.; Zeng, H. Improved Otsu Segmentation Based on Sobel Operator. In Proceedings of the 3rd International Conference on Systems and Informatics (ICSAI), Shanghai, China, 19–21 November 2016; pp. 886–890. [Google Scholar]
- Seelaboyina, R.; Vishwakarma, R. Different Thresholding Techniques in Image Processing: A Review. In Proceedings of the ICDSMLA 2021: Proceedings of the 3rd International Conference on Data Science, Machine Learning and Applications, Sydney, Australia, 23–24 December 2022; pp. 23–29. [Google Scholar]
- Flores-Vidal, P.; Gómez, D.; Castro, J.; Montero, J. New Aggregation Approaches with HSV to Color Edge Detection. Int. J. Comput. Intell. Syst. 2022, 15, 78. [Google Scholar] [CrossRef]
- Mlyahilu, J.; Kim, Y.; Kim, J. Classification of 3D Film Patterns with Deep Learning. Comput. Commun. 2019, 7, 158–165. [Google Scholar] [CrossRef]
- Medeiros, A.G.; Guimarães, M.T.; Peixoto, S.A.; Santos, L.D.O.; da Silva Barros, A.C.; de S. Rebouças, E.; de Albuquerque, V.H.C.; Rebouças Filho, P.P. A new fast morphological geodesic active contour method for lung CT image segmentation. Measure 2019, 148, 106687. [Google Scholar] [CrossRef]
- Dasgupta, A.; Mukhopadhyay, S.; Mehre, S.A.; Bhattacharyya, P. Morphological Geodesic Active Contour Based Automatic Aorta Segmentation in Thoracic CT Images. In Proceedings of the International Conference on Computer Vision and Image Processing: CVIP 2016, Roorkee, India, 26–28 February 2016; pp. 187–195. [Google Scholar]
- Mlyahilu, J.N.; Mlyahilu, J.N.; Lee, J.E.; Kim, Y.B.; Kim, J.N. Morphological geodesic active contour algorithm for the segmentation of the histogram-equalized welding bead image edges. IET Image Process. 2022, 16, 2680–2696. [Google Scholar] [CrossRef]
- Yin, X.X.; Jian, Y.; Zhang, Y.; Zhang, Y.; Wu, J.; Lu, H.; Su, M.Y. Automatic breast tissue segmentation in MRIs with morphology snake and deep denoiser training via extended Stein’s unbiased risk estimator. Health Inf. Sci. Syst. 2021, 9, 16. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, L.; Baumela, L.; Márquez-Neila, P.; Henríquez, P. A real time morphological snakes algorithm. Image Process. Line 2014, 2, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Wang, D.; Wang, X.P.; Yang, X. A fast algorithm for geodesic active contours with applications to medical image segmentation. arXiv 2007, arXiv:2007.00525. [Google Scholar]
- Wu, X.; Tan, G.; Pu, B.; Duan, M.; Cai, W. DH-GAC: Deep hierarchical context fusion network with modified geodesic active contour for multiple neurofibromatosis segmentation. Neural. Comput. Appl. 2022, 16, 1–16. [Google Scholar]
- Sheela, C.J.J.; Suganthi, G. Automatic brain tumor segmentation from MRI using greedy snake model and fuzzy C-means optimization. J. King Saud Univ.—Comput. Inf. Sci. 2022, 34, 557–566. [Google Scholar] [CrossRef]
- Ma, J.; He, J.; Yang, X. Learning geodesic active contours for embedding object global information in segmentation CNNs. IEEE Trans. Med. Imaging 2020, 40, 93–104. [Google Scholar] [CrossRef] [PubMed]
- Salman, A.; Semwal, A.; Bhatt, U.; Thakkar, V.M. Leaf Classification and Identification using Canny Edge Detector and SVM Classifier. In Proceedings of the 2017 International Conference on Inventive Systems and Control (ICISC), Coimbatore, India, 19–20 January 2017; pp. 1–4. [Google Scholar]
- Hsu, P.; Chen, B.Y. Blurred Image Detection and Classification. In Proceedings of the Advances in Multimedia Modeling: 14th International Multimedia Modeling Conference, MMM 2008, Kyoto, Japan, 9–11 January 2008; pp. 277–286. [Google Scholar]
- Wang, R.; Li, W.; Li, R.; Zhang, L. Automatic blur type classification via ensemble SVM. Signal Process. Image Commun. 2019, 71, 24–35. [Google Scholar] [CrossRef]
- Kour, V.P.; Arora, S. Particle swarm optimization based support vector machine (P-SVM) for the segmentation and classification of plants. IEEE Access 2019, 7, 29374–29385. [Google Scholar] [CrossRef]
