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Abstract: The field of ergonomics has been significantly shaped by the advent of evolving technolo-
gies linked to new industrial paradigms, often referred to as Industry 4.0 (I4.0) and, more recently,
Industry 5.0 (I5.0). Consequently, several studies have reviewed the integration of advanced technolo-
gies for improved ergonomics in different industry sectors. However, studies often evaluate specific
technologies, such as extended reality (XR), wearables, artificial intelligence (AI), and collaborative
robot (cobot), and their advantages and problems. In this sense, there is a lack of research explor-
ing the state of the art of I4.0 and I5.0 virtual and digital technologies in evaluating work-related
biomechanical risks. Addressing this research gap, this study presents a comprehensive review of
24 commercial tools and 10 academic studies focusing on work-related biomechanical risk assessment
using digital and virtual technologies. The analysis reveals that AI and digital human modelling
(DHM) are the most commonly utilised technologies in commercial tools, followed by motion capture
(MoCap) and virtual reality (VR). Discrepancies were found between commercial tools and academic
studies. However, the study acknowledges limitations, including potential biases in sample selection
and search methodology. Future research directions include enhancing transparency in commercial
tool validation processes, examining the broader impact of emerging technologies on ergonomics, and
considering human-centred design principles in technology integration. These findings contribute to
a deeper understanding of the evolving landscape of biomechanical risk assessment.

Keywords: physical ergonomics; musculoskeletal disorders; technology; digital; virtual

1. Introduction

Human factors and ergonomics (HFE) concepts have become instrumental since
the first rationalisation of work during the late nineteenth and early twentieth centuries,
with Frederick Taylor, Henry Ford, and Henry Fayol and their focus on optimising the
interaction between people and other elements of the work system. Obviously, at that
time (AKA Industry 2.0 [1]), no one mentioned human factors or ergonomics, but topics
such as cooperation between workers, company management, training, and motivation
were already being discussed [2]. Nowadays, it is even more decisive in the context of
human-centred design to help companies understand worker needs, reduce work-related
risks, facilitate workstation adaptability, and promote sustainability [3].

Ergonomics can be divided into three main branches: physical, cognitive, and or-
ganisational [4]. Physical ergonomics is concerned with the physical demands of work.
It incorporates anthropometrics, physiology, and biomechanics elements to mitigate the
risk of musculoskeletal disorders. Furthermore, physical ergonomics also considers envi-
ronmental factors such as temperature, lighting, and noise in the workplace. Addressing
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these physical characteristics aims to prevent stress and ensure a comfortable working
environment. On the other hand, cognitive ergonomics focuses on how humans process
information, including perception, memory, reasoning, and motor response, as it aims
to optimise human–information interaction. Organisational ergonomics deals with the
broader production system, including people, technology, and the environment, seeking to
optimise sociotechnical systems for workers’ performance and well-being [5].

This research centres on physical ergonomics, focusing on work-related biomechanical
risk assessment. The field of ergonomics has been significantly shaped by the advent
of evolving new technologies linked to new industrial paradigms, often referred to as
Industry 4.0 (I4.0) and, more recently, Industry 5.0 (I5.0) [6]. Within this context, there is a
trend in considering evolving new technologies, such as artificial intelligence (AI), digital
human modelling (DHM), motion capture systems (MoCap), and other technologies for
biomechanical assessment. These technologies can be categorised as virtual, involving
elements that are not physically present but can be simulated or emulated (e.g., DHM) and
digital, encompassing digital or electronic elements, such as digital images, videos, and
other visual inputs (e.g., computing vision [CV]).

Only a limited number of studies have been found within the existing literature
reviews that explore the connection between biomechanical risk assessment and evolving
new technologies.

For instance, Cárdenas-Robledo [7] conducted a systematic literature review illustrat-
ing the application of extended reality (XR) technologies within the context of I4.0 across
different industry sectors. Similarly, Fang et al. [8] conducted a systematic review of the
use of head-mounted display (HMD) AR in various manufacturing processes. Also, da
Silva et al. [9] examined the use of VR and DHM to assess physical ergonomics during
the product development process in the industry. Yin and Li [10] conducted a systematic
review of research methods and application cases in a DHM assembly process simulation.
Donisi et al. [11] conducted a systematic review of the literature focusing on integrating
wearable devices and AI algorithms in physical ergonomics applications. Lastly, Mgbe-
mena et al. [12] conducted a comprehensive analysis of existing literature on hardware
and software technologies to identify the tools employed for ergonomic evaluation in
manufacturing environments.

The aforementioned studies underscored the integration of advanced technologies
for improved ergonomics in different industry sectors, highlighting the potential of these
technologies in enhancing physical ergonomic evaluations and mitigating biomechani-
cal risks. However, these studies tend to evaluate specific technologies, such as XR [7],
HMD [10], wearables, and AI [11], for biomechanical work-related assessment. In this sense,
research is lacking in exploring virtual and digital technologies in evaluating work-related
biomechanical risks. In this context, this study examines the state of the art regarding the
employment of virtual and digital tools for work-related biomechanical risk assessment,
considering both literature and commercial tools available on the market. To the best of the
authors’ knowledge, this is the first paper in the peer-reviewed literature to review digital
and virtual technologies’ applications to biomechanical risk assessment.

2. Relevant Literature
2.1. Work-Related Biomechanical Risk Assessment

Work-related biomechanical risk assessment evaluates the risk of injury based on
the physical interactions and movements within a work environment. It is vital in injury
prevention, workplace safety, and medical treatment planning [13]. Work-related biome-
chanical risk assessment provides valuable insights into how physical forces interact with
our bodies and can help design safer workplaces, creating environments that promote
well-being [14].

According to Massiris Fernández et al. [15], there are four distinct categories under
which biomechanical risk assessment methods can be classified: self-assessment, observa-
tional methods, direct measurement, and computer-based assessment. These categories are
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differentiated by their approach to evaluating and mitigating risks, and their appropriate-
ness depends on the risk assessment′s specific context and research objectives. Although
computer-based methods are of interest in the current study, given its technological focus,
the description of self-assessment, observational, and direct methods is also necessary
(Table 1). This requirement is due to the usual combination of methods for biomechanical
risk assessment, also present in the reviewed tools (Section 4).

