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Abstract: The Federal Motor Carrier Safety Administration (FMCSA) and National Highway Traffic
Safety Administration (NHTSA) reported that in 2020, 7.3% of large truck driver fatalities had speed
as a contributing factor. Several states have implemented truck differential speed limits (DSLs)
with the objective of improving safety. This study compares truck speeds in 16 states, 8 of which
have implemented DSLs (Arkansas, California, Idaho, Indiana, Michigan, Montana, Oregon, and
Washington) and 8 of which have not (Illinois, Kentucky, Minnesota, Oklahoma, South Dakota,
Tennessee, Wisconsin, and Wyoming). The DSLs ranged from 55 MPH in California (CA) to 70 MPH
in Montana (MT). Over 240,000 speed samples from connected trucks were analyzed during a one-
week period from 15–22 April 2024. The 50th percentile truck speeds ranged from 60 MPH in Oregon
to 69 MPH in Wyoming. The 85th percentile truck speeds ranged from 65 MPH in Washington,
Oregon, and California to 74 MPH in Wyoming. The 85th percentile speeds across all segments were
greater than the posted truck speed limit in 90% of segments with DSLs, but only 12.5% of segments
without DSLs. The average interquartile range (IQR) of truck speeds for the eight states with DSLs
was 19% smaller than the average IQR of the eight states without DSLs. The methodologies and
visuals presented by this study are easily scalable to any route and location provided the availability
of a representative connected truck dataset.

Keywords: differential speed limits; connected truck data; truck speeds; safety

1. Introduction

The Federal Motor Carrier Safety Administration (FMCSA) [1] and National Highway
Traffic Safety Administration (NHTSA) [2] observed that in 2020, 7.3% of large truck crashes
(Gross Vehicle Weight Rating (GVWR) > 10,000 lb.) identified speed as a factor in driver
fatalities. The Surface Transportation and Uniform Relocation Assistance Act of 1987 and
the National Highway Designation Act of 1995 gave U.S. states the ability to set their own
speed limits, removing a federal limit of 55 miles per hour (MPH) [3]. Subsequentially,
in the mid-1990s, multiple states [4] began implementing differential speed limits (DSLs)
that reduced the speed limit for trucks. In doing so, agencies intended to reduce both the
frequency and severity of speeding-related truck crashes. Previous research in this domain
has focused on evaluating the safety benefit/cost of deploying DSLs [4–8]. Multiple studies
concluded that crash rates increased for analyzed segments, regardless of their speed
limits being uniform, having a differential, changing from one to another, etc. [4–6]. Other
studies concluded that DSLs increase the number of car–truck overtaking maneuvers [7,9],
inferring a reduction in overall safety. Aside from differential truck speed limits, other
interventional measures have been implemented to improve truck safety by optimizing
roadway geometric design, curve radius, and roundabout clearance [10–13]. A 2022 study
by Desai et al. [14] utilized connected truck data to analyze the effectiveness of DSLs across
Illinois, Indiana, Ohio, and Pennsylvania. This study found that in Indiana, a 5 MPH truck
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DSL reduction from 70 MPH to 65 MPH resulted in only a 1–2 MPH reduction in truck
speeds when compared with control group segments in the neighboring states.

Historically, studies have been completed using Bluetooth probe data to measure
travel times [15–20], spatial and temporal performance measures in work zones [21,22],
truck identification [23], estimate vehicle count [24], and queueing times near international
border crossings [25]. Eliminating the need for individual Bluetooth data scanners, recent
research in the connected vehicle (CV) and connected truck (CT) space has been conducted
to complete similar studies [26–28]. The CV penetration rate along Indiana roadways
increased from approximately 4.3% to 6.3% between 2021 and 2022, while CT penetration
was estimated at 3.4% in 2022 [29]. These CV data have been effectively applied to other
research topics such as predicting traffic conflicts [30,31], estimating traffic stream den-
sity [32], developing adaptive signal control [33], and analyzing the impact of various speed
reduction tactics [34]. Similarly, CT data have been leveraged to perform winter-weather
after action reports [35], identify long-haul truck parking [36], and estimate truck traffic
flow [37]. Both CV and CT data have been critical to recent visualizations of freeway traffic
conditions [38].