- Sathish, K.; Narayana, Y.V.; Mekala, M.S.; Rizwan, P.; Kallam, S. Efficient tumor volume measurement and segmentation approach for CT image based on twin support vector machines. Neural. Comput. Appl. 2022, 34, 7199–7207. [Google Scholar] [CrossRef]
- Mirbod, M.; Rezaei, B.; Najafi, M. Spatial change recognition model using artificial intelligence to remote sensing. Proc. Comput. Sci. 2023, 217, 62–71. [Google Scholar] [CrossRef]
- Nagaraj, P.; Muneeswaran, V.; Muthamil Sudar, K.; Hammed, S.; Lokesh, D.L.; Samara Simha Reddy, V. An Exemplary Template Matching Techniques for Counterfeit Currency Detection. In Proceedings of the Second International Conference on Image Processing and Capsule Networks: ICIPCN, Online, 27–28 May 2021; pp. 370–378. [Google Scholar]
- Thomas, M.V.; Kanagasabapthi, C.; Yellampalli, S.S. VHDL implementation of pattern based template matching in satellite images. In Proceedings of the 2017 International Conference on Smart Technologies for Smart Nation (SmartTechCon), Bengaluru, India, 17–19 August 2017; pp. 820–824. [Google Scholar]
- Rao, B.S. Dynamic histogram equalization for contrast enhancement for digital images. Appl. Soft Comput. 2020, 89, 106114. [Google Scholar] [CrossRef]
- Mlyahilu, J.; Kim, J. A Fast Fourier Transform with Brute Force Algorithm for Detection and Localization of White Points on 3D Film Pattern Images. J. Imaging Sci. Technol. 2021, 66, 030506. [Google Scholar] [CrossRef]
- Van den Berg, C.P.; Hollenkamp, M.; Mitchell, L.J.; Watson, E.J.; Green, N.F.; Marshall, N.J.; Cheney, K.L. More than noise: Context-dependent luminance contrast discrimination in a coral reef fish (Rhinecanthus aculeatus). J. Exp. Biol. 2020, 223, jeb232090. [Google Scholar] [CrossRef] [PubMed]
Height of Histogram | 1/10 | 2/10 | 3/10 | 4/10 | 5/10 | 6/10 | 7/10 | 8/10 | 9/10 | |
---|---|---|---|---|---|---|---|---|---|---|
Misclassification images | Good pattern | 108 | 145 | 54 | 35 | 2 | 26 | 44 | 12 | 34 |
Bad pattern | 132 | 20 | 24 | 15 | 16 | 11 | 14 | 15 | 24 | |
Number of collapsed images | 240 | 1653 | 78 | 50 | 18 | 37 | 58 | 27 | 58 | |
Accuracy (%) | 91.32 | 93.95 | 96.99 | 97.97 | 99.09 | 98.43 | 97.69 | 98.78 | 97.69 | |
Sensitivity (%) | 99.63 | 93.21 | 97.47 | 98.36 | 99.91 | 98.78 | 97.94 | 99.44 | 98.41 | |
Specificity (%) | 81.51 | 97.20 | 96.64 | 97.90 | 97.76 | 98.46 | 98.04 | 97.90 | 96.64 |
Accuracy (%) | Sensitivity | Specificity | Time (s) | ||
---|---|---|---|---|---|
Algorithm | (%) | (%) | |||
Proposed algorithm () | 99.09 | 99.91 | 97.76 | 6.64 | |
SVM with Canny [14] | 99.01 | 99.06 | 98.88 | 5237.96 | |
Canny with HSV [3] | 74.95 | 100 | 0 | 55.75 | |
Morphological geodesic active contour [7] | 74.95 | 100 | 0 | 1931.13 | |
CNN with Canny [4] | 71.50 | 71.05 | 70.81 | 0.95 | |
Absolute difference | 46.04 | 37.59 | 71.29 | 5.76 | |
Improved Otsu thresholding [1] | 25.05 | 0 | 100 | 5.59 | |
Canny edge detection | 25.05 | 0 | 100 | 6.49 | |
Michelson Contrast [22] | 10.67 | 0 | 42.58 | 107.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Choi, H.; Yum, K.; Park, J.; Kim, J. Classification of a 3D Film Pattern Image Using the Optimal Height of the Histogram for Quality Inspection. J. Imaging 2023, 9, 156. https://doi.org/10.3390/jimaging9080156
Lee J, Choi H, Yum K, Park J, Kim J. Classification of a 3D Film Pattern Image Using the Optimal Height of the Histogram for Quality Inspection. Journal of Imaging. 2023; 9(8):156. https://doi.org/10.3390/jimaging9080156
Chicago/Turabian StyleLee, Jaeeun, Hongseok Choi, Kyeongmin Yum, Jungwon Park, and Jongnam Kim. 2023. "Classification of a 3D Film Pattern Image Using the Optimal Height of the Histogram for Quality Inspection" Journal of Imaging 9, no. 8: 156. https://doi.org/10.3390/jimaging9080156
APA StyleLee, J., Choi, H., Yum, K., Park, J., & Kim, J. (2023). Classification of a 3D Film Pattern Image Using the Optimal Height of the Histogram for Quality Inspection. Journal of Imaging, 9(8), 156. https://doi.org/10.3390/jimaging9080156