Table 1. Categories of data collection methods for biomechanical risk assessment.

# Category Description Limited Detailed Characterisation

1 Self-Assessment

This category assesses biomechanical risks
through questionnaires, enabling workers to
identify potential risk factors present in the

work environment.

HFE professionals employ self-assessment
questionnaires to estimate biomechanical

exposure, considering factors such as postural
demands, repetitive movements, precision
movements, vibration, manual materials

handling, and dynamic tasks of workers. One
example is the Mälmo Shoulder Neck Study

(MSNS) questionnaire [16].

2 Observational Methods
This category evaluates biomechanical risks by

closely observing workers performing their
duties at their respective workstations.

HFE professionals use on-site observations
and offline video analysis to estimate workers′

body-joint angles. On-site observations might
include recording data using spreadsheets or

templates. Software like Kinovea v2023.1
could be employed to analyse recorded

footage and extract biomechanical data for
offline video analysis.

3 Direct Measurement

This category involves evaluating
biomechanical risks using specialised devices
to capture biomechanical data. These devices,
attached to the worker′s body, measure aspects
such as body parts rotation and movements,

providing a comprehensive understanding of
the physical strain experienced by the worker.

Wearable tools and devices are attached to a
worker’s body to automatically collect data for
biomechanical analysis. One such device used
for this purpose is a motion-tracking system

composed of inertial measurement units
(IMUs).

4 Computer-based Assessment
This category employs computers and

software to evaluate biomechanical risks in the
workplace.

Human body models, such as DHM, along
with computing vision (CV) applications, are
employed to automatically derive estimations

of human body models.

2.2. Industrial Revolutions and HFE

Technology has been a constant force in human evolution for 2.6 million years [17].
It has driven humanity forward, from the Stone Age to the Bronze and Iron Ages, and it
continues to shape our society today.

More recently, with the organisation and systematisation of work in the late eighteenth
century, a new era in history began, the Industrial Era, an era influenced mainly by the
use of different types of energy, technology, and work practices. This Industrial Era can be
divided into the first, second, third, fourth, and, more recently, fifth Industrial Revolutions,
each defined by the distinctive advancements in energy, technology, and the role of humans.

In short, the first Industrial Revolution was characterised by using steam power and
mechanising production lines. The Second Industrial Revolution introduced electricity
and oil from the late nineteenth to early twentieth century, leading to mass production,
assembly lines, and streamlined production processes. The third Industrial Revolution,
starting in the late twentieth century, was marked by the automation of production lines
through the integration of computers and information technology [18]. Beginning in the
early twenty-first century, and yet in progress, is the fourth and fifth Industrial Revolution.

Industry 4.0, or I4.0, applies technological advancements from the Fourth Industrial
Revolution within the manufacturing industry. It encompasses the digital transformation
related to “a real-time, high data volume, multilateral communication and interconnect-
edness between cyber-physical systems and people” ([19], pp. 11). The fifth Industrial
Revolution (i.e., I5.0) emphasises the collaboration between humans and machines, focusing
on personalisation and human-centric production [20].
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The fourth and fifth Industrial Revolutions are mainly related to digital and virtual
technologies. They involve the integration of smart evolving technologies such as AI,
DHM, Internet of Things (IoT), cloud computing (CC), robotics, and other technologies into
production facilities and operations to create smart factories [20]. Additionally, I4.0—and,
more pronouncedly, I5.0—reinforces a sociotechnical perspective over production systems
that not only considers the technological sphere (e.g., cyber-physical systems) but also
processes, culture, and people [6]. Since evolving technologies can be part of both I4.0
and I5.0 but at varying stages of development, this work will use the term “evolving
new technologies” to refer to the latest technologies used in the modern industry context,
particularly those that are digital and virtual in nature.

Among evolving new technologies that can have consequences for physical ergonomics,
one can cite additive manufacturing, the IoT, AI, cobots, VR, AR, and others [21] (Table 2).
The employment of these technologies for work-related biomechanical risk assessment has
been discussed in the literature (e.g., [10,22]). Yin and Li [10], for instance, carried out a
comprehensive systematic review of DHM application in ergonomics evaluation. Also,
Asad et al. [22] conducted state-of-the-art research on human-centred digital twins, their
enabling technologies, and implementation frameworks for different industrial applica-
tions. Cárdenas-Robledo et al. [7] comprehensively reviewed the applications of XR, which
includes VR and AR, across different industries. The authors highlighted the potential of
VR and AR technologies to conduct ergonomics assessments. Likewise, Rahman et al. [23]
investigated the adoption of wearable sensors, XR, exoskeletons, and robotics in the con-
struction sector, underscoring their potential to improve work conditions and reduce
occupational risks.

Adding to the discussion on robotics, Weidemann et al. [24] conducted a literature
review to examine the use of cobots in the industrial sector, focusing on their effects on
human work, safety, and health within the I4.0 framework. Among the main conclusions,
the authors stated that cobots improve productivity and efficiency, enhance safety, aug-
ment human capabilities, improve quality, and provide new opportunities by creating
collaborative relationships between humans and robots.

Table 2. Technologies, their description, and application to biomechanical risk assessment.

Technology Definition Sub-Areas Sub-Areas Definition Application to Biomechanical Risk
Assessment

AI

AI is a branch of computer science
that simulates human intelligence. It

involves reasoning, learning,
problem-solving, recognising speech,

making decisions, and identifying
patterns (IBM, 2024). AI can be

classified into four main areas: ML,
CV, deep learning (DL), and natural

language processing (NLP).

Machine learning
(ML)

ML enables computers to learn from
data without explicit programming.

ML analyses large datasets to identify
patterns and make predictions.

AI technologies can be used to create
human body models by capturing
human body movements. These

models can provide estimations for
biomechanical risk assessment [11].

DL and NLP are not relevant for
biomechanical risk assessment.

Computing vision (CV)

CV extracts information from digital
images and videos. It involves

methods for acquiring, processing,
analysing, and understanding the

visual world to produce numerical or
symbolic information.

