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Abstract: This paper presents a practical approach to classifying aviation safety reports in an
operational context. The goals of the research are as follows: (a) successfully demonstrate a
replicable, practical methodology leveraging Natural Language Processing (NLP) to classify
aviation safety report narratives; (b) determine the number of reports (per class) required
to train the NLP model to achieve an F1 performance score greater than 0.90 consistently;
and, (c) demonstrate the model could be implemented locally, within the confines of a
typical corporate infrastructure (i.e., behind the firewall) to allay information security
concerns. The authors purposefully sampled 425 safety reports from 2019 to 2021 from a
university flight training program. The authors varied the number of reports used to train
an NLP model to classify narrative safety reports into three separate event categories. The
NLP model’s performance was evaluated both with and without distractor data, running
30 iterations at each training level. NLP model success was measured using a confusion
matrix and calculating Macro Average F1-Scores. Parametric testing was conducted on
macro average F1 score performance using an ANOVA and post hoc Levene statistic. We
determined that 60 training samples were required to consistently achieve a macro average
F1-Score above the established 0.90 performance threshold. In future studies, we intend to
expand this line of research to include multi-tiered analysis to support classification within
a safety taxonomy, enabling improved root cause analysis.

Keywords: aviation safety reports; multi-class; natural language processing (NLP); bidirec-
tional encoder representations from transformers (BERT)

1. Introduction
Thousands of times each year, airline employees file internal safety reports to alert

management of incidents and hazards encountered during aviation operations. Most
commonly, these reports are submitted via the organization’s electronic internal safety
reporting system, which generally includes a database for securing, tracking, and managing
these submissions. Reports are usually written using “freeform text describing the incident,
along with a small set of metadata (mostly concerned with the time, the location, and the
equipment involved)” ([1], p. 81). The report is then queued for initial triage by an aviation
safety analyst, who reads the report narrative to evaluate the significance of the content
and determine how to share the information within the organization.

Several unique challenges complicate the process of analyzing and classifying safety
reports. For example, safety analysts may lack direct experience or context in the reported
topic areas. Just as analysts develop the ability to recognize genuinely serious events, pro-
fessional advancement, job turnover, and other factors can rob aviation safety departments
of their skillset.
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Their format and makeup further challenge the interpretation of safety reports. Un-
structured text [2,3], varied writing styles, reporter perspective, and writing spontaneity
can make interpreting safety reports difficult (Tanguy et al., 2015). “These texts are written
in plain language, show a wide range of linguistic variation (telegraphic style overcrowded
by acronyms or standard prose) and exist in different languages, even for a single-company
country” ([1], p. 80).

Yet another confounding factor is that safety report content is often overly focused
on non-relevant material—content that does little to reveal incident causes or effects [4].
Additionally, analyst perspective and bias in interpreting data may inject ambiguity into
the evaluative process [5]. These characteristics, coupled with nuance, emotional language,
and other factors, can easily lead to reports being misinterpreted or salient safety details
being essentially buried among less relevant content within the text.

Moreover, existing processes for analyzing safety reports are both cumbersome and
labor-intensive. According to Ahadh [6], manual analysis “is unattractive since it is expen-
sive, time-consuming, and error-prone” (p. 457). Complicating this problem is that analysts
are often responsible for processing large numbers of reports [1].

The paper is organized to include a summary literature review, highlighting important
advancements in NLP and ML for narrative analysis, followed by an overview of the current
problem, and research questions. The methodology section overviews the current study
design considerations, framework, instrumentation, data preparation, and processing. In
the results and discussion section, the authors present the model output and assess model
performance metrics. We conclude the paper by answering the posed research questions
and presenting recommendations and plans to expand this line of research.