1.1. Research Objective, and Scope

The objective of this research is to expand the sample of both the states with DSLs
and the control group states to assess the impact of truck DSLs on truck speeds across
a diverse set of states and interstate routes. This study identified 16 states; truck DSLs
were implemented in 8 states (Arkansas, California, Idaho, Indiana, Michigan, Montana,
Oregon, and Washington), and 8 adjacent states without truck DSLs served as the control
group (Illinois, Kentucky, Minnesota, Oklahoma, South Dakota, Tennessee, Wisconsin, and
Wyoming). The DSLs ranged from 55 MPH in California (CA) (reduced from 70 MPH) to
70 MPH in Montana (MT) (reduced from 80 MPH).

1.2. Study Locations

Figure 1 shows the 18 segments along four interstates across 16 states studied for
this analysis. The callouts to the blue dots indicate segment locations used for sampling
truck speeds. The first line of the callout shows the abbreviated state name, interstate
(I-90/I-69/I-5/I-40), and whether it was a DSL or a control group with a uniform speed
limit (USL). The second line indicates the truck speed limit along the segment studied in
that state. All segments were approximately 5 miles in length and avoided interchanges,
rest areas, and weigh stations to remove potential biases and externalities in the connected
truck data.

In order to obtain a better understanding of how differential speed limits impact
trucks speeds, it was important to consider all eight states that, as of July 2024, had posted
differential speed limits. Including all eight states ensured the most accurate statistical
representations and reduced any chance for bias introduced from state selection. Figure 2
shows independently collected commercial vehicle dash camera images showing four DSL
values analyzed in the study, ranging from 55 MPH in California (Figure 2a) to 70 MPH
in Arkansas (Figure 2d). Strategically selecting states with USLs adjacent to or in between
the DSL states allowed for control points along common interstate routes. For example, a
section of I-69 in Kentucky (USL) was selected as a control for corresponding sections of
I-69 that were selected in Indiana (DSL) and Michigan (DSL).

In all 18 segments, emphasis was placed on avoiding any interchanges, rest areas, and
weigh stations, referred to as interruptions in following text, along the five-mile segments.
This intentional exclusion was meant to reduce the inconsistencies in truck speed data
potentially caused by these features and associated externalities (merging or exiting traffic,
for example). In addition, the travel direction was kept consistent across all segments for
each of the four interstates (either eastbound or northbound). The geographic environment
was also kept very similar, avoiding any major urban areas or extreme curves/grades. In



Safety 2024, 10, 99 3 of 12

some cases, it was not possible to completely avoid grade changes, but efforts were made
during segment selection to minimize the severity.
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Figure 2. Truck dashcam images showing DSL signs for different speeds: (a) California DSL on I-5 
NB from 70 MPH to 55 MPH; (b) Oregon DSL on I-5 NB from 65 MPH to 60 MPH; (c) Idaho DSL on 
I-90 EB from 75 MPH to 65 MPH; (d) Arkansas DSL on I-40 EB from 75 MPH to 70. 
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2.1. Connected Truck Data 

Figure 2. Truck dashcam images showing DSL signs for different speeds: (a) California DSL on I-5
NB from 70 MPH to 55 MPH; (b) Oregon DSL on I-5 NB from 65 MPH to 60 MPH; (c) Idaho DSL on
I-90 EB from 75 MPH to 65 MPH; (d) Arkansas DSL on I-40 EB from 75 MPH to 70.

2. Materials and Methods
2.1. Connected Truck Data

Connected truck trajectory data are currently available from several third-party ven-
dors at a market penetration rate between 1% and 4% [29]. These data contain anonymized
speed, heading, timestamp, geopositional coordinates, and a unique vehicle ID with an
approximate 10 s reporting frequency. Data are collected through either a direct connection,
a third-party telematics device, or a smartphone app.