Deep
learning (DP)

DP employs artificial neural
networks with multiple layers to
learn complex patterns from data.

Inspired by the structure of the
human brain, these networks can

hierarchically process information,
gradually extracting higher-level

features from raw data [25,26].

Natural
language

processing (NLP)

NLP investigates the interaction
between computers and human

language, aiming to equip computers
with the ability to understand,
interpret, and generate human

language through the application of
computer science, linguistics,

and ML [26,27].
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Table 2. Cont.

Technology Definition Sub-Areas Sub-Areas Definition Application to Biomechanical Risk
Assessment

DHM

DHM is a technique for simulating
human interaction with products or

workplaces within a virtual
environment [28]. It employs

three-dimensional manikins in these
virtual settings to mimic human

interaction with the work
environment [29].

For
Sub-

categories,
refer

to [10]

Not applied.

DHM provides a virtual platform for
analysing human movements and

postures in relation to products and
work environments [10,28].

Virtuality
Virtuality refers to something

simulated or computer-generated,
not existing in the physical world.

VR

VR technology creates a
three-dimensional virtual

environment using computer
simulations to simulate human
interaction within the virtual
working environment [28].

Like DHM, VR simulates human
interaction with products or

workplaces in a virtual
environment [30]. Accordingly, AR
can be useful for biomechanical risk

assessment in work-related tasks [31].
AR

AR combines the real world with
computer-generated content, creating

an integrated and interactive
experience [7].

MoCap

MoCap is a technology-driven
method used to digitally record the

movement of objects or people [32]. It
can be subdivided into optical and

wearable systems.

Optical
systems:

marker-based
(MBased)

Within the former, MBased systems
use reflective markers placed on

specific points of the body. Multiple
cameras track these markers to

capture the motion. This method is
known for its high accuracy but

requires a controlled environment
with multiple high-resolution

cameras (e.g., Vicon [33]).

MoCap technology provides accurate
and feasible assessments of various
musculoskeletal parameters and can

aid in diagnosing and monitoring
work-related musculoskeletal

disorders. However, challenges
related to obtaining accurate data are
complex, owing to the nature of the

working environment, heavy
equipment used by workers, wearing
personal protective equipment, and

the limitations of MoCap
systems [32].

Optical
systems:

marker-less (MLess)

MLess systems do not require
markers or special suits using

advanced CV techniques to track the
human body (i.e., Microsoft Kinect

V2 [34]).

Wearable systems

Within wearable systems, inertial
measurement unit (IMU) systems use

wearable sensors to measure body
motion. The sensors, which include
accelerometers, magnetometers, and

gyroscopes, can detect changes in
speed and direction

(e.g., XsensMVN [35]).

3. Materials and Methods

This scoping review utilised PRISMA Extension for Scoping Reviews recommenda-
tions to strengthen its transparency and reproducibility [36]. With the research objective
of assessing digital and virtual technologies employed for biomechanical risk assessment
methods, a scoping review process including scientific and grey literature was conducted.
In March 2024, a search of commercially available biomechanical risk assessment tools was
conducted using the Google search engine to identify resources within the grey literature.
After trying different search strings with a combination of related terms (e.g., biomechan-
ical risk assessment, ergonomics risk assessment, and musculoskeletal risk assessment),
only the most relevant business websites were accessed (i.e., first-page results related
to companies offering services through technologies of interest). This search process re-
trieved 28 commercial tools, of which 24 were included in the review. The following
tools were not included: (i) applied technologies of interest to other fields such as quality
inspection (e.g., EasyODM, available at https://shorturl.at/RMxBq, accessed on 12 March
2024), back-end operations, machine use, defect detection, etc. (e.g., alwaysAI, available
at https://alwaysai.co/, accessed on 12 March 2024), vehicle design (e.g., RAMSIS, avail-
able at https://shorturl.at/ZLv46, accessed on 12 March 2024 and SAMMIE, available at
https://shorturl.at/FlOc9, accessed on 12 March 2024) and (ii) employed (input-output
conventional) computational software to biomechanical risk assessment (e.g., ErgoIBV,
available at https://www.ergoibv.com/en/, accessed on 12 March 2024. In other words,
the inclusion criteria were based on employing digital or virtual technologies for work-
related biomechanical risk assessment (e.g., CV, ML, DHM, VR, and AR).

https://shorturl.at/RMxBq
https://alwaysai.co/
https://shorturl.at/ZLv46
https://shorturl.at/FlOc9
https://www.ergoibv.com/en/
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Reviewed tools were classified according to the following categories: (i) company’s
name and country, (ii) tool name and cost, (iii) area of application (i.e., which industry
the tool was being applied), (iv) technology and required hardware, (v) data collection
methods, (vi) biomechanical risk assessment methods and physical risk factors addressed,
(vii) and associated scientific evidence. This information was retrieved from the company’s
website. Item (iv) refers to the type of technology upon which the tool was based, plus the
leading hardware required for its functioning. For instance, in the case of VR, the hardware
would refer to an HMD. Item (v) refers to the data collection method categories displayed
Table 2 (i.e., self-assessment, observational, direct measurement, and computer-based). Item
(vi) refers to specific assessment methods (e.g., RULA, REBA, OWAS, etc.) and addresses
physical risk factors. The associated scientific evidence (vii) refers to scientific articles
validating or applying the tool.

Concerning scientific literature, the Web of Science (WoS) database was surveyed. The
search query used was “(ergonom* OR ′musculoskeletal disorders′ OR ‘biomechanical
risk assessment’) AND (′industry 4.0′ OR ‘industry 5.0′)” limited to journal articles and
conference papers written in English. This search yielded 210 documents in March 2024.
Ten documents were selected for inclusion following a PRISMA-guided screening process
involving titles, abstracts, and full texts [37]. Only articles directly assessed the employ-
ment of evolving new digital and virtual technologies for biomechanical risk assessment
were included. Following commercial tools categorisation, reviewed articles were further
coded into eight categories: (i) tool name, (ii) area of application (i.e., experimental or
industrial), (iii) technology, (iv) hardware, (v) data collection method, (vi) ergonomics
methods, (vii) physical risk factors addressed, and (viii) sample size.