1.1. Literature Review

Several prior attempts have been made to leverage machine learning strategies to
classify safety-based narrative data, with varying degrees of success. Early classification
models treated narrative data as a bag of words—independent occurrences of words within
the text, without regard to grammar, word order, structure, or context. The resulting
output is a simple string of frequency counts for various features—word selections—found
within each narrative [6]. While this approach was among the first successful strategies
to transform qualitative data for quantitative analysis, its utility was limited and wrought
with significant limitations for interpreting context. The approach used in the Bag of Words
analysis would be improved to segregate meaningful words from less meaningful ones.
Dubbed Term Frequency-Inverse Document Frequency (TF-IDF), this methodology applied
a statistical weighting technique to identify unique terms across an analyzed narrative or
corpus. The TF-IDF method yields a word score based on the rarity of the term, essentially
representing the importance of the word relative to all narratives in the corpus [7,8]. Despite
its improvements over the Bag of Words method, TF-IDF has several limitations in appro-
priately interpreting narrative context. Narrative context interpretation would improve
with the advent of Support Vector Machines (SVMs). SVMs enable further improvement
to narrative analysis by providing a means for simple classification by establishing a
narrative hyperplane—a mathematical representation of words that enables rudimentary
binary classification prediction. While SVMs are robust to handling high-dimensional
data—narratives with a large number of features or variables—the approach still lacks the
ability to interpret semantic meaning, based on narrative context or relationships [6,9].

Current NLP models apply a neural network, deep learning design, which uses a
multi-layered approach modeling functionality similar to that of the human brain. A neural
network processes input data through a multi-layered system, which applies transforma-
tions, weights, bias adjustments, and activation functions to solve complex narrative issues
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such as sophisticated pattern recognition and non-linearity. The application of neural
networks to NLP analysis improves semantic interpretation of narratives [10], and demon-
strates superior performance over other classification techniques when applied to textual
datasets [9]. The improvement in accuracy and performance of neural network models over
previous narrative analysis methods make them particularly popular for these tasks [11].

1.2. Problem Statement

The high number of analyst tasks, coupled with limited contextual knowledge, creates
conditions that allow events of interest—incidents that could represent a serious risk to
organizational safety—to linger unseen or unrecognized in the safety reporting database.
Moreover, reports are usually processed in the order received, potentially delaying the
review and response to events with significant consequences.

1.3. Purpose Statement

This research aimed to create a practical assessment tool using natural language
processing (NLP) for automated processing and classification of narrative-based safety
reports to augment safety analyst triage for events of interest.

1.4. Significance of the Study

Applying NLP techniques to the analysis of safety reports does not substantively
change the overall processing and disposition of reports. Instead, it streamlines their
management [1], accuracy, and triage. According to Paraskevopoulos et al. [4], “combining
machine learning with natural language processing can automate their [safety report]
classification and help safety managers . . . to quickly understand underlying conditions
and factors and gain insights for proper assessment regarding safety measures” (p. 3).

Rickets et al. [11] assert, “Recent advances in deep learning models such as Bidirec-
tional Transformers for Language Understanding are now achieving a high accuracy while
eliminating the need to substantially pre-process text” (p. 1). Tanguy et al. [1] propose that
NLP processes can also aid analysts by identifying common or routine themes, thereby
preserving analyst expertise and effort for more hazardous incidents. Idyllically, achieving
high-precision NLP of safety reports could minimize or eliminate human verification,
reducing reliance on limited human knowledge and manual review [1,11].

Specifically, integrating NLP into the safety reporting handling process is intended to
improve the rapid identification of events of interest, improve the accuracy and consistency
of initial classification over existing methods, and reduce the reliance on human analysts
(without specific subject matter expertise) in the evaluation process.

1.5. Research Questions

The authors sought to answer the following research questions:

• Can NLP techniques identify events of interest by analyzing aviation safety report
narratives?

• How many training samples are needed for the NLP model to consistently achieve a
Macro Average F1-Score of 0.9 on a multi-class classification task?

2. Methodology
2.1. Design Requirements

For this study, the authors identified several requirements that drove the design and
implementation of the resulting NLP model. To be effective, the use of NLP for the analysis
of safety reports must perform the following:
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• Minimize the effort expended by high-value subject matter experts (SMEs) to identify
examples of “events of interest” from a large set of safety report narratives.

• Achieve an average F1-Score greater than 0.9 for identified categories, even when
distractors are included. Note: The authors operationally define distractors as events
with similar characteristics (such as writing style, lexicon, and length) as the events
of interest but are determined by SMEs not to meet the criteria for inclusion in any
identified categories.

• Meet equipment and processing requirements so the NLP classification process can be
performed on a local operating system for information security reasons.