Connected truck data in this study were reported at a frequency of approximately 10 s
for 140,000 unique trucks on average every day. This totaled approximately 225 million
records of nationwide truck data every day of the week. These data were then linearly ref-
erenced to 0.1-mile spatial polygons along selected interstate routes using existing method-
ologies (Figure 2.5 from [38]), which could be visualized by spatiotemporal heatmaps [38].
These heatmaps were color-coded based on speeds from the CT data, visualizing the traffic
conditions for a specified corridor over a given time. Figure 3 contains three heatmaps
along I-5 in Washington (Figure 3a), Oregon (Figure 3b), and California (Figure 3c). These
heatmaps aid in detecting instances of recurring or nonrecurring congestion along a route,
a vital step in segment selection as well as study period selection for this study.
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Figure 3. Connected truck heatmaps for I-5 northbound segments (15–22 April 2024): (a) I-5 segment
in Washington (WA-5-DSL); (b) I-5 segment in Oregon (OR-5-DSL); (c) I-5 segment in California
(CA-5-DSL).

2.2. Study Period Selection

Once generated, the 5-mile segment heatmaps were then examined closely to deter-
mine a one-week timeframe for the study to take place. Efforts were made to avoid any
significant traffic events that may have taken place during the 7-day period. Figure 3b
shows a moderate reduction in speeds between mile markers (MMs) 90 and 91 on I-5
northbound (N) in Oregon, but this reduction in speeds was consistent throughout the
week and even across multiple weeks. This consistency indicated that roadway geometry
may have played a factor in this systematic reduction of truck speeds for that given corri-
dor. Because of the frequently spaced interchanges along I-5 in Oregon, this was the only
segment possible for a 5-mile analysis and hence was considered for this study.

2.3. Truck Speeds

Summary statistics of connected truck speeds observed on the 18 selected segments
for the week of 15–22 April 2024 were computed and tabulated. These truck speeds were
separated into 25th, 50th, 75th, and 85th percentiles. Data for the segments with differential
speed limits can be found in Table 1(a), and those for the segments with uniform speed
limits can be found in Table 1(b). Cells shaded in red indicate speeds that were greater than
the posted truck speed limits. The final column shows the difference between the observed
85th percentile speeds and the posted truck speed limit, especially because of the 85th
percentile speed being the widely considered threshold to determine vehicles exceeding the
safe speed limits designated for a particular roadway and its traffic conditions [39]. Only
speed records between 0 MPH and 100 MPH were considered for the analysis in order to
exclude outliers and account for data reporting issues.
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Table 1. Summary of connected truck speed statistics for 18 selected segments: (a) segments with
differential speed limits; (b) segments with uniform speed limits. Speeds above posted truck speed
limit are shaded in red.

ID MM Range Speed
Limit

Truck
Speed
Limit

# of Trips

25th
Percentile

Speed
(MPH)

50th
Percentile

Speed
(MPH)

75th
Percentile

Speed
(MPH)

85th
Percentile

Speed
(MPH)

+/− of 85th
Percentile
from Truck

Speed Limit
(a)

MI-69-DSL 170–175 75 65 183 64.62 65.23 66.93 67.73 2.73
IN-69-DSL 290–295 70 65 2495 64 65.24 67.73 69 4
WA-5-DSL 83.1–88.1 70 60 2365 60.27 62.76 64.62 64.62 4.62
OR-5-DSL 90–95 65 60 1513 55.3 59.65 63 64.62 4.62
CA-5-DSL 359–364 70 55 2959 59.02 61 63.38 64.62 9.62

WA-90-DSL 256–261 70 60 1148 62 64 64.94 65.87 5.87
ID-90-DSL 33.5–38.5 75 65 418 60.89 64 66 67.94 2.94
MT-90-DSL 383.5–388.5 80 70 605 64.62 68 70 70.21 0.21
IN-90-DSL 32–37 70 65 2368 63.38 65 67.11 68.35 3.35
AR-40-DSL 48–53 75 70 2505 63.38 65 67.73 69.59 −0.41

(b)

ID MM Range Speed
Limit

Truck
Speed
Limit

# of Trips

25th
Percentile

Speed
(MPH)

50th
Percentile

Speed
(MPH)

75th
Percentile

Speed
(MPH)

85th
Percentile

Speed
(MPH)

+/− of 85th
Percentile
from Truck

Speed Limit
KY-69-USL 95–100 70 70 615 64 65.87 68.97 70 0
WY-90-USL 194–199 80 80 115 65.06 68.97 72 74 −6
SD-90-USL 195–200 80 80 244 64.62 68.35 72 73 −7
MN-90-USL 52–57 70 70 282 65 67 71 72.08 2.08
WI-90-USL 56–61 70 70 1955 64 65.24 68 69.59 −0.41
IL-90-USL 30–35 70 70 2336 62.76 64.62 65.87 67.11 −2.89

OK-40-USL 241–246 75 75 1288 64.62 67 70 71.03 −3.97
TN-40-USL 33.5–38.5 70 70 4585 64 65.24 68 69.59 −0.41

Cells shaded in red indicate speeds that were greater than the posted truck speed limits.