4. Results

This section presents the descriptive results for coding-reviewed commercial tools
(Section 4.1.), followed by the critical analysis of the reviewed literature (Section 4.2.).

4.1. Commercial Tools

Table 3 summarises the characteristics of reviewed commercial tools that employ
virtual and digital technologies for work-related biomechanical risk assessment. The
hardware technology featured in this study pertains to data collection devices, such as
smartphones, and the equipment used for modelling and simulation, for instance, those
hosting and running virtual analysis (e.g., DHM requires PCs), all within the scope of
musculoskeletal risk assessment.

Most tool-owner companies were from the United States (n = 8), followed by France
(n = 3), Germany and the United Kingdom (n = 2 each). The remaining tools originate from
other European countries. Additionally, only 2 of the 24 tools reviewed were free to use.
All of the reviewed tools were applied to industrial contexts. Two tools, AnyBody (#18C)
and OpenSim (#21C) could also be used in contexts such as academia, medicine, sports,
and other specific health-related areas.

Regarding the technologies employed, AI was the most prevalent, being integrated
into 13 tools. These were followed by DHM (n = 12), MoCap (n = 4), and VR (n = 3).
Additionally, it was observed that a combination of technologies was used in some tools
(n = 5). Among the 24 tools identified, 19 employed a single type of technology. For
example, AI was the single technology incorporated in 12 tools and DHM in 7.



Safety 2024, 10, 79 7 of 18

Table 3. Characteristics of the reviewed commercial tools that employed virtual and digital technolo-
gies for biomechanical risk assessment.

# Company Country Tool Name Cost Application Technology
Involved Hardware

Data
Collection

Method

Ergonomics
Risk

Assessment
Methods *

Scientific
Evidence

#1C viso.ai
[38] Switzerland

Ergonomic
Risk

Analysis
Paid Any

industry
AI

(CV + ML) Camera
Computer-

based
assessment

Not
mentioned No

#2C ViveLab [39] Hungary ViveLab
Ergonomic Paid Any

industry
DHM +
MoCap

PC +
Wearable

(smart
clothes)

Computer-
based

assessment +
Direct

measurement

OCRA, APSA,
EAWS,

KIM-MHO,
NPW, REBA,
and WERA

No

#3C Soter [40] Australia Soter
Genius Paid Any

industry
AI

(CV + ML) Smartphone

Computer-
based

assessment +
Direct

measurement

RULA and
REBA No

#4C Siemens [41] Germany Tecnomatix Paid Any
industry

DHM +
MoCap +

VR

PC +
Wearable

(smart
clothes +
HMD)

Computer-
based

assessment +
Direct

measurement

NIOSH,
OWAS, LBA,
and RULA

[42]

#5C Dassault
Systèmes [43] France Delmia Paid Any

industry DHM PC
Computer-

based
assessment

RULA, MTM,
and GARG’s

energy
prediction

model

[44,45]

#6C imk [46] Germany EMA Paid Any
industry DHM + VR PC + HMD

Computer-
based

assessment

NIOSH and
EAWS [47]

#7C Voxel [48] USA Voxel Paid Any
industry

AI
(CV + ML) Camera

Computer-
based

assessment
REBA No

#8C TuMeke [49] USA Tumeke
Ergonomics Paid Any

industry
AI

(CV + ML) Smartphone
Computer-

based
assessment

RULA, REBA,
RSI, and
NIOSH

No

#9C VelocityEHS
[50] USA

VelocityEHS®

Industrial
Ergonomics

Paid Any
industry

AI
(CV + ML) Smartphone

Computer-
based

assessment

RULA and
REBA No

#10C Nawo
Solution [51] France Nawo Paid Any

industry

AI
(CV + ML)

+ DHM,
VR, and
MoCap

Smartphone
+ PC +

Wearable
(smart

clothes +
HMD)

Computer-
based

assessment +
Direct

measurement

RULA, REBA,
NIOSH,

EAWS, and
NFX35-109

No

#11C IBV [52] Spain ErgoIA Paid Any
industry

AI
(CV + ML) Smartphone

Computer-
based

assessment

REBA,
OWAS, and
Repetitive

Tasks

No

#12C ErgoSanté
[53] France LEA Open Any

industry
AI

(CV + ML) Smartphone
Computer-

based
assessment

RULA No

#13C Intenseye [54] UK
Intenseye

Ergonomics
AI

Paid Any
industry

AI
(CV + ML) Camera

Computer-
based

assessment

RULA and
REBA No

#14C Protex AI [55] Ireland and
USA Protex AI Paid Any

industry
AI

(CV + ML) Camera
Computer-

based
assessment

Not
mentioned No

#15C Buddywise
[56] Sweden

The
product

has no name
Paid Any

industry
AI

(CV + ML) Camera
Computer-

based
assessment

Not
mentioned No

#16C FlexSim [57] USA FlexSim Paid Any
industry DHM PC

Computer-
based

assessment

RULA,
NIOSH,

OWAS, Snook
and Ciriello,

and MEE

[58]

#17C Simio [59] USA Simio Paid Any
industry DHM PC

Computer-
based

assessment

Not
mentioned [60]
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Table 3. Cont.

# Company Country Tool Name Cost Application Technology
Involved Hardware

Data
Collection

Method

Ergonomics
Risk

Assessment
Methods *

Scientific
Evidence

#18C AnyBody [61] Denmark AnyBody Paid

Academic,
Medicine,

Sports, and
Industry

DHM +
MoCap

PC +
Wearable

(smart
clothes)

Computer-
based

assessment +
Direct

measurement

RULA and
EMG [62,63]

#19C PTC
[64] USA Creo Paid Any

industry DHM PC
Computer-

based
assessment

RULA, Snook
and Ciriello,
and NIOSH

[65]

#20C
NexGen

Ergonomics
[66]

Canada HumanCad Paid Any
industry DHM PC

Computer-
based

assessment

NIOSH,
Energy

Expenditure,
OWAS,

RULA, Snook
and Ciriello,

and Mital

[67]

#21C OpenSim [68] USA OpenSim Open

Academic,
Medicine,

Sports, and
Industry

DHM PC
Computer-

based
assessment

RULA,
OWAS,

NIOSH, LSI,
MFI, JRFs,
and EMG

[69–72]