2.2. NLP Using Bidirectional Encoder Representations from Transformers

Bidirectional Encoder Representations from Transformers (BERT) is the latest iteration
of the NLP model design that applies a neural network, deep learning methodology.
BERT is a relational language model comprising a transformer, incorporating an encoder
designed to interpret and process contextual text and a decoder that performs a task, such
as classification. “BERT makes use of the transformer, an attention mechanism that learns
the contextual relations between words (or sub-words) in a text” ([12], p. 1). Additionally,
BERT is advantaged by evaluating word context in both left and right directionality [13,14],
enabling improved contextual accuracy over unidirectional NLP models and performing
well compared to other NLP models [9,15].

In its default state, BERT comes pre-trained in essential language functions. However,
equipping BERT to classify narratives requires fine-tuning to refine the model further
to accomplish specific tasks, such as classification, sentiment analysis, summarization,
translation, or related activities.

NLP classifiers, such as BERT, output a proportional distribution that rates the classifi-
cation fit of each narrative within the classification categories. For many NLP models, classi-
fications are recommended based on the category that receives the highest probability score,
regardless of the extent of the difference between the other category scores. This means
that a narrative that receives a slightly higher score in one category over another will be
classified in that category. NLP classifiers can be configured for binary factor categorization;
multi-class, multi-factor classification; or, multi-class, mutually exclusive classification.

2.3. Methodological Framework

This research employed an applied research methodology using a quantitative ap-
proach. The authors sampled narrative safety report data from a university flight training
program. Three unrelated events of interest were selected for categorization. Subject matter
experts (SMEs) evaluated sample report narrative data for applicable categorization. Ensur-
ing the SMEs are properly calibrate is a critical step required when constructing a training
dataset [6,16]. To ensure this requirement was met, the research team adapted techniques
developed by Holt et al. [17]. Specifically, the SME performance was monitored against a
referent classification standard through the use of initial training, calibration sessions, and
random checks by the investigator.

The research team varied the number of SME-coded training reports to build the NLP
model from 20 to 60 reports in 10-report increments (Independent Variable). Model testing
was performed on a randomly sampled subset of data to evaluate model performance. The
model performance was tested with and without distractor data—irrelevant, misleading, or
confounding data. Following each run of the model testing, an F1-Score was calculated and
recorded (Dependent Variable). The authors performed statistical testing on the resulting
F1-Scores to identify and assess significant differences in model performance related to the
Independent Variable (i.e., the number of reports used to train the model).
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2.4. Instrumentation

The authors used BERT to build a classification model to classify safety reports into
mutually exclusive, pre-defined categories. The NLP model was developed and tested
using a single Razer Blade 18, a high-end gaming laptop with 32 GB of RAM, and an
internally installed NVIDIA GeForce RTX 4090 graphics processing unit (GPU, NVIDIA,
Santa Clara, CA, USA) to run the BERT transformer.

2.5. Data Sample

The sample pool comprised 425 safety reports purposively sampled over three years,
from 2019 to 2021. Subject matter experts reviewed and coded the report narratives until at
least 80 cases were identified for each of the three possible selected event categories.

2.6. Data Preprocessing

This model relies on narrative text to properly categorize safety reports. Short report
narratives yield a much higher variability in categorization probability, so the authors
filtered out reports with less than 25 words in the narrative.

Data must be normalized before analyzing narrative data with NLP processes, remov-
ing stop words, text casing, and consolidating word forms or derivatives into a singular
form [18]. During this preprocessing stage, punctuation was removed, except for periods.
Adadh [2] highlights the importance of developing a field dictionary to aid the NLP model
in understanding report corpus or contextual keywords. The research team reviewed sam-
ple reports to identify critical, contextual, and commonly used acronyms and abbreviations.
A dictionary or lexicon lookup was created to replace common acronyms and abbreviations.
Eighty-seven terms were integrated to improve the context recognition of the model. The
lexicon included terms that defined crew responsibilities, aircraft positional or maneuver
information, airplane and aviation infrastructure systems, and local aerodrome references.
Final preprocessing converted all text casing to lowercase. An example of the normalization
process adjustments to the safety report narratives is provided in Table 1. (Note: whereas
this example contains items similar to the narratives used in the study, it is offered for
demonstration purposes only and is not based on an actual safety report, as these are
considered confidential information by the institution providing the raw data.)