3. Results
3.1. Cumulative Frequency Diagrams

To better visualize the truck speeds, cumulative frequency diagrams (CFD) were used.
Figure 4a plots CFDs for all 18 segments analyzed in this study, while Figure 4b,c plot only
segments with DSLs and USLs, respectively. These diagrams represent truck speed on
the horizontal axis and cumulative distribution on the vertical axis. Circle and rhombus
indicators are placed along each of the colored traces to identify the truck speed limit for
that specific segment. DSL segments are marked with a colored circle and thick line, while
USL segments are marked with a rhombus and a thin line. Figure 4a presents readers the
opportunity to visually compare the trends between segments with and without DSLs.

From the plots in Figure 4, it is apparent that the DSL states generally observed lower
truck speeds. This reduction, however, was marginal compared with the reduction in speed
limit. The speed limit indicators in Figure 4b were scattered, with most at or below the
50th percentile, while all but one of the USL segments were at or above the 85th percentile.
Nearly all the USL segments experienced more than 85% of trucks traveling below the
posted speed limit, while only about 50% of trucks did so along DSL segments. A similar
trend can be seen in Table 1, where 5 of the 10 DSL segments were above the speed limit
(shaded red) in the 50th percentile column, but only one of the USL segments experience
85th percentile speeds above the posted limit.

Another valuable metric when comparing CFDs is the interquartile range (IQR). Each
segment’s IQR was calculated by subtracting the 25th percentile speed from the 75th
percentile speed. This IQR value quantifies the spread among the data, where higher
numbers indicate a greater spread. One way to visualize the IQR is by looking at the
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slope of the CFDs between the 25th and 75th percentiles. Thick black horizontal lines were
added at these intervals for better viewing in Figure 4. Looking at Figure 4a, the thick lines,
representing DSLs, had a “steeper” or greater slope than the thin lines, representing USLs.
This same trend can be seen when the graphs are split by speed limit type in Figure 4b,c.
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Figure 4. Cumulative distribution of truck speeds for all selected segments: (a) all segments; (b) only
DSL segments; (c) only USL segments.

These steeper slopes correlate to a smaller average IQR value. It was found that the
average IQR for DSL segments was 19% lower than the average IQR for USL segments.
The IQR values found in this study were 4.4 MPH and 5.2 MPH for DSL and USL segments,
respectively. This suggests that trucks traveled at a more consistent speed through DSL
segments than through USL segments.
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In order to remove the difference in speed limits, a relative CFD can be plotted, as
found in Figure 5. These plots take the same data as Figure 4 but center them about the
individual speed limits. Marked by the single black vertical line, the “0” value represents
the relative speed limit for each individual segment. Each segment is colored based on its
posted truck speed limit and follows the same thickness scheme as Figure 4. Segments with
lower truck speed limits, such as California at 55 MPH, see trucks following a greater speed
relative to the posted limit. Segments with higher truck speed limits, such as Wyoming at
80 MPH, see the vast majority of trucks traveling at a lower speed relative to the posted
limit. Figure 5a demonstrates an interesting trend, as the colors follow a similar trend, aside
from a couple of outliers, from red to purple. This trend is independent from the speed
limit type; USL and DSL segments both follow this same trend. Figure 5b,c show the same
plotting scheme, but for only the DSL and USL segments, respectively.
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Combining the concepts of Figures 4 and 5, it is possible to separate the segments into
groups based on the passenger car speed limit. In one case, Figure 6 looks at the three
segments with an 80 MPH passenger car limit. Two of the segments, along I-90 in South
Dakota and Wyoming, were USL segments, while the lone DSL segment was along I-90 in
Montana. This DSL segment in Montana had a truck speed limit of 70 MPH, a reduction
of 10 MPH. This truck speed limit began reducing the observed truck speeds around the
50th percentile, pointed out by callout i in Figure 6. By the 75th percentile (Figure 6 callout
ii), observed truck speeds were reduced by approximately 2 MPH compared with the two
other USL routes.
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3.2. Statistical Analysis