#22C Arvist [73] USA Arvist Paid Any
industry

AI
(CV + ML) Camera

Computer-
based

assessment

Not
mentioned No

#23C Everguard
[74] USA Sentri 360 Paid Any

industry
AI

(CV + ML) Camera
Computer-

based
assessment

Not
mentioned No

#24C

University of
Michigan
/Human

Tech/
Velocity EHS

[75]

USA 3DSSPP Paid Any
industry DHM PC

Computer-
based

assessment

Not
mentioned [76]

* Rapid Upper Limb Assessment (RULA), Rapid Entire Body Assessment (REBA), NIOSH, Ovako Working
Analysis System (OWAS), Ergonomic Assessment Worksheet (EAWS), Snook and Ciriello, Key Indicator Method
for Manual Handling Operator (KIM-MHO), Occupational Repetitive Action (OCRA), Workplace Ergonomic Risk
Assessment (WERA), New Production Worksheet (NPW), Revised Strain Index (RSI), Lower Back Analysis (LBA),
Arbeitsplatz-Strukturanalyse (APSA), NFX35-109, Mital, Metabolic Energy Expenditure (MEE), Muscle Electrical
Activity (EMG), Method Time Measurement (MTM).

Regarding hardware usage frequency, PCs were the most commonly used, integrated
into 12 tools. They were followed by cameras, wearables (n = 7 each), and smartphones
(n = 6). Out of the 24 tools identified, 19 utilised a single type of hardware technology.
For instance, PCs and cameras were the sole hardware technology used in seven tools,
while smartphones were used in five. It was also noted that some tools (n = 5) employed
a combination of technologies. For example, PCs were paired with smart clothes and
HMDs in tools #2C and #10C, respectively. Additionally, it was observed that most camera
hardware-based tools were not limited to ergonomics but extended their evaluation to
other areas, such as safety, area control, vehicle safety, housekeeping, behavioural safety,
personal protective equipment, and others.

Concerning biomechanical risk assessment methods, out of the 24 tools reviewed, only
5 of them combined different data collection methods (Table 1), namely direct measurement
techniques with computer-based assessment (i.e., tools #2C, #3C, #4C, #10C, and #18C).
Regarding biomechanical risk assessment methods, the most frequently used was RULA
(n = 12), followed by REBA (n = 8), NIOSH (n = 6), OWAS (n = 5), EAWS (n = 3), and Snook
and Ciriello (n = 2). Other methods refer to KIM-MHO, OCRA, Workplace Ergonomic
Risk Assessment (WERA), New Production Worksheet (NPW), Revised Strain Index (SI),
Lower Back Analysis (LBA), Arbeitsplatz-Strukturanalyse (APSA), NFX35–109, and Mital,
which were less prevalent with only one instance each. Additionally, some companies
employed other types of ergonomics evaluation methods. For example, tools for measuring
metabolic energy expenditure (MEE) and muscle electrical activity (EMG) (#21C) are also
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used. The Method Time Measurement (MTM) method was also noted among the tools
employed (#5C).

In terms of the physical risk factors, the most addressed risk factor was “Awkward Pos-
tures” (n = 16), followed by “Manual Handling” (n = 9), “Holistic” (n = 8), and “Repetitive
Movements” (n = 5). The “Holistic” category incorporates biomechanical, physiological,
thermal environment, and psychosocial aspects. Evidence from scientific literature sup-
ported 10 of the 24 tools reviewed (tools #4C, #5C, #6C, #16C, #17C, #18C, #19C, #20C, #21C,
and #24C).

4.2. Academic Literature

Table 4 presents the key characteristics of the ten reviewed academic studies. MoCap
was the most frequently used technology, being employed in 7 out of 10 studies, followed
by DHM (n = 5), AI and VR (n = 3 each), and 2D Laser Imaging Detection and Ranging (2D
LiDAR), and smartwatch and IoT (n = 1 each). The most employed hardware was wearables
(n = 9), followed by PCs (n = 5), Kinect V2 and camera (n = 2 each), laser, scanner, and
detector (e.g., 2D LiDAR) (n = 1), and sensors (n = 1). Technologies were often combined.
For instance, Pistolesi et al. [77] developed a human-centred posture-tracking system for
assembly/disassembly line workers using supervised learning, a smartwatch to monitor
upper-body posture, and 2D LiDAR to track leg placement. Caputo et al. [78] proposed a
novel approach for validating the design of workplaces on automotive assembly lines in a
virtual environment using DHM software and a homemade MoCap system.

Table 4. Characteristics of the reviewed scientific literature tools that employed virtual and digital
technologies for biomechanical risk assessment.

# References Tool Name Application Technology
Involved Hardware

Data
Collection

Method

Ergonomics
Risk

Assessment
Methods *

Physical
Risk Factors
Addressed

Sample Size

#1A
Pistolesi
et al. [77],

2024

Not
applied

Experimental
Environ-

ment

AI (ML) +
LiDAR +

microprocessors,
sensors,

communication,
and display

(smartwatch)

Wearable
(smartwatch)
and emitter +

receiver +
processor

(e.g., LiDAR)

Computer-
based

assessment +
Direct

measure-
ment

Not
mentioned Not applied 3

#2A
Caputo

et al. [78],
2018

Ergo-UAS
method

Industrial
Environ-

ment
DHM + MoCap

PC +
Wearable

(smart
clothes)

Computer-
based

assessment +
Direct

measure-
ment

EAWS Holistic Not
mentioned

#3A
Manghisi
et al. [79],

2022
ErgoVR tool

Experimental
Environ-

ment

MoCap + PL (C#)
+ VR

Kinect V2 +
Wearable
(HMD)

Computer-
based

assessment
RULA Awkward

Postures
Not

mentioned

#4A
Sardar

et al. [80],
2023

Not
applied

Experimental
Environ-

ment
VR Wearable

(HMD)
Observational
assessment

RULA,
REBA, and

OWAS

Awkward
Postures and

Holistic
10

#5A
Havard

et al. [81],
2019

Not
applied

Experimental
Environ-

ment

DHM + VR +
MoCap

PC +
Wearable

(HMD and
smart

clothes)

Computer-
based

assessment +
Direct mea-
surement

RULA Awkward
Postures

Not
mentioned

#6A
Feldmann
et al. [82],

2019

Not
applied

Experimental
Environ-

ment
MoCap

Wearable
(smart

clothes)

Direct
measure-

ment
KIM-MHO Awkward

Postures 3

#7A
Bortolini
et al. [83],

2020

Motion
Analysis
System
(MAS)

Experimental
Environ-

ment
DHM + MoCap PC + Kinect

V2

Computer-
based

assessment

OWAS,
REBA,

NIOSH, and
EAWS

Holistic,
Awkward

Postures and
Manual

Handling

7
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Table 4. Cont.