2.7. Class Definition

The authors established three events of interest referred to throughout this paper as
either categories or classes. Narratives related to these classes (and selected distractors)
were limited to the takeoff and landing phases of flight:

• Event_0 = Skill-related event;
• Event_1 = Airspace-related event;
• Event_2 = Mechanical-related event.

Each class contained fundamentally different environmental and behavioral compo-
nents, making each distinctive to the NLP classifier. These classes were also selected due
to the preponderance of available safety report data, ensuring the adequacy of events of
interest data.

2.8. SME Classification

Subject matter experts (SMEs) manually categorize the safety report narratives. For
training the model, codes representing SME categorizations are linked to the raw narrative
records, and the resulting Training Dataset serves as the input used by the NLP script to
build the classification model. The resulting NLP model enables new safety reports (i.e.,
not previously categorized by SMEs) to be ingested and yield a probability distribution
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indicating the model’s recommendation for categorization. Properly configured, this
process provides automated flagging of various events of interest identified by the model.

Table 1. Example of the Data Normalization Process.

Original
Narrative Preprocessing Replaced

Abbreviations Model

I was the PIC and PF on a
flight from ABC to XYZ.

Shortly after tkof we heard
a loud thump sound. I

immediately checked our
eng instruments and
noticed that the RPM

gauge was in the red. The
PM communicated with

ATC, letting them know we
were declaring an

emergency and needed to
return to the dep airport.
We performed the chklist
and ATC then told us to
turn right and climb to
3000 MSL. While in the

turn (at about 2600′), we
received a traffic alert. We
did not see any traffic and
continued our climb to the

assigned altitude. ATC
then provided vectors for

the ILS RWY 17. They clred
us direct to the IAF and

told us to contact the
Tower. We contacted TWR
and the lndg was normal.

I was the PIC and PF on a
flight from ABC to XYZ.

Shortly after tkof we heard
a loud thump sound. I

immediately checked our
eng instruments and
noticed that the RPM

gauge was in the red. The
PM communicated with

ATC letting them know we
were declaring an

emergency and needed to
return to the dep airport.
We performed the chklist
and ATC then told us to
turn right and climb to
3000 MSL. While in the
turn at about 2600 we

received a traffic alert. We
did not see any traffic and
continued our climb to the

assigned altitude. ATC
then provided vectors for

the ILS RWY 17. They clred
us direct to the IAF and

told us to contact the tower.
We contacted TWR and the

lndg was normal.

I was the captain and pilot
flying on a flight from ABC

to XYZ. Shortly after
takeoff we heard a loud

thump sound. I
immediately checked our
engines instruments and

noticed that the RPM
gauge was in the red. The

pilot monitoring
communicated with ATC

letting them know we were
declaring an emergency

and needed to return to the
departure airport. We

performed the checklist
and ATC then told us to
turn right and climb to

3000 MSL. while in the turn
at about 2600 we received a
traffic alert. We did not see
any traffic and continued
our climb to the assigned

altitude. ATC then
provided vectors for the

instrument landing system
runway 17. They cleared
us direct to the IAF and

told us to contact the tower.
We contacted tower and
the landing was normal.

I was the captain and pilot
flying on a flight from ABC

to XYZ. Shortly after
takeoff we heard a loud

thump sound. I
immediately checked our
engines instruments and

noticed that the RPM
gauge was in the red. The

pilot monitoring
communicated with ATC

letting them know we were
declaring an emergency

and needed to return to the
departure airport. We

performed the checklist
and ATC then told us to
turn right and climb to

3000 MSL. while in the turn
at about 2600 we received a
traffic alert. We did not see
any traffic and continued
our climb to the assigned

altitude. ATC then
provided vectors for the

instrument landing system
runway 17. They cleared
us direct to the IAF and

told us to contact the tower.
we contacted tower and the

landing was normal.

2.9. Multiple-Runs by the Level of the Independent Variable

For each level of the Independent Variable (i.e., number of records used to train the
model—20, 30, 40, 50, and 60), the model was run 30 times. Following each training run,
20 reports from each category combined in a testing dataset were presented to the resulting
model. Reports used for model testing differ from those used for model training as they
were randomly selected from the remaining pool of coded reports after removing the
testing narratives.