In order to determine the statistical significance of implementing differential speed
limits, a hypothesis test was created. This hypothesis test aimed to determine if the mean
speeds along two corridors, one with differential speed limits and another with uniform
speed limits, were significantly different from one another. In order to ensure the integrity
of this test, segments along the same route in two states were selected. The segments both
had the same passenger car speed; one segment had a USL, and the other had a DSL. The
results for the t-tests, at a 95% confidence interval, can be seen in Table 2.

Table 2. t-test results for three sample comparisons.

Comparison Segments Speed Difference
Threshold (MPH) Sample Size Mean Speed

(MPH)
Standard

Deviation (MPH) p-Value Statistically
Significant?

Route State 1
(USL)

State 2
(DSL) State 1 State 2 State 1 State 2 State 1 State 2

I-69 KY
(70)

IN
(70–65) 0 4309 21,362 65.317 65.197 8.762 5.778 0.194 No

I-40 OK
(75)

AR
(75–70) 2 8969 14,807 66.895 64.677 7.350 7.673 0.015 Yes

I-90 WY
(80)

MT
(80–70) 1 742 3655 68.848 67.068 5.280 6.251 <0.001 Yes

Looking at the above results, it can be concluded that some DSLs did not lead to a
statistically significant reduction in mean truck speeds, while others did. Along I-69 in
Kentucky and Indiana, a 5 MPH reduction in Indiana, from 70 to 65 MPH, did not correlate
with a statistically significant reduction in mean truck speeds. Conversely, along I-40 in
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Oklahoma and Arkansas, a 5 MPH reduction in Arkansas significantly correlated to a
2 MPH reduction in mean truck speeds.

4. Conclusions

With the increasing frequency and widespread availability of connected truck data, the
methodology and visuals outlined in this paper provide a framework to scale a small-focus
case study to a nationwide analysis over any given period of time and corridor of choice. It
can similarly be scaled to any route, not just interstates, as long as the penetration rate is
sufficient to aid in data-driven decision-making processes for roadway infrastructure as it
relates to truck traffic (freight priority corridors, dedicated truck lanes, setting speed limits,
and weigh station and rest area placement to name a few).

This study applied methodologies previously outlined to analyze the statistical re-
lationship between reduced differential truck speed limits and observed truck speeds.
Eighteen unique five-mile segments across four interstates, independent of interchanges,
rest areas and weigh stations, were identified and analyzed. These segments covered
all eight states that deploy DSLs and eight adjacent states that follow USLs (Figure 1).
Aggregating over 240,000 speed samples showed very little statistical reduction in speeds
due to DSLs. Along I-40, Arkansas experienced a 1–2 MPH decrease in 85th percentile
speeds when a DSL reduced the limit from 75 MPH in Oklahoma to 70 MPH in Arkansas.
Conversely, when the truck speed limit was reduced from 70 MPH in Illinois to 65 MPH in
Indiana along I-69, 85th percentile truck speeds increased by 1–2 MPH. A segment of I-5 in
California with 55 MPH reduced speeds experienced identical 85th percentile truck speeds
as a segment in Oregon with 60 MPH reduced speeds (Figures 4 and 5). It was concluded
that the IQR for DSL segments was, on average, 19% less than that for USL segments, a
reduction of 0.8 MPH. This correlates to a more consistent observed truck speed through
DSL segments than through USL segments.

Although these data are scalable to any market with CT data, various limitations
exist. The largest limitation of this study is the usage of one commercial CT data provider.
This narrows the scope of the analysis and could lead to possible bias. The data used in
this study were also very large in nature and required a significant investment into both
storage and management. Similar studies have been conducted in the CV space and found
that approximately 500 billion records, covering all 50 U.S. states, occupied tens of TBs
(terabytes) of data [40]. The CT data used in this study were reported at a 10–60 s frequency
and took approximately 30 min for ingestion and storage.
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