# References Tool Name Application Technology
Involved Hardware

Data
Collection

Method

Ergonomics
Risk

Assessment
Methods *

Physical
Risk Factors
Addressed

Sample Size

#8A
Caterino
et al. [84],

2021

Not
applied

Industrial
Environ-

ment

DHM + MoCap +
IoT

PC +
Wearable

(smart
clothes) +

Embedded
systems
(sensors)

Computer-
based

assessment +
Direct mea-
surement

OWAS Holistic Not
mentioned

#9A

Massiris
Fernández
et al. [15],

2020

Not
applied

Industrial
Environ-

ment
AI (ML + CV) Camera

Computer-
based

assessment
RULA Awkward

Postures
Not

mentioned

#10A

Ciccarelli,
Papetti,
Scoccia,

et al. [85],
2022

Not
applied

Experimental
Environ-

ment

AI (ML + CV) +
DHM +
MoCap

Camera + PC
+ Wearable

(smart
clothes)

Computer-
based

assessment +
Direct mea-
surement

RULA Awkward
Postures

Not
mentioned

* Rapid Upper Limb Assessment (RULA), Rapid Entire Body Assessment (REBA), Ovako Working Analysis System
(OWAS), NIOSH, Key Indicator Method for Manual Handling Operator (KIM-MHO), Ergonomic Assessment
Worksheet (EAWS).

Manghisi et al. [79] developed a software tool that utilises MoCap, specifically the
Microsoft Kinect v2 sensors, VR technology, and C# Programming Language (PL) to assess
ergonomic postural risk in static postures.

Meanwhile, Sardar et al. [80] sought to comprehend the physical risk levels of manufac-
turing industry employees during VR interaction for manufacturing tasks. Havard et al. [81]
proposed a real-time co-simulation architecture between a digital twin and a VR environ-
ment using DHM and VR technology. Feldmann et al. [82] aimed to standardise the
ergonomics assessment procedure by digitising the ergonomics analysis tool Key Indicator
Method (KIM) through MoCap.

Bortolini et al. [83] introduced the Motion Analysis System (MAS), an hardware/software
solution designed to capture and analyse human body movements during manufacturing
and assembly tasks through MoCap (Microsoft Kinect v2 sensor) and software (productivity
and ergonomic analysis). Caterino et al. [84] proposed a methodology focused on an
ergonomic analysis based on MoCap, IoT, and DHM software. Lastly, Ciccarelli, Papetti,
Scoccia, et al. [85] introduced a system designed to prevent uncomfortable and potentially
hazardous postures using DHM, MoCap, and AI technologies.

Five biomechanical risk assessment methods combined direct measurement with
computer-based data collection methods of the ten tools reviewed. The most frequently
used risk assessment method was RULA (n = 5), followed by OWAS (n = 3), REBA and
EAWS (n = 2 each), and NIOSH and KIM-MHO (n = 1 each). Consequently, the most
addressed physical risk factor was “Awkward Postures” (n = 7), followed by “Holistic”
(n = 5) and “Manual Handling” (n = 2).

5. Discussion
5.1. Technologies and Hardware Comparison

Various technologies have been used in work-related biomechanical risk assessment.
A review of 24 commercial tools for biomechanical risk assessment revealed that AI (n = 13)
and DHM (n = 12) were the most frequently used technologies. This was followed by
MoCap (n = 4) and VR (n = 3).

In contrast, when examining ten studies from academic literature, MoCap emerged as
the dominant method used in biomechanical risk assessments, featuring in seven studies.
DHM applications were a close second, appearing in five studies, while AI and VR were
utilised in only three studies each (Table 5). Although smartphones, smartwatches, and IoT
do not refer to a specific technology but rather to a set of integrated technologies, they are
referred to individually in Table 5 for simplicity.
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Table 5. Technology use: Comparison between academic and commercial tools that employ virtual
and digital technologies for biomechanical risk assessment.

AI DHM MoCap VR LiDAR Smartphones 1 Smartwatch 2 IoT 3 Total

Academic 3 5 7 3 1 - 1 1 21
Commercial 13 12 4 3 - 6 - - 38

Total 16 17 11 6 1 6 1 1 59

1 Smartphones—Integration of sensors, microprocessors, communication, positioning, and display technologies.
2 Smartwatch—Integration of sensors, microprocessors, communication, and display technologies. 3 IoT—Integration
of sensors, microcontrollers, microprocessors, and communication.

Table 6 compares hardware employed in academic and commercial tools, where
differences can also be noted. Among the 24 commercial tools reviewed, PCs (n = 12)
emerged as the most prevalent hardware choice, followed by cameras and wearables
(n = 7 each) and smartphones (n = 6). In contrast, academic tools exhibited a different
pattern, with wearables (n = 9) and PCs (n = 5) being the most commonly employed
hardware, followed by Kinect and camera (n = 2 each), IoT, and LiDAR (n = 1 each).

Table 6. Hardware comparison between academic and commercial tools.

PC
Wearable

Smartphones 2 Kinect IoT 3 LiDAR 4 Camera Total
Smartwatch 1 Smart Clothes HMD

Academic 5 1 5 3 0 2 1 1 2 19
Commercial 12 0 4 3 6 0 0 0 7 32

Total 17 1 9 6 6 2 1 1 9 51

1 Smartwatch—Integration of hardware (sensors, microprocessor, communication, and display).
2 Smartphones—Integration of hardware (sensors, microprocessor, communication, positioning, and dis-
play). 3 IoT—Integration of hardware (sensor, microcontrollers, microprocessors, and communication).
4 LiDAR—Integration of hardware (emitter, receiver, and processor).