2.10. Distractors

The design philosophy of this project includes the ability to parse out examples of
specific events/hazards for immediate action that may be buried within a large set of
narrative data. These narratives were pulled from the same report corpus and evaluated
by the SMEs. Although nearly all reports used similar phraseology and some events were
similar to the event categories of interest, the SMEs determined they were not members of
the targeted classes.



Safety 2025, 11, 7 7 of 12

2.11. NLP Model Success Measures

To analyze the performance of the model, the research team used an assessment
instrument known as an F-measure, reported as an F1-Score. The F1-Score is tabulated
by comprehensively comparing true positives, false positives, and false negatives. True
Positives (TP) are the number of samples correctly predicted as positive. False Positives
(FP) are the number of samples wrongly predicted as positive. False Negatives (FN) are the
number of samples wrongly predicted as negative.

The F1-Score is an algorithm that amalgamates classification model performance using
the metrics of precision and recall (Leung, 2022). Precision measures the level of accuracy
of the predicted positives. Precision is calculated by determining the proportion of true pos-
itives (TP) relative to the number of model-predicted positives (TP + FP). Recall measures
the proportion of predicted positives to the total number of available true positives. Recall
is calculated by determining the proportion of true positives (TP) relative to the number of
true positives and false negatives (TP + FN). See Figure 1.
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This yields the following F1-Score equation:

F1-Score = TP/(TP + ½ (FP + FN))

F1-Scores are tabulated for each classification category, with overall model performance
reported using a Macro Average, an unweighted algorithmic mean of all category F1-
Scores [20]. While there are several variants for tabulating overall model performance
using F1-Scores, the research team elected Macro Averaging since the sample contained a
balanced dataset [20].

2.12. Assumptions and Limitations

The use of NLP classifiers relies on several assumptions and limitations, notably:

• As identified by Yang and Huang [18], aviation is an international industry; therefore,
NLP safety analysis methods must be able to support multiple languages and dialects.
For this research, reports were limited to those written in English. While English
remains the international standard for aviation communications, the authors recognize
the need for NLP analysis to be adaptable to varied language, culture, and other
considerations. However, these factors were not analyzed during this study.
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• Leveraging a supervised training model for NLP classification is not adaptable to
changing safety conditions and is not applicable to identifying previously unknown
emerging threats [1].

2.13. Institutional Review Board and Participant Protection

This research project utilized data collected from a secondary source. The data are not
publicly available, and the provider was not involved in the research project. While the
provider can link the data back to living individuals, the data furnished to the authors was
de-identified. Based on these factors, it was determined by the Institutional Review Board
(IRB) that the research falls under 14 CFR 46 (4), Exempt Secondary Research, for which
consent is not required and no IRB review is needed. The original dataset was not released
because of the sensitive nature of individual safety reports and organizational safety data
used in this project.

3. Results and Discussion
3.1. Confusion Matrices

To explore the general performance of the model and gain insight related to the
influence of the distractors, the results from all runs (by the level of the Independent
Variable) were combined, and the following confusion matrices were tabulated: (a) model
performance without distractors and (b) model performance with distractors. These matri-
ces provide a visual representation of model performance. A sample of results from the
50 training sample levels is provided in Figure 2.
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3.2. F1-Score

The authors calculated the Macro F1-Score after each model run. As mentioned
previously, the model was run 30 times at each level of the Independent Variable (IV). The
line plot for these results is presented in Figure 3.

When distractor narratives were added that did not correspond to the event cate-
gories, the NLP model performance decreased. Adding distractors increases ambiguity,
requiring further NLP model refinement, including the addition of more training sam-
ples to achieve the desired 0.9 performance level. Initial visual inspection suggests that
sustained NLP model performance above the 0.9 threshold may be achieved when using
50 training samples.
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3.3. Statistical Testing of Group Differences Using the Macro-Average F1-Score

This study’s targeted application is to incorporate NLP during the initial filtering stage
(i.e., “triage”) of report processing. Therefore, the following analysis focused on testing
whether significant differences exist between the IV levels as the performance of the model
approaches (or exceeds) the operationally defined target of 0.9 F1-Score when classifying
reports in the presence of distractors. See Figure 4 for a graphical depiction of the analysis.
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The prerequisites for parametric statistical testing were not met when including the 20
sample results. Based on the relatively low Macro Average F1-Score performance of the
20 sample level (as depicted in Figure 3), the authors decided to remove the group from
the statistical analysis. When the 20 sample level was removed, the data met criteria for
homogeneity and normality.