This observation suggests a disparity in the adoption of technologies and hardware
devices between academic and commercial spheres. Such differences are related to varying
objectives and constraints inherent in each context. For instance, academic studies often aim
to develop innovative measurement techniques (e.g., Havard et al. [81]) or refine existing
ones (e.g., Feldmann et al. [82]). Conversely, commercial tools primarily target quantifying
biomechanical risks within workplace environments.

Moreover, the choice of hardware is influenced by the constraints imposed by the
respective contexts. Academic studies typically operate within controlled environments
without external factors, such as extreme temperatures, noise, or vibrations, allowing for
more extensive hardware adoption. In contrast, the physical characteristics of tasks, such
as workers′ movements and industry settings, may impose limitations. Hence, commercial
tools often resort to non-intrusive or inconspicuous technologies/hardware, such as AI
and DHM.

While “non-intrusive” and “inconspicuous” are frequently used interchangeably, they
differ. Non-intrusiveness emphasises the absence of discomfort or disruption, ensuring that
individuals are not subjected to unwanted inquiries or discomfort [86]. On the other hand,
inconspicuousness pertains to the lack of noticeability, focusing on blending seamlessly
into the background to avoid detection. Thus, while both terms imply discretion, non-
intrusiveness prioritises comfort and avoidance of disruption, whereas inconspicuousness
emphasises avoiding detection. For instance, a security camera positioned discreetly in a
company setting may be considered both non-intrusive (if it respects privacy expectations)
and inconspicuous (if it blends with the surroundings). Conversely, a safety technician
questioning individuals in the same space may be non-intrusive (if the interaction is
respectful) but not inconspicuous, as their presence is noticeable.

5.2. Risk Factors and Biomechanical Risk Assessment Methods

Commercial tools were observed to employ more physical workload assessment
methods than academic studies, with fifteen methods used in commercial tools versus
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six in academic studies. Consistent with the findings of Joshi and Deshpande [87], when
systematically reviewing ergonomic assessment techniques in various industrial sectors,
the most commonly utilised methods were RULA, REBA, and OWAS. These methods were
applied in 12, 8, and 5 out of the 24 commercial tools and in 5, 2, and 3 out of the ten
academic studies, respectively. Furthermore, commercial tools also addressed “Repetitive”
risk factors and incorporated other types of methods, such as physiological (e.g., EMG and
MEE) and industrial engineering methods (e.g., MTM). Nonetheless, this difference may be
due to the smaller sample of reviewed academic studies.

Regarding assessing risk factors, commercial and academic tools predominantly fo-
cused on addressing “Awkward Postures,” accounting for 46.7% of commercial and 50.0%
of academic tools. The second-most addressed category was “Holistic,” accounting for
24.4% of commercial and 35.8% of academic tools. This is followed by “Manual Handling,”
which was addressed by 20.0% commercial and 14.3% academic tools. The categories
“Repetitive Tasks” and “Others” were exclusively addressed by commercial tools. Table 7
provides an overview of physical workload assessment methods employed in the reviewed
tools and their respective risk factors.

Table 7. Physical workload assessment methods by risk factors.

Risk Factors Assessment
Methods

Frequency
Sum by Method Total

Academic Commercial

Awkward Postures
RULA 5 12 17

29REBA 2 8 10
LBA - 1 1

Manual Handling
NIOSH 1 6 7

11KIM-MHO 1 1 2
Snook and Ciriello - 2 2

Holistic

OWAS 3 5 8

16
EAWS 2 3 5
WERA - 1 1
NPW - 1 1
APSA - 1 1

Repetitive

OCRA - 1 1

4
SI - 1 1

NFX35-109 - 1 1
Not mentioned - 1 1

Others
Physiology - 5 1

6Cycle Time - 1 1

5.3. Preventive and Corrective Action

Preventive and corrective measures are two key strategies for managing risks and
ensuring safety [88]. Preventive measures are proactive steps to prevent an incident or
harm. They aim to identify potential hazards and take action to eliminate or reduce them.
On the other hand, corrective measures are reactive strategies implemented to minimise
work-related risk factors.

From this background, it was observed that the technologies mentioned above were
employed in distinct ways. For instance, DHM and VR can be employed both during
the design phase of workstations and the monitoring of existing workplace conditions, as
evidenced by reviewed tools (e.g., #4C, #5C, and #6C). Conversely, AI and MoCap systems
are more commonly associated with monitoring existing workplace conditions (e.g., #1C,
#3C, and #7C).

In other words, technologies employed in workstation design are primarily focused
on preventive action, whereas technologies that can only be used for monitoring mainly
address corrective action. In this context, DHM and VR technologies could be employed
within preventive strategies, and they were employed in both academic and commercial-
reviewed tools. Specifically, these technologies were employed in 38.1% of academic and
39.5% of commercial tools. Although their application was not the most prevalent one,



Safety 2024, 10, 79 13 of 18

it suggests a broad application of DHM and VR across different sectors. In this context,
Gualtieri et al. [89], who conducted a systematic literature review to examine the current
state of safety and ergonomics in collaborative robotics, concluded that prevention strate-
gies have gained greater attention than protection strategies. Nonetheless, present findings
may imply that digital and virtual technologies still target corrective over preventive actions
when applied to biomechanical risk assessment.

5.4. Ergonomics Implications

This section concludes the discussion by evaluating this study’s results and impli-
cations for ergonomics. Recent AI developments are expected to significantly alter how
specific processes and tasks are done. In an evolving new technology context, human-
centred considerations are paramount to ensure that AI technology is designed and used
ethically. Petrat [90] emphasises the need for more research on human-centred aspects of
AI, particularly those impacting employees′ well-being and acceptance. Additionally, the
author encourages collaboration with other disciplines, such as sociology and economics,
to delve into AI′s broader societal and organisational impacts. Given the large number of
reviewed commercial tools employing AI, the present study resonates with Petrat’s [90]
recommendations. As the field of AI for biomechanical risk assessment is in its early
stages of development, further research is required to identify the broader implications of
employing this tool for workers’ well-being and organisations’ management within the
domains of physical, cognitive, and organisational ergonomics.

Likewise, integrating wearable sensors and AI opens new avenues for innovation in
various fields. This combination allows for real-time data collection and analysis, providing
more accurate and timely insights. For ergonomics, combining wearable sensors and AI to
prevent WMSD can provide valuable insights for improving workplace safety and workers’
comfort. Monitoring work environments and equipment can prevent fatigue accumulation
or overload [11]. Also, this combination is particularly beneficial for analysing complex or
hard-to-observe work situations [11].

As another relevant technology, the more extensive utilisation of DHM in commercial
and academic tools can be explained by its cost-effectiveness, as different workstation de-
signs and manufacturing processes can be simulated in a virtual environment before actual
implementation. This is in accordance with Yin and Li (2023), who underscored that DHM
assembly process simulation was a cost-effective solution for ergonomics and enhanced
efficiency in digital human posture planning. Likewise, Asad et al. [22] highlighted the po-
tential and the features concerning digital twins. The authors stated that the current digital
twin (DT) technology focuses primarily on physical assets, neglecting human operators.
Accordingly, human-centred DTs are expected to address this gap by incorporating human
factors through technologies, such as human-focused sensors and AI. In this sense, human-
centred DTs also show immense potential for improving human-machine collaboration in
various industrial applications.

Concerning the integration of technologies, da Silva et al. [9] highlight that despite the
acknowledged benefits of a combination of VR and DHM, they are not frequently integrated
into ergonomics analysis. The author also stated that most studies focus on pre-designed
processes, not incorporating VR′s potential for early-stage evaluation. Overall, the research
points to a need to bridge the gap between the promising potential of VR and DHM and
their actual utilisation in improving ergonomics. The present study also identified this lack
of integration, with only three studies combining DHM and VR (#4C, #6C, and #10C). This
indicates that companies, although increasingly interested in VR and DHM, might lack a
complete understanding of their complementary advantages and limitations, including
associated costs.

Regarding remaining technologies, Adriana Cárdenas-Robledo et al. [7] highlighted
that XR technologies significantly benefit I4.0/I5.0 by improving training, design, and vari-
ous industrial processes. In the reviewed tools, VR and AR, resulting from the combination
of CV and ML, seem promising for ergonomic assessment. This potential can be realised
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through a focus on affordability and safety. The same is true for MoCap systems, particu-
larly IMU systems, as they can improve medical diagnosis, assessment, and treatment in
various areas, including ergonomics, by assessing and preventing WMSD [32].

Consequently, integrating evolving new virtual and digital technologies with a focus
on human factors will be crucial not only for advancing biomechanical risk assessment but
also for the technologies’ development and widespread adoption. Nonetheless, it is worth
noting that integrating new technologies into existing industrial settings may require not
only reskilling and upskilling of the workforce, but also an appropriate and efficient system
design to cope with changes in the flow of information and user-technology interfaces.

6. Conclusions
6.1. Main Findings and Limitations

The main findings of the present study can be summarised as follows:

• A review of 24 commercial tools for biomechanical risk assessment revealed that AI
and DHM were the most frequently used technologies. MoCap and VR followed
this. In 10 reviewed academic studies, the most employed technologies were MoCap
and DHM.

• Commercial tools often resort to non-intrusive or inconspicuous technologies/hardware,
such as AI and DHM.

• Commercial tools were observed to employ more physical workload assessment
methods than academic studies. Nonetheless, the most employed methods were
RULA and REBA, both in academic and commercial tools.

• In assessing risk factors, “Awkward Postures” were the most prevalent assessed
risk factors for both instances. This was followed by “Holistic” assessments and
“Manual Handling.” Commercial tools exclusively addressed repetitive tasks and
other risk factors.

• Regarding technology use, it was observed that technologies are employed in distinct
ways. For instance, DHM and VR can be employed both during the workstation
design phase and the monitoring of existing workplace conditions (i.e., preventive
and corrective measures). Conversely, AI and MoCap systems are more commonly
associated with monitoring existing workplace conditions (i.e., corrective measures).

However, this study is not free of limitations. They include the intrinsic limitations
of the search strings employed in retrieving relevant academic studies and commercial
tools and the use of a single research database (e.g., Web of Science). Likewise, first-page
Google results may be subject to the author′s location when searching. It is also worth
noting that the concept of “Ergonomics” is often associated with European-based research,
and “Human Factors” are the most common term in North America. These limitations
may have created a bias in the final sample. However, an equivalent number of European
and United States commercial tools may indicate the contrary. Additionally, not finding
scientific evidence for specific commercial tools can be related to an anonymous validation
process that took place within academia without direct reference to the final commercial
tool name.

6.2. Future Research and Recommendations

Based on the findings and limitations of this study, some potential directions for future
research and recommendations:

• This study observed that digital and virtual technologies are used in different ways,
with some used for design and others for monitoring existing work conditions. Future
research could explore the benefits and drawbacks of different technologies and
combinations of technologies for biomechanical risk assessment considering different
risk factors.

• The study suggested a lack of scientific evidence for commercial tools. Even though
this might be due to anonymous validation processes of commercial tools within
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academia, it is recommended that commercial tools that target biomechanical risk
assessment be more transparent about their validation process.

• This study focused on biomechanical risk assessment. However, it is interesting to
evaluate how evolving new technologies may impact ergonomics as a whole. In
other words, how does using specific technologies impact physical, cognitive, and
organisational ergonomics? Additionally, future research could aim to include a more
globally representative sample of academic studies and commercial tools.

• Echoing the findings of other studies, the present study calls attention to the need for
human-centred aspects when developing and incorporating evolving new technolo-
gies into different industry contexts. Particularly, it is interesting to evaluate how the
sociotechnical and management systems can cope with these new technologies. For
instance, in relation to decision-making and organisational ergonomics, how can evolv-
ing technologies contribute to the horizontal availability of information concerning
workers’ well-being? And what are the implications?
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