Statistical testing was performed using an ANOVA, and the Levene test was used to
ensure the prerequisite homogeneity of variance assumption was met, F (3, 116) = 1.476,
p = 0.225.

The ANOVA test indicated a statistically significant difference in Macro Average F1-
Scores across the four levels of the IV evaluated F (3116) = 32.465, p < 0.001. To determine
pairwise statistical significance, post hoc comparisons were conducted using Tukey’s HSD
test and evaluated against an alpha level of 0.05. The results indicated the following
(Table 2):

Table 2. Post Hoc Tukey HSD Testing Results.

Group Significance

30–40 p < 0.001 (significant)
30–50 p < 0.001 (significant)
30–60 p < 0.001 (significant)
40–50 p = 0.063 (not significant)
40–60 p < 0.001 (significant)
50–60 p = 0.183 (not significant)

These findings suggest that 60 training samples are needed to consistently achieve a Macro
Average F1-Score greater than the operationally defined goal of a 0.9 performance threshold.

4. Conclusions and Recommendations
Can NLP techniques identify events of interest by analyzing aviation safety report narratives?
This project demonstrates the capability to use NLP models as a tool for safety analysts

to classify and triage high-priority, free-text aviation safety reports for known hazards.
NLP modeling bridges the knowledge gap between safety analysts and subject matter
experts, enabling rapid, accurate identification of hazardous conditions. Furthermore, this
study illustrates a methodological approach for conducting NLP analysis of safety datasets
that can be performed locally—isolated inside the respective organization’s secure firewall,
computer network, and information technology infrastructure. This element is critical to
many organizations, ensuring data security and confidentiality.

How many training samples are needed for the NLP model to consistently achieve a Macro
Average F1-Score of 0.9 on a multi-class classification task?

Model performance testing metrics suggest that 60 training samples are needed for
each categorical variable within the NLP classification model to achieve high precision
and recall. This criterion guarantees a high degree of model performance while ensuring a
manageable commitment of SME investment to categorize initial model training data.

By employing NLP methods for analyzing safety reporting narrative data, we assert
that significant improvements can be realized in the classification accuracy, and timeliness
of identifying and responding to potential hazards. The proposed strategy leverages
the expertise of seasoned SMEs to provide initial, supervised model training that can
be utilized to enhance and automate safety analysis. This efficiency enhancement, in
turn, augments the capability of analysts to quickly identify potentially serious safety
events. Once deployed, this tool would likely become a force multiplier within the hazard
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identification process, leading to enhanced safety risk awareness, and ultimately prevention
of aviation accidents.

The authors reiterate the need for new benchmarks to assess NLP model performance,
particularly in areas involving high-risk datasets, including safety and accidents, healthcare,
critical infrastructure, security, and legal topics. These datasets require additional care
to ensure classification accuracy. Rather than relying on a single run of the NLP model
to determine performance, we also advocate the importance of reporting NLP model
performance using an aggregation derived from multiple runs. This approach ensures
robustness against model performance variability. The authors recommend 30 run instances
as an appropriate minimum in most cases. This target is generally practical and achievable
while ensuring adequate statistical power for conducting analyses.

We intend to expand the number of analysis categories to determine if classification
accuracy can be maintained given a limited number of training events. This is a vital step,
as subject matter expert time is a scarce resource. To ensure that the tool is properly scalable
for multiple events of interest, the authors need to validate that SME time spent training
the model to classify events correctly can be kept to a minimum.

The authors also plan to expand this line of research to include multi-tiered analysis
methods. In these methods, initial NLP filtering is conducted to correctly classify incidents
into broad event categories, followed by detailed NLP analysis to identify contributing
factors. This approach aims to eventually equip the model to perform root cause analysis